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0e “A Disintegrin and Metalloproteinase with 0rombospondin Motif” (ADAMTS) family of genes is involved in the
occurrence and development of different cancers. However, the prognostic value of these genes in gastric cancer (GC) has not
been revealed. 0e present study was thus conducted to determine the prognostic value for the ADAMTS family of genes in
GC. First, we evaluated the mRNA expression levels of the ADAMTS family in GC patients using a GEPIA dataset. 0ereafter,
we determined the prognostic value of these genes by analyzing their mRNA level using the Kaplan–Meier Plotter database.
0e mRNA expression level of ADAMTS12 was randomly validated by qRT-PCR and meta-analysis while its coexpression
genes were derived using Coexpedia. Finally, we performed Gene Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses using the OmicShare Tools. Compared to normal tissues, ex-
pression of ADAMTS2 and 12 was significantly higher while that of ADAMTS1, 13, and 15 was significantly lower in GC
tissues. According to the RNA-seq and gene chip data, the ADAMTS family (6, 7, 12, 15, and 18) of genes was closely related to
the prognosis of GC, and their high expression levels were associated with poor prognosis and survival time. In addition,
ADAMTS12 was highly expressed in 20 pairs of GC tissues based on RT-PCR (P � 0.016) and meta-analysis (SMD: 0.73, 95%
CI: 0.32–1.14, P< 0.001). GO and KEGG pathway analyses indicated that the ADAMTS12 coexpressed genes were enriched in
the pathways of extracellular matrix organization, extracellular matrix structural constituent, extracellular matrix, and
protein digestion and absorption. Herein, we discovered the prognostic values and biological roles of the ADAMTS genes
in GC.

1. Introduction

Gastric cancer (GC) is the most common lethal cancer
worldwide. Although it is ranked fifth based on the number
of patients diagnosed each year, it has the third highest
mortality rate of all cancers [1]. Although the techniques
used for early screening have improved, and there have been
considerable improvements in comprehensive prevention
and treatment measures owing to surgical treatment [2, 3],
the prognosis of GC remains unsatisfactory [2]. 0erefore,
establishing reliable biomarkers to predict the prognosis of

GC could contribute to the development of individualized
clinical treatment.

Carcinogenesis is associated with abnormalities in dif-
ferent cellular and intercellular mechanisms such as extra-
cellular matrix (ECM) remodeling. Among all ECM
proteases, “A Disintegrin and Metalloproteinase with
0rombospondins” (ADAMTSs) are a relatively new group
and are considered to be associated with carcinogenesis and
the local/distant spread of cancer [4].

ADAMTS is a complex extracellular protease related to
carcinogenesis and tumor protection. ADAMTS can cleave
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or interact with different ECM components or regulatory
factors, ultimately affecting cell adhesion, migration, pro-
liferation, and angiogenesis. Differences in the over-
expression, mutation, or epigenetic silencing of the
ADAMTS genes were identified in different sources of tu-
mors, indicating the direct effect of these metalloproteinases
on the development of cancer [5].

Presently, only few studies have been carried out on the
ADAMTS family in GC. Jiang found that ADAMTS2 may
be a potential biomarker for determining the prognosis of
GC. 0is researcher also demonstrated that ADAMTS1, 8,
and 18 were highly expressed in GC and its lymph node
metastasis [6]. Conversely, however, other studies have
found that the hypermethylation of ADAMTS8 and 18 is
related to a decrease in the expression of GC and may play
an important role in the invasion and metastasis of this
malignancy [7]. ADAMTS12 may also play a role in the
tumor process owing to its proteolytic activity or serve as a
potential molecule involved in the regulation of cell ad-
hesion [8].

Because the role of the ADAMTS family of genes in
tumor diseases remains unclear, especially in the study of
prognosis, we aimed to determine the prognostic value of
their expression in GC.

2. Materials and Methods

2.1. Detection of the Gene Expression of the ADAMTS Family.
0e expression level of the ADAMTS family of genes was
detected using the GEPIA tool (http://gepia.cancer-pku.cn)
[9]. Normal samples were selected from TCGA and GTEx
databases and compared to those from the TCGA tumor
group, using a standard processing pipeline. To explore the
expression of the ADAMTS family of genes in the different
stages of tumor development, major pathological stages or
subpathological stages were selected for plotting. All ex-
pression data were first log2(TPM+1) transformed for
plotting. One-way ANOVA was employed for differential
analysis, and disease state (tumor or normal) was used as a
variable to calculate the differential expression. 0e RNA-
seq data for stomach cancer, which were used in the
heatmap, were downloaded from UCSC Xena project
(http://xena.ucsc.edu). Genomic alterations of the ADAMTS
family were analyzed by cBioPortal, an integrative analytic
platform of TCGA [10].

2.2. Prognostic Analysis of the ADAMTS Gene Family in GC
Using the Kaplan–Meier (K-M) Plotter. 0e K-M plotter
database was established using gene expression data and
survival information from Gene Expression Omnibus
(GEO) and TCGA (http://kmplot.com/analysis) [11].
Briefly, the gene chip data from the GEO database and
mRNA-seq data from the TCGA database were selected.0e
chip data contains GSE14210, GSE22377, GSE51105,
GSE15459, GSE29272, GSE62254, and other chips. 0e
clinical parameters of tumor subtypes (tumor stage and
grade) were recorded for patients, including gender, treat-
ment, and HER2 status. 0e prognosis of ADAMTS in these

subtypes was then compared. 0ereafter, 19 genes were
separately searched in the K-M plotter and the resulting
images were downloaded from the website.

2.3. Verification of ADAMTS12 Expression Using the Chip
Data andRT-PCR. We searched the chip data to identify the
GC-related chip datasets, including cancer and its control
group, and extracted the expression of ADAMTS12. 0e
STATA v12.0 statistical software was employed in the meta-
analysis to derive the continuous variables. Standardized
mean difference (SMD) and 95% confidence interval (CI)
were calculated using the Random (I–V heterogeneity) test.
A two-sided P value <0.05 was considered to indicate sta-
tistical significance.

Following the retrieval of written informed consent, a
total of 20 paired GC and corresponding adjacent non-
cancerous tissues were collected from patients who un-
derwent gastric resection at the Department of
Gastrointestinal Surgery between January 2019 and May
2019 at the First Affiliated Hospital of Guangxi Medical
University. All experiments were approved by the Ethics
Committee of the Hospital. Total RNA extraction was
conducted with NucleoZOL (Macherey-Nagel, Germany),
following the protocol of the manufacturer. Reverse tran-
scription of the extracted RNA and real-time quantitative
PCR (qRT-PCR) were successively performed according to
the instructions provided in the RT-PCR kit (TaKaRa
Biotechnology) and the fluorescence quantitative PCR kit
(TaKaRa Biotechnology). 0e primer sequences for
ADAMTS12 and β-actin were produced by Sangon Biotech
Company (Shanghai, China). 0e following primer se-
quences were used: ADAMTS12, 5′-AACGCTATCG-
CTTGTGCAAC-3′ and 5′-CTCACAAGGATGTGCTGG-
GT-3′; and β-actin, 5′-TGGCACCCAGCACAATGAA-3′
and 5′-CTAAGTCATAGTCCGCCTAGAAGCA-3′. 0e
relative expression levels of ADAMTS12 were quantified
using the 2−ΔΔCT method.

2.4. Gene Function Enrichment Analysis. Coexpedia is a
database that contains context-associated coexpression
networks inferred from individual series of microarray
samples for human and mouse from chip data. Hence, this
database (http://www.coexpedia.org) was employed to an-
alyze the ADAMTS12-related genes [12]. In addition, we
analyzed the ADAMTS12 coexpressed genes using RNA-seq
data to determine the possible mechanisms of action of
ADAMTS12. Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analyses were performed
using the OmicShare tools, a free online platform for data
analysis (http://www.omicshare.com/tools).

3. Results

3.1. mRNA Expression Level of the ADAMTS Family in GC.
Based on our search of the RNA-seq data, the expression
level of ADAMTS2, ADAMTS9, ADAMTS12, ADAMTS14,
and other genes in the GC group was higher than that found
in the normal group (Figure 1) (P< 0.05). However, the
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Figure 1: 0e expression of the ADAMTS family based on sequencing data. 0e mRNA expression of the ADAMTS family between tumor
and normal; red: tumor; gray: normal; ∗P< 0.01. (a) ADAMTS1, (b) ADAMTS2, (c) ADAMTS3, (d) ADAMTS4, (e) ADAMTS5, (f )
ADAMTS6, (g) ADAMTS7, (h) ADAMTS8, (i) ADAMTS9, (j) ADAMTS10, (k) ADAMTS12, (l) ADAMTS13, (m) ADAMTS14, (n)
ADAMTS15, (o) ADAMTS16, (p) ADAMTS17, (q) ADAMTS18, (r) ADAMTS19, and (s) ADAMTS20.
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Figure 2: Heatmap depicting the expression of the ADAMTS family in GC patients. Red represents high expression; blue represents low
expression; black represents not detected.
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Figure 3: Expression of the ADAMTS family at different clinical stages. One-way ANOVAwas performed to calculate the expression of the
ADAMTS family in the differential pathological stage. (a) ADAMTS1, (b) ADAMTS2, (c) ADAMTS3, (d) ADAMTS4, (e) ADAMTS5, (f )
ADAMTS6, (g) ADAMTS7, (h) ADAMTS8, (i) ADAMTS9, (j) ADAMTS10, (k) ADAMTS12, (l) ADAMTS13, (m) ADAMTS14, (n)
ADAMTS15, (o) ADAMTS16, (p) ADAMTS17, (q) ADAMTS18, (r) ADAMTS19, and (s) ADAMTS20.
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expression level of ADAMTS1 was significantly lower in the
GC tissues than in normal tissues (P< 0.05) (Figure 1). 0e
heatmap presented in Figure 2 shows the expression of each
ADAMTS family of molecules in tumor tissues and the
adjacent tissues. Figure 3 depicts the relationship between
the ADAMTSmolecules and tumor progression. Genes such
as ADAMTS1, ADAMTS10, and ADAMTS12 were found to
increase with tumor progression (P< 0.05). By analyzing the
ADAMTS family of genes, we found that ADAMTS12 and
ADAMTS16 had the highest mutation rate (i.e., 12%), which
was mainly due to amplification and missense mutation.0e
lowest rate of genetic change occurred in ADAMTS6
(rate� 1.8%; Figure 4).

3.2. PrognosticValues of theADAMTSFamily in Patients with
GC Based on RNA-Seq and Chip Data. Using the RNA-seq
data, we determined the prognostic value for the mRNA
expression of the ADAMTS family in GC. ADAMTS4
(HR� 1.39, P< 0.001), ADAMTS6 (HR� 1.75, P< 0.001),
ADAMTS7 (HR� 1.43, P< 0.033), ADAMTS10 (HR� 1.45,
P< 0.026), ADAMTS12 (HR� 1.41, P< 0.040), ADAMTS15
(HR� 1.49, P< 0.016), ADAMTS16 (HR� 1.42, P< 0.034),
ADAMTS18 (HR� 1.59, P � 0.005), and other molecules
were found to be associated with the overall survival (OS) of

patients with GC. In fact, the survival time of patients with a
high expression of these molecules was significantly shorter
than that of patients with a low expression of these molecules
(Figure 5).

0e expression levels of ADAMTS10 (HR� 2.22,
P � 0.020), ADAMTS18 (HR� 2.02, P � 0.036), and
ADAMTS20 (HR� 2.47, P � 0.006) were recognized to be
associated with the recurrence of GC. 0e survival time of
patients with a high expression level of these genes was
significantly lower than that of patients with a low ex-
pression level of these genes (Figure 6).

Finally, we verified the prognostic value of 19 genes of
the ADAMTS family in the chip data. As a result, ADAMTS1
(HR� 1.68, P< 0.001), ADAMTS2 (HR� 1.49, P< 0.001),
ADAMTS3 (HR� 1.33, P< 0.001), ADAMTS5 (HR� 1.4,
P< 0.002), ADAMTS6 (HR� 1.7, P< 0.001), ADAMTS7
(HR� 1.63, P< 0.001), ADAMTS8 (HR� 1.72, P< 0.001),
ADAMTS9 (HR� 1.46, P< 0.001), ADAMTS12 (HR� 1.39,
P< 0.001), ADAMTS14 (HR� 1.58, P< 0.001), ADAMTS15
(HR� 1.29, P< 0.001), ADAMTS18 (HR� 1.53, P< 0.001),
andADAMTS20 (HR� 1.67) were found to be closely related
to OS in patients with GC (P< 0.001).0e total survival time
of patients with a high expression level of these molecules
was significantly shorter than that of patients with low
expression (Figure 7).
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Figure 4: 0e genomic alterations of the ADAMTS family in RNA-seq data. ADAMTS12 was found to have the highest alteration (12%),
with amplification detected to be the main cause of alterations.
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Figure 5: 0e overall survival value for the expression of the ADAMTS family based on RNA-seq data. (a) ADAMTS1, (b) ADAMTS2, (c)
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Figure 6:0e relapse-free survival value for the expression of the ADAMTS family based on RNA-seq data. (a) ADAMTS1, (b) ADAMTS2,
(c) ADAMTS3, (d) ADAMTS4, (e) ADAMTS5, (f ) ADAMTS6, (g) ADAMTS7, (h) ADAMTS8, (i) ADAMTS9, (j) ADAMTS10, (k)
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(s) ADAMTS20.
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For postprogression survival (PPS) (Figure 8), we
found that 14 genes, namely, ADAMTS1 (HR � 2.14,
P< 0.001), ADAMTS2 (HR � 1.66, P< 0.001), ADAMTS3
(HR � 1.27, P< 0.001), ADAMTS5 (HR � 1.89, P< 0.001),
ADAMTS6 (HR � 1.97, P< 0.001), ADAMTS7 (HR � 1.98,
P< 0.001), ADAMTS8 (HR � 1.7, P< 0.001), ADAMTS9
(HR � 1.42, P< 0.001), ADAMTS12 (HR � 1.59, P< 0.001),
ADAMTS14 (HR � 1.94, P< 0.001), ADAMTS15
(HR � 1.43, P< 0.001), ADAMTS17 (HR � 1.44, P< 0.001),
ADAMTS18 (HR � 1.67, P< 0.001), and ADAMTS20
(HR � 1.97, P< 0.001), were closely related to PPS. 0e
total survival time of patients with a high expression level

of these genes was significantly shorter than that of pa-
tients with a low expression level.

0rough subgroup analysis, genes such as ADAMTS15,
16, and 18 were identified to be associated with unfavorable
OS in stage II; ADAMTS2, 5, 6, 7, and 20 were associated
with unfavorable OS in stage III; and ADAMTS1, 5, 6, 7, and
14were associated with unfavorable OS in stage IV (Table 1).
0e expression of ADAMTS1, 5, 6, 7, 12, 16, 18, and 20 was
associated with poor OS and did not significantly differ
based on gender. Although the expression levels of
ADAMTS2, 4, 14, and 15 were related to poor OS among
men, only the expression level of ADAMTS9 was associated
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Figure 7: 0e overall survival value for the expression of the ADAMTS family based on chip data. (a) 222486_s_at ADAMTS1, (b)
226311_at ADAMTS2, (c) 214913_at ADAMTS3, (d) 235368_at ADAMTS5, (e) 237411_at ADAMTS6, (f ) 228911_at ADAMTS7, (g)
235649_at ADAMTS8, (h) 1554697_at ADAMTS9, (i) 232133_at ADAMTS10, (j) 221421_s_at ADAMTS12, (k) 223844_at ADAMTS13, (l)
230167_at ADAMTS14, (m) 1553427_at ADAMTS15, (n) 238125_at ADAMTS16, (o) 1552726_at ADAMTS17, (p) 230040_at ADAMTS18,
(q) 1553179_at ADAMTS19, and (r) 220717 ADAMTS20.
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Figure 8: Continued.
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Table 1: Correlation between genes expression of ADAMTS family and OS in gastric cancer patients of clinical stage.

ADAMTSs gene
chip

Clinical stages I (n� 69);
II (n� 145); III (n� 319);

IV (n� 152)
HR (95% CI) P

value
ADAMTSs
RNA-seq

Clinical stages I (n� 50);
II (n� 111); III (n� 149);

IV (n� 38)
HR (95% CI) P

value

ADAMTS1

I 1.95
(0.60–6.40) 0.26

ADAMTS1

I 1.08
(0.32–3.64) 0.90

II 1.57
(0.83–2.97) 0.16 II 2.00

(0.98–4.05) 0.05

III 1.11
(0.77–1.62) 0.57 III 1.12

(0.69–1.80) 0.65

IV 1.52
(1.02–2.27) 0.04 IV 1.12

(0.49–2.56) 0.78

ADAMTS2

I 0.26
(0.07–0.96) 0.03

ADAMTS2

I 2.11
(0.61–7.25) 0.22

II 0.62
(0.33–1.19) 0.15 II 1.62

(0.80–3.26) 0.17

III 1.56
(1.07–2.28) 0.02 III 1.36

(0.84–2.19) 0.21

IV 1.29
(0.87–1.91) 0.20 IV 1.28

(0.55–2.96) 0.57

ADAMTS3

I 1.18
(0.43–3.23) 0.75

ADAMTS3

I 0.60
(0.18–2.07) 0.42

II 1.52
(0.83–2.76) 0.17 II 1.26

(0.63–2.51) 0.51

III 1.13
(0.85–1.5) 0.40 III 1.35

(0.83–2.18) 0.22

IV 1.46
(1.00–2.15) 0.05 IV 1.12

(0.48–2.58) 0.80

ADAMTS4(none) — ADAMTS4

I 1.42
(0.41–4.91) 0.57

II 2.04
(0.99–4.19) 0.05

III 1.24
(0.76–2.01) 0.39

IV 1.20
(0.52–2.78) 0.67

0.0
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Figure 8:0e postprogression survival value for the expression of the ADAMTS family based on chip data. (a) 222486_s_at ADAMTS1, (b)
226311_at ADAMTS2, (c) 214913_at ADAMTS3, (d) 235368_at ADAMTS5, (e) 237411_at ADAMTS6, (f ) 228911_at ADAMTS7, (g)
235649_at ADAMTS8, (h) 1554697_at ADAMTS9, (i) 232133_at ADAMTS10, (j) 221421_s_at ADAMTS12, (k) 223844_at ADAMTS13, (l)
230167_at ADAMTS14, (m) 1553427_at ADAMTS15, (n) 238125_at ADAMTS16, (o) 1552726_at ADAMTS17, (p) 230040_at ADAMTS18,
(q) 1553179_at ADAMTS19, and (r) 220717 ADAMTS20.
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Table 1: Continued.

ADAMTSs gene
chip

Clinical stages I (n� 69);
II (n� 145); III (n� 319);

IV (n� 152)
HR (95% CI) P

value
ADAMTSs
RNA-seq

Clinical stages I (n� 50);
II (n� 111); III (n� 149);

IV (n� 38)
HR (95% CI) P

value

ADAMTS5

I 0.48
(0.16–1.49) 0.19

ADAMTS5

I 0.69
(0.22–2.16) 0.52

II 1.66
(0.86–3.18) 0.13 II 1.20

(0.61–2.36) 0.61

III 1.81
(1.24–2.64) <0.01 III 1.44

(0.89–2.33) 0.14

IV 1.51
(1.02–2.25) 0.04 IV 1.32

(0.57–3.08) 0.51

ADAMTS6

I 0.41
(0.12–1.33) 0.12

ADAMTS6

I 1.15
(0.36–3.65) 0.81

II 1.40
(0.74–2.63) 0.29 II 1.50

(0.75–3.00) 0.25

III 1.36
(0.93–1.98) 0.11 III 1.68

(1.04–2.72) 0.03

IV 1.31
(0.88–1.95) 0.18 IV 3.37

(1.30–8.69) <0.01

ADAMTS7

I 2.56
(0.77–8.56) 0.11

ADAMTS7

I 2.82
(0.75–10.63) 0.11

II 1.35
(0.71–2.57) 0.35 II 1.10

(0.55–2.17) 0.79

III 1.77
(1.21–2.57) <0.01 III 1.44

(0.89–2.33) 0.14

IV 1.76
(1.18–2.63) <0.01 IV 1.19

(0.51–2.76) 0.68

ADAMTS8

I 1.87
(0.56–6.23) 0.30

ADAMTS8

I 1.89
(0.57–6.32) 0.29

II 1.52
(0.80–2.88) 0.19 II 1.16

(0.59–2.28) 0.66

III 1.2
(0.82–1.74) 0.34 III 1.55

(0.96–2.52) 0.07

IV 1.4
(0.94–2.09) 0.10 IV 1.13

(0.49–2.59) 0.77

ADAMTS9

I 0.86
(0.29–2.57) 0.78

ADAMTS9

I 1.11
(0.34–3.65) 0.87

II 1.39
(0.74–2.61) 0.31 II 1.08

(0.55–2.13) 0.82

III 1.36
(0.94–1.98) 0.10 III 1.22

(0.75–1.99) 0.41

IV 1.58
(1.06–2.34) 0.02 IV 1.35

(0.58–3.12) 0.49

ADAMTS10

I 2.12
(0.69–6.48) 0.18

ADAMTS10

I 1.10
(0.33–3.62) 0.88

II 0.89
(0.48–1.65) 0.71 II 1.72

(0.86–3.43) 0.12

III 1.15
(0.79–1.67) 0.47 III 1.25

(0.77–2.02) 0.37

IV 0.76
(0.51–1.13) 0.17 IV 1.46

(0.63–3.39) 0.38

ADAMTS12

I 1.06
(0.40–2.84) 0.91

ADAMTS12

I 1.41
(0.45–4.44) 0.56

II 1.67
(0.92–3.05) 0.09 II 1.72

(0.85–3.46) 0.12

III 1.33
(1.00–1.77) 0.05 III 1.43

(0.89–2.32) 0.14

IV 1.13
(0.77–1.65) 0.54 IV 1.57

(0.67–3.66) 0.29
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Table 1: Continued.

ADAMTSs gene
chip

Clinical stages I (n� 69);
II (n� 145); III (n� 319);

IV (n� 152)
HR (95% CI) P

value
ADAMTSs
RNA-seq

Clinical stages I (n� 50);
II (n� 111); III (n� 149);

IV (n� 38)
HR (95% CI) P

value

ADAMTS13

I 1.75
(0.57–5.37) 0.32

ADAMTS13

I 0.39
(0.12–1.31) 0.11

II 1.33
(0.71–2.49) 0.37 II 0.99

(0.50–1.94) 0.97

III 1.11
(0.77–1.62) 0.57 III 0.91

(0.56–1.46) 0.69

IV 0.86
(0.58–1.28) 0.47 IV 0.88

(0.39–2.01) 0.76

ADAMTS14

I 0.83
(0.26–2.67) 0.75

ADAMTS14

I 0.66
(0.21–2.09) 0.47

II 1.19
(0.62–2.25) 0.60 II 0.76

(0.38–1.49) 0.42

III 1.42
(0.98–2.07) 0.06 III 1.36

(0.84–2.20) 0.21

IV 2.10
(1.40–3.16) <0.01 IV 0.96

(0.42–2.23) 0.93

ADAMTS15

I 1.13
(0.38–3.39) 0.82

ADAMTS15

I 0.69
(0.21–2.26) 0.54

II 1.33
(0.71–2.49) 0.36 II 2.14

(1.05–4.35) 0.03

III 1.10
(0.76–1.60) 0.62 III 1.32

(0.82–2.13) 0.26

IV 1.31
(0.89–1.95) 0.17 IV 1.78

(0.76–4.17) 0.18

ADAMTS16

I 1.25
(0.42–3.73) 0.69

ADAMTS16

I 1.10
(0.35–3.50) 0.87

II 1.00
(0.53–1.87) 0.99 II 2.60

(1.26–5.36) <0.01

III 1.06
(0.73–1.54) 0.76 III 1.13

(0.70–1.81) 0.62

IV 1.20
(0.81–1.77) 0.37 IV 1.66

(0.71–3.88) 0.24

ADAMTS17

I 0.89
(0.29–2.70) 0.84

ADAMTS17

I 1.22
(0.38–3.87) 0.74

II 1.88
(0.99–3.58) 0.05 II 0.53

(0.26–1.08) 0.08

III 1.17
(0.81–1.70) 0.40 III 0.71

(0.44–1.14) 0.16

IV 0.97
(0.65–1.43) 0.86 IV 1.58

(0.69–3.64) 0.27

ADAMTS18

I 1.32
(0.42–4.16) 0.64

ADAMTS18

I 2.51
(0.75–8.42) 0.12

II 2.35
(1.20–4.59) 0.01 II 2.41

(1.18–4.82) 0.01

III 1.06
(0.73–1.55) 0.74 III 1.49

(0.92–2.41) 0.11

IV 1.22
(0.82–1.81) 0.32 IV 1.00

(0.43–2.33) 1.00

ADAMTS19

I 3.17
(0.97–10.37) 0.05

ADAMTS19

I 4.89
(1.32–18.14) <0.01

II 1.07
(0.57–2.01) 0.82 II 0.52

(0.26–1.06) 0.07

III 1.06
(0.73–1.54) 0.74 III 1.30

(0.80–2.09) 0.29

IV 0.97
(0.65–1.44) 0.88 IV 1.52

(0.65–3.52) 0.33
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Table 2: Correlation between genes expression of ADAMTS family and OS in gastric cancer patients of differentiation.

ADAMTSs
gene chip

Differentiation poorly
(n� 166); moderately (n� 67);

well (n� 32)

HR (95%
CI)

P

value
ADAMTSs
RNA-seq

Differentiation I (n� 12);
II (n� 134); III (n� 218) HR (95% CI) P

value

ADAMTS1

Poorly differentiated 0.85
(0.57–1.27) 0.43

ADAMTS1

Grade I 1.29×109
(0–inf) 0.23

Moderately differentiated 0.96
(0.50–1.83) 0.90 Grade II 1.26

(0.72–2.20) 0.43

Well differentiated — Grade III 1.37
(0.91–2.07) 0.13

ADAMTS2

Poorly differentiated 1.17
(0.78–1.74) 0.45

ADAMTS2

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 1.31
(0.69–2.52) 0.41 Grade II 1.35

(0.76–2.37) 0.30

Well differentiated — Grade III 1.30
(0.86–1.97) 0.21

ADAMTS3

Poorly differentiated 1.23
(0.82–1.83) 0.32

ADAMTS3

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 1.35
(0.71–2.59) 0.36 Grade II 0.79

(0.45–1.40) 0.43

Well differentiated 1.52
(0.64–3.61) 0.34 Grade III 1.33

(0.88–2.01) 0.17

ADAMTS5

Poorly differentiated 1.16
(0.72–1.88) 0.54

ADAMTS5

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 0.96
(0.50–1.84) 0.91 Grade II 0.98

(0.56–1.73) 0.95

Well differentiated — Grade III 1.26
(0.83–1.91) 0.27

ADAMTS6

Poorly differentiated 1.07
(0.66–1.73) 0.78

ADAMTS6

Grade I 3.9×109 (0-
inf) 0.44

Moderately differentiated 1.49
(0.78–2.84) 0.23 Grade II 1.45

(0.81–2.58) 0.20

Well differentiated — Grade III 1.93
(1.27–2.93) <0.01

ADAMTS7

Poorly differentiated 0.97
(0.65–1.44) 0.86

ADAMTS7

Grade I 1.41
(0.08–23.57) 0.81

Moderately differentiated 2.39
(1.24–4.59) <0.01 Grade II 1.12

(0.63–1.99) 0.69

Well differentiated — Grade III 1.58
(1.03–2.41) 0.04

ADAMTS8

Poorly differentiated 1.10
(0.68–1.79) 0.69

ADAMTS8

Grade I 3.56×109 (0-
inf) 0.06

Moderately differentiated 1.43
(0.75–2.74) 0.28 Grade II 1.00

(0.57–1.75) 0.99

Well differentiated — Grade III 1.07
(0.71–1.61) 0.76

Table 1: Continued.

ADAMTSs gene
chip

Clinical stages I (n� 69);
II (n� 145); III (n� 319);

IV (n� 152)
HR (95% CI) P

value
ADAMTSs
RNA-seq

Clinical stages I (n� 50);
II (n� 111); III (n� 149);

IV (n� 38)
HR (95% CI) P

value

ADAMTS20

I 1.56
(0.55–4.37) 0.40

ADAMTS20

I 1.58
(0.48–5.21) 0.45

II 1.36
(0.75–2.46) 0.31 II 1.44

(0.73–2.85) 0.29

III 1.42
(1.07–1.89) 0.02 III 0.87

(0.54–1.41) 0.58

IV 1.25
(0.85–1.82) 0.26 IV 1.04

(0.44–2.45) 0.92
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Table 2: Continued.

ADAMTSs
gene chip

Differentiation poorly
(n� 166); moderately (n� 67);

well (n� 32)

HR (95%
CI)

P

value
ADAMTSs
RNA-seq

Differentiation I (n� 12);
II (n� 134); III (n� 218) HR (95% CI) P

value

ADAMTS9

Poorly differentiated 1.07
(0.66–1.74) 0.77

ADAMTS9

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 1.34
(0.70–2.55) 0.38 Grade II 0.85

(0.48–1.49) 0.57

Well differentiated — Grade III 1.50
(0.98–2.29) 0.06

ADAMTS10

Poorly differentiated 1.08
(0.67–1.74) 0.76

ADAMTS10

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 0.81
(0.42–1.55) 0.52 Grade II 1.31

(0.75–2.30) 0.35

Well differentiated – Grade III 1.41
(0.93–2.14) 0.10

ADAMTS12

Poorly differentiated 1.30
(0.87–1.94) 0.21

ADAMTS12

Grade I 0.71
(0.04–11.79) 0.81

Moderately differentiated 1.00
(0.52–1.92) 0.99 Grade II 1.50

(0.85–2.66) 0.16

Well differentiated 0.95
(0.40–2.23) 0.90 Grade III 1.54

(1.02–2.34) 0.04

ADAMTS13

Poorly differentiated 0.87
(0.54–1.41) 0.58

ADAMTS13

Grade I 1.62×109 (0-
inf) 0.32

Moderately differentiated 1.06
(0.55–2.04) 0.87 Grade II 0.46

(0.25–0.85) 0.01

Well differentiated — Grade III 0.88
(0.59–1.33) 0.56

ADAMTS14

Poorly differentiated 1.28
(0.78–2.08) 0.32

ADAMTS14

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 1.80
(0.93–3.47) 0.08 Grade II 0.81

(0.46–1.44) 0.48

Well differentiated — Grade III 0.99
(0.66–1.49) 0.95

ADAMTS15

Poorly differentiated 0.97
(0.59–1.59) 0.91

ADAMTS15

Grade I 2.60×109 (0-
inf) 0.09

Moderately differentiated 1.34
(0.69–2.59) 0.38 Grade II 1.23

(0.70–2.17) 0.47

Well differentiated — Grade III 1.59
(1.05–2.41) 0.03

ADAMTS16

Poorly differentiated 0.69
(0.42–1.14) 0.14

ADAMTS16

Grade I 0.71
(0.04–11.79) 0.81

Moderately differentiated 1.43
(0.75–2.73) 0.28 Grade II 0.95

(0.54–1.68) 0.86

Well differentiated — Grade III 1.56
(1.03–2.36) 0.03

ADAMTS17

Poorly differentiated 0.95
(0.59–1.53) 0.83

ADAMTS17

Grade I 1.41
(0.08–23.57) 0.81

Moderately differentiated 1.14
(0.59–2.18) 0.70 Grade II 0.98

(0.55–1.74) 0.93

Well differentiated — Grade III 0.77
(0.51–1.17) 0.22

ADAMTS18

Poorly differentiated 1.18
(0.73–1.91) 0.50

ADAMTS18

Grade I 1.29×109 (0-
inf) 0.23

Moderately differentiated 1.27
(0.66–2.43) 0.47 Grade II 1.27

(0.72–2.24) 0.41

Well differentiated — Grade III 1.84
(1.20–2.83) <0.01
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Table 3: Correlation between genes expression of ADAMTS family and OS in gastric cancer patients of different genders.

ADAMTSs gene
chip

Gender female
(n� 244); male

(n� 567)
HR (95% CI) P value ADAMTSs

RNA-seq

Gender female
(n� 133); male

(n� 238)
HR (95% CI) P value

ADAMTS1
Female 1.63

(1.05–2.50) 0.03
ADAMTS1

Female 1.37
(0.76–2.47) 0.29

Male 1.63
(1.21–2.20) <0.01 Male 1.39

(0.94–2.06) 0.10

ADAMTS2
Female 1.27

(0.83–1.95) 0.27
ADAMTS2

Female 1.59
(0.87–2.89) 0.13

Male 1.68
(1.24–2.26) <0.01 Male 1.16 (0.79–1.72) 0.45

ADAMTS3
Female 1.56

(1.09–2.22) 0.01
ADAMTS3

Female 1.27
(0.86–1.88) 0.23

Male 1.24
(1.00–1.53) 0.05 Male 1.65

(0.90–3.02) 0.10

ADAMTS4
(Not find) — ADAMTS4 Female 0.86(0.48–1.54) 0.60

Male 1.62(1.09–2.43) 0.02

ADAMTS5
Female 1.75

(1.13–2.70) 0.01
ADAMTS5

Female 1.65
(0.91–2.98) 0.10

Male 1.47
(1.09–1.98) 0.01 Male 1.01 (0.68–1.49) 0.97

ADAMTS6
Female 1.57

(1.02–2.42) 0.04
ADAMTS6

Female 2.36 (1.28–4.35) <0.01

Male 1.76
(1.31–2.38) <0.01 Male 1.47

(0.99–2.18) 0.05

ADAMTS7
Female 1.64

(1.07–2.52) 0.02
ADAMTS7

Female 1.35
(0.74–2.45) 0.32

Male 1.88
(1.40–2.53) <0.01 Male 1.48

(0.99–2.21) 0.05

ADAMTS8
Female 1.98

(1.28–3.08) <0.01
ADAMTS8

Female 1.04
(0.58–1.86) 0.91

Male 1.31
(0.97–1.76) 0.07 Male 1.16 (0.79–1.72) 0.45

ADAMTS9
Female 1.58

(1.03–2.43) 0.03
ADAMTS9

Female 1.72
(0.94–3.14) 0.08

Male 1.27
(0.95–1.70) 0.11 Male 1.43

(0.97–2.13) 0.07

ADAMTS10
Female 1.08

(0.70–1.65) 0.73
ADAMTS10

Female 1.66 (0.91–3.01) 0.09

Male 0.94
(0.70–1.26) 0.67 Male 1.26

(0.85–1.86) 0.25

Table 2: Continued.

ADAMTSs
gene chip

Differentiation poorly
(n� 166); moderately (n� 67);

well (n� 32)

HR (95%
CI)

P

value
ADAMTSs
RNA-seq

Differentiation I (n� 12);
II (n� 134); III (n� 218) HR (95% CI) P

value

ADAMTS19

Poorly differentiated 0.79
(0.49–1.28) 0.34

ADAMTS19

Grade I 1.86×109 (0-
inf) 0.16

Moderately differentiated 1.25
(0.65–2.38) 0.50 Grade II 1.12

(0.63–1.98) 0.71

Well differentiated — Grade III 1.20
(0.79–1.81) 0.39

ADAMTS20

Poorly differentiated 1.10
(0.74–1.64) 0.63

ADAMTS20

Grade I 0 (0-inf) 0.09

Moderately differentiated 0.95
(0.5–1.82) 0.88 Grade II 1.21

(0.68–2.15) 0.52

Well differentiated 1.92
(0.81–4.57) 0.13 Grade III 1.20

(0.80–1.81) 0.38
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with poor OS among women (Table 2). Table 3 contains the
prognosis of ADAMTS in the tumor stratification group.
0e expression of genes such asADAMTS6, 7, 12, 15, 16, and
18 was closely related to poor OS in grade III.

3.3. Validation of ADAMTS12 mRNA Expression Level.
By screening 38 GC chips from the GEO database (a total of
1559 GC samples and 883 control samples), we found that
the expression level of ADAMTS12 was significantly in-
creased in GC (SMD� 0.73, 95% CI (0.32–1.14) (P< 0.05)
(Figure 9)). 0ereafter, by performing qRT-PCR using 20
pairs of clinical samples, we found that the expression level
of ADAMTS12 in GC tissues was significantly higher than
that in adjacent tissues (P � 0.024) (Figure 10).

3.4. ADAMTS12 Functional Enrichment Analysis. By ana-
lyzing the chip data in the Coexpedia database, we found

that the ADAMTS12 expression-related genes were
COL5A2, COL5A1, COL1A2, SPARC, COL3A1, COL6A3,
ADAMTS12, ADAMTS2, FBN1, COL1A1, and other re-
lated genes (Figure 11(a)). Similarly, by analyzing genes
related to ADAMTS12 expression using the RNA-seq data,
we found that ADAMTS2, COL5A2, FAP, COL1A2,
COL1A1, SPARC, SULF1, COL5A1, COL3A1, and
COL12A1 were the genes closely related to its expression
(Figure 11(b)). 0rough functional enrichment analysis of
the top 100 expression-related genes, we found that these
genes were closely related to signaling pathways such as
protein digestion and absorption, ECM-receptor inter-
action, and focal adhesion (Figure 12). 0rough GO
analysis, we found that ADAMTS12 and other related
genes were significantly enriched in the ECM organization
(biological process), ECM structural constituent (mo-
lecular function), and ECM (cellular component)
(Figure 13).

Table 3: Continued.

ADAMTSs gene
chip

Gender female
(n� 244); male

(n� 567)
HR (95% CI) P value ADAMTSs

RNA-seq

Gender female
(n� 133); male

(n� 238)
HR (95% CI) P value

ADAMTS12 Female 1.67
(1.17–2.37) <0.01 ADAMTS12 Female 2.02 (1.10–3.70) 0.02

Male 1.30 (1.05–1.61) 0.02 Male 1.63 (1.00–2.66) <0.05

ADAMTS13
Female 0.94

(0.62–1.45) 0.79
ADAMTS13

Female 0.63 (0.35–1.15) 0.13

Male 1.15
(0.86–1.54) 0.34 Male 0.87

(0.59–1.29) 0.49

ADAMTS14
Female 1.23

(0.80–1.89) 0.35
ADAMTS14

Female 1.09
(0.61–1.97) 0.76

Male 1.80
(1.33–2.43) <0.01 Male 1.00

(0.67–1.47) 0.98

ADAMTS15
Female 1.22

(0.79–1.87) 0.37
ADAMTS15

Female 0.86
(0.48–1.55) 0.61

Male 1.23
(0.92–1.65) 0.16 Male 1.87 (1.25–2.79) <0.01

ADAMTS16
Female 1.34

(0.87–2.05) 0.18
ADAMTS16

Female 1.83 (1.01–3.32) 0.04

Male 1.08
(0.80–1.45) 0.61 Male 1.87 (1.25–2.79) <0.01

ADAMTS17
Female 1.31

(0.85–2.01) 0.22
ADAMTS17

Female 0.78 (0.43–1.41) 0.41

Male 1.12
(0.83–1.50) 0.45 Male 0.87

(0.59–1.29) 0.49

ADAMTS18
Female 1.32

(0.86–2.02) 0.21
ADAMTS18

Female 2.25 (1.23–4.10) <0.01

Male 1.43
(1.06–1.92) 0.02 Male 1.36

(0.92–2.02) 0.13

ADAMTS19
Female 1.22

(0.79–1.87) 0.36
ADAMTS19

Female 0.89
(0.49–1.60) 0.70

Male 0.96
(0.72–1.30) 0.81 Male 1.26

(0.85–1.86) 0.25

ADAMTS20
Female 1.98

(1.38–2.83) <0.01
ADAMTS20

Female 1.14
(0.64–2.06) 0.65

Male 1.67
(1.35–2.07) <0.01 Male 1.12 (0.75–1.65) 0.58

Journal of Oncology 17



4. Discussion

In the present study, we sought to explore the significance of
the expression of the ADAMTS family of genes in the
prognosis of GC by using a K-M plotter. 0us, the ex-
pression of this family of genes in GC was analyzed.
According to the RNA-seq and gene chip data, most genes in
the ADAMTS family (6, 7, 12, 15, and 18) were found to be
closely related to the prognosis of GC. In addition, their high
expression was found to be associated with poor prognosis
and survival time. By exploring gene mutations of the
ADAMTS family, we recognized that it was indeed the most
frequent cause of gene alterations. Furthermore, through
PCR analysis, we could confirm that the expression level of
ADAMTS12 in GC was consistent with the sequencing data.

Based on the studies conducted on the ADAMTS family,
we recognized that most were related to osteoarthritis, blood
vessels, and diseases of the platelet [13]. In the present study,
however, we primarily discussed prior researches and the
role of the ADAMTS family of genes in cancers.

ADAMTS1 is highly expressed in pancreatic cancer and
ovarian cancer [14, 15]. Although a study found that its
expression level was elevated in GC [6], other studies have
found that it displays a low expression level in this malig-
nancy [16, 17]. As these findings align with the sequencing
data obtained in our study, its expression level in GC is yet to
be clarified. 0rough a study of ADAMTS1 in breast cancer,
its expression level was found to be low [18–21]. However,
another study found that it can promote breast cancer
metastasis [22].

Note: weights are from random effects analysis
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Figure 9: Forest plot of ADAMTS12 expression level. Meta-analysis revealed that the expression level of ADAMTS12 in the cancer patients
was higher than that in noncancer patients (standardized mean difference (SMD): 0.73 (0.32–1.14), P< 0.001).
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ADAMTS2 is highly expressed in GC and colon cancer
and is closely related to distant metastasis and the prognosis
of colon cancer. However, it is an independent prognostic
factor for GC [23, 24]. We found that the overexpression of
ADAMTS2 was associated with unfavorable OS in GC pa-
tients, which aligns with the findings of the abovementioned
study.

ADAMTS3 is involved in the alteration of osteosarcoma
matrices [25], and the single nucleotide polymorphism
(SNP) of the ADAMTS3 gene is an independent prognostic
biomarker for cutaneous melanoma [26].

ADAMTS4 is highly expressed in colon cancer and is
associated with poor prognosis [27].ADMATS4was also found
to be mutated in early-onset familial colorectal cancer [28].

0e role of ADAMTS5 in digestive system tumors is
unclear, but its expression level was confirmed to be low in
GC, colon cancer, and liver cancer [29–31]. A study found that
ADAMTS5 overexpresses colon cancer cells to inhibit their
invasion andmigration [30]. However, Yu et al. found that it is
highly expressed in colon cancer and is associated with lymph
node metastasis [32]. A high expression level of ADAMTS5
promotes the invasion and migration of human glioblastoma,
non-small-cell lung cancer, and HNSCC cells [33, 34].

ADAMTS6 is highly expressed in esophageal cancer
and is an independent marker of its prognosis [35].
Notably, ADAMTS6 displays the opposite trend in ex-
pression in colon and rectal cancer [36, 37]. In the current
analysis, we found that a high expression level of
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Figure 10:0e expression of ADAMTS12 in gastric cancer patients. 0e expression level of ADAMTS12 was higher in GC tissues compared
to that in adjacent noncancerous tissues (P< 0.05).

(a) (b)

Figure 11: Coexpression networks.0e coexpressed genes ofADAMTS12 in (a) RNA-seq data and (b) chip data. In both network diagrams,
color and size represent the degree of correlation, with the blue and large circles depicting a high degree of correlation.
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ADAMTS6 was significantly correlated with favorable
survival in GC patients.

Presently, only few reports exist on the direction of
ADAMTS7 tumors. Among the genetic mutations in liver
cancer, the Asian ADAMTS7 mutation is only found in
Asian Americans [38].

A study revealed that the ADAMTS8 gene is highly
methylated in GC while its mRNA expression level is sig-
nificantly reduced [7]. ADAMTS8 is underexpressed in liver

cancer and affects its progression by targeting the ERK
signaling pathway [39]. Conversely, it is highly expressed in
head and neck squamous cell carcinoma [40]. Porter et al.
demonstrated that the expression level of ADAMTS8 is a
predictor of poor OS [41].

ADAMTS9 is poorly expressed in breast cancer, colo-
rectal cancer, and GC and is associated with the hyper-
methylation of their promoters [42–44]. ADAMTS9 can also
inhibit tumor progression by inhibiting angiogenesis [45].
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Figure 12: (a) KEGG analysis of the coexpressed genes from the RNA-seq data revealed that protein digestion and absorption was the most
significantly enriched pathway. (b) KEGG analysis of the coexpressed genes from the chip data also revealed that the pathway of protein
digestion and absorption was significantly enriched.
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ADAMTS12 is associated with ovarian and renal
cancer metastases, and its expression level is significantly
elevated in metastatic tumors compared to primary tu-
mors [46, 47]. ADAMTS12 is also highly expressed in
esophageal squamous cell carcinoma [48] but has low
expression in colon cancer [49]. A previous study revealed
that ADAMTS12 has anti-tumor-growth and angiogenesis
effects [50]. In the present study, the data clearly indicate
that a higher expression level of ADAMTS12 was sig-
nificantly correlated with poor prognosis in patients with
GC.

Garam et al. found that ADAMTS13 is a prognostic risk
factor for colon and liver cancer [51]. 0e single nucleotide
polymorphism of ADAMTS14 is closely related to liver
cancer and oral cancer [52, 53].

ADAMTS15 inhibits tumor cell migration and angio-
genesis in breast cancer and serves as an independent
prognostic factor of this cancer type [41, 54]. ADAMTS15
also has a negative correlation with the degree of tumor
tissue differentiation in colorectal cancer and inhibits the
growth and invasion ability of colon cancer cells [55].
According to our research, ADAMTS15 has a low expression
level in GC and may also exhibit an inhibitory effect.

0e DNA of ADAMTS16 displays a hypermethylation
state in colorectal tissue and can inhibit tumor proliferation
[56]. However, ADAMTS16 was found to be highly
expressed in the esophagus, and its knockout inhibited
tumor invasion [57].

ADAMTS18 is a gene that has received considerable
attention. In GC, colorectal cancer, pancreatic cancer, lung
cancer, breast cancer, esophageal cancer, and nasopharyn-
geal carcinoma, its low expression level was found to be
associated with the abnormal methylation of their promoter
[58–63]. Similar studies have also found that ADAMTS19 is
highly methylated in colorectal cancer [64]. Evidently,
ADAMTS20 causes somatic mutation in GC patients with
liver metastases [65]. In the present study, ADAMTS18 was
found to be correlated with unfavorable prognosis in GC
patients.

In conclusion, the present study was carried out to
determine the mRNA expression levels of the ADAMTS
family of genes in GC and the prognostic value of their
expression using a KM survival curve. As a result, the ex-
pression of the ADAMTS family of genes was found to be
closely related to the poor prognosis of GC patients. Such
findings could enable a better understanding of the
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Figure 13: GO functional analysis of the coexpressed genes. 0e coexpressed genes of the (a) RNA-seq data and (b) chip data. 0e top 10
genes for biological process, molecular function, and cellular component term are displayed.
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prognostic function of the ADAMTS family of genes in GC.
Furthermore, these findings may serve as a favorable pre-
dictor of GC prognosis, ultimately contributing to the design
of strategies.
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[8] S. Cal, J. M. Argüelles, P. L. Fernández, and C. López-Otı́n,
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Baena et al., “Contribution of ADAMTS1 as a tumor sup-
pressor gene in human breast carcinoma. Linking its tumor
inhibitory properties to its proteolytic activity on nidogen-1
and nidogen-2,” International Journal of Cancer, vol. 133,
no. 10, pp. 2315–2324, 2013.

[20] V. M. Freitas, J. B. do Amaral, T. A. Silva et al., “Decreased
expression of ADAMTS-1 in human breast tumors stimulates
migration and invasion,”Molecular Cancer, vol. 12, no. 1, p. 2,
2013.

[21] S. Malvia, S. A. R. Bagadi, P. Pradhan et al., “Study of gene
expression profiles of breast cancers in Indian women,”
Scientific Reports, vol. 9, no. 1, p. 10018, 2019.

[22] I. A. Tan, K. Frewin, C. Ricciardelli, and D. L. Russell,
“ADAMTS1 promotes adhesion to extracellular matrix pro-
teins and predicts prognosis in early stage breast cancer

22 Journal of Oncology



patients,” Cellular Physiology and Biochemistry: International
Journal of Experimental Cellular Physiology, Biochemistry, and
Pharmacology, vol. 52, no. 6, pp. 1553–1568, 2019.

[23] C. Jiang, Y. Zhou, Y. Huang, Y. Wang, W.Wang, and X. Kuai,
“Overexpression of ADAMTS-2 in tumor cells and stroma is
predictive of poor clinical prognosis in gastric cancer,” Hu-
man Pathology, vol. 84, pp. 44–51, 2019.

[24] C. Kirana, L. Peng, R. Miller et al., “Combination of laser
microdissection, 2D-DIGE and MALDI-TOF MS to identify
protein biomarkers to predict colorectal cancer spread,”
Clinical Proteomics, vol. 16, p. 3, 2019.

[25] A. T. Aydemir, M. Alper, and F. Kockar, “SP1-mediated
downregulation of ADAMTS3 gene expression in osteosar-
coma models,” Gene, vol. 659, pp. 1–10, 2018.

[26] Y. Xu, Y. Wang, H. Liu et al., “Genetic variants in the
metzincin metallopeptidase family genes predict melanoma
survival,” Molecular Carcinogenesis, vol. 57, no. 1, pp. 22–31,
2018.

[27] J. Chen, Y. Luo, Y. Zhou et al., “Promotion of tumor growth
by ADAMTS4 in colorectal cancer: focused on macrophages,”
Cellular Physiology and Biochemistry, vol. 46, no. 4,
pp. 1693–1703, 2018.

[28] N. Rao, Z. Ke, H. Liu et al., “ADAMTS4 and its proteolytic
fragments differentially affect melanoma growth and angio-
genesis in mice,” International Journal of Cancer, vol. 133,
no. 2, pp. 294–306, 2013.

[29] J. Huang, Y. Sun, H. Chen et al., “ADAMTS5 acts as a tumor
suppressor by inhibitingmigration, invasion and angiogenesis
in human gastric cancer,” Gastric Cancer, vol. 22, no. 2,
pp. 287–301, 2019.

[30] J. Li, Y. Liao, J. Huang et al., “Epigenetic silencing of
ADAMTS5 is associated with increased invasiveness and poor
survival in patients with colorectal cancer,” Journal of Cancer
Research and Clinical Oncology, vol. 144, no. 2, pp. 215–227,
2018.

[31] C. Li, Y. Xiong, X. Yang et al., “Lost expression of ADAMTS5
protein associates with progression and poor prognosis of
hepatocellular carcinoma,” Drug Design, Development and
�erapy, vol. 9, pp. 1773–1783, 2015.

[32] L. Yu, Y. Lu, X. Han et al., “microRNA -140-5p inhibits
colorectal cancer invasion and metastasis by targeting
ADAMTS5 and IGFBP5,” Stem Cell Research & �erapy,
vol. 7, no. 1, p. 180, 2016.

[33] J. Gu, J. Chen, J. Feng et al., “Overexpression of ADAMTS5
can regulate the migration and invasion of non-small cell lung
cancer,” Tumor Biology, vol. 37, no. 7, pp. 8681–8689, 2016.

[34] J. Zhang, X. Qin, Q. Sun et al., “Transcriptional control of
PAX4-regulated miR-144/451 modulates metastasis by sup-
pressing ADAMs expression,” Oncogene, vol. 34, no. 25,
pp. 3283–3295, 2015.

[35] L. Liu, Z. Yang, W. Ni, and Y. Xuan, “ADAMTS-6 is a
predictor of poor prognosis in patients with esophageal
squamous cell carcinoma,” Experimental and Molecular Pa-
thology, vol. 104, no. 2, pp. 134–139, 2018.

[36] Y. Xie, Q. Gou, K. Xie, Z. Wang, Y. Wang, and H. Zheng,
“ADAMTS6 suppresses tumor progression via the ERK signaling
pathway and serves as a prognostic marker in human breast
cancer,” Oncotarget, vol. 7, no. 38, pp. 61273–61283, 2016.

[37] W. H. Xiao, X. L. Qu, X. M. Li et al., “Identification of
commonly dysregulated genes in colorectal cancer by inte-
grating analysis of RNA-Seq data and qRT-PCR validation,”
Cancer Gene �erapy, vol. 22, no. 5, pp. 278–284, 2015.

[38] S. Sun, C. Johnson, Q. Hu et al., “Differences in somatic
mutation landscape of hepatocellular carcinoma in Asian

American and European American populations,” Oncotarget,
vol. 7, no. 26, pp. 40491–40499, 2016.

[39] X. Zhao, C. Yang, J. Wu, and Y. Nan, “ADAMTS8 targets ERK
to suppress cell proliferation, invasion, and metastasis of
hepatocellular carcinoma,” OncoTargets and �erapy, vol. 11,
pp. 7569–7578, 2018.

[40] A. Stokes, J. Joutsa, R. Ala-aho et al., “Expression profiles and
clinical correlations of degradome components in the tumor
microenvironment of head and neck squamous cell carci-
noma,”Clinical Cancer Research, vol. 16, no. 7, pp. 2022–2035,
2010.

[41] S. Porter, P. N. Span, F. C. G. J. Sweep et al., “ADAMTS8 and
ADAMTS15 expression predicts survival in human breast
carcinoma,” International Journal of Cancer, vol. 118, no. 5,
pp. 1241–1247, 2006.

[42] B. Shao, Y. Feng, H. Zhang et al., “0e 3p14.2 tumour sup-
pressor ADAMTS9 is inactivated by promoter CpG meth-
ylation and inhibits tumour cell growth in breast cancer,”
Journal of Cellular and Molecular Medicine, vol. 22, no. 2,
pp. 1257–1271, 2018.

[43] L. Chen, J. Tang, Y. Feng et al., “ADAMTS9 is silenced by
epigenetic disruption in colorectal cancer and inhibits cell
growth and metastasis by regulating Akt/p53 signaling,”
Cellular Physiology and Biochemistry, vol. 44, no. 4,
pp. 1370–1380, 2017.

[44] W. Du, S. Wang, Q. Zhou et al., “ADAMTS9 is a functional
tumor suppressor through inhibiting AKT/mTOR pathway
and associated with poor survival in gastric cancer,” Onco-
gene, vol. 32, no. 28, pp. 3319–3328, 2013.

[45] P. H. Y. Lo, H. L. Lung, A. K. L. Cheung et al., “Extracellular
protease ADAMTS9 suppresses esophageal and nasopha-
ryngeal carcinoma tumor formation by inhibiting angio-
genesis,” Cancer Research, vol. 70, no. 13, pp. 5567–5576,
2010.

[46] T. H. Ho, D. J. Serie, M. Parasramka et al., “Differential gene
expression profiling of matched primary renal cell carcinoma
and metastases reveals upregulation of extracellular matrix
genes,” Annals of Oncology, vol. 28, no. 3, pp. 604–610, 2017.

[47] A. Mariani, C. Wang, A. L. Oberg et al., “Genes associated
with bowel metastases in ovarian cancer,” Gynecologic On-
cology, vol. 154, no. 3, pp. 495–504, 2019.

[48] X. Li, X. Xiao, R. Chang, and C. Zhang, “Comprehensive
bioinformatics analysis identifies lncRNA HCG22 as a mi-
gration inhibitor in esophageal squamous cell carcinoma,”
Journal of Cellular Biochemistry, vol. 121, no. 1, pp. 468–481,
2019.

[49] D. Wang, T. Zhu, F.-B. Zhang, and C. He, “Expression of
ADAMTS12 in colorectal cancer-associated stroma prevents
cancer development and is a good prognostic indicator of
colorectal cancer,” Digestive Diseases and Sciences, vol. 56,
no. 11, pp. 3281–3287, 2011.

[50] M. El Hour, A. Moncada-Pazos, S. Blacher et al., “Higher
sensitivity of Adamts12-deficient mice to tumor growth and
angiogenesis,” Oncogene, vol. 29, no. 20, pp. 3025–3032, 2010.
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