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Multimodal evidence suggests that brain regions accumulate
information over timescales that vary according to anatomical
hierarchy. Thus, these experimentally defined “temporal receptive
windows” are longest in cortical regions that are distant from sen-
sory input. Interestingly, spontaneous activity in these regions also
plays out over relatively slow timescales (i.e., exhibits slower tem-
poral autocorrelation decay). These findings raise the possibility
that hierarchical timescales represent an intrinsic organizing prin-
ciple of brain function. Here, using resting-state functional MRI,
we show that the timescale of ongoing dynamics follows hierar-
chical spatial gradients throughout human cerebral cortex. These
intrinsic timescale gradients give rise to systematic frequency dif-
ferences among large-scale cortical networks and predict
individual-specific features of functional connectivity. Whole-
brain coverage permitted us to further investigate the large-
scale organization of subcortical dynamics. We show that cortical
timescale gradients are topographically mirrored in striatum, thal-
amus, and cerebellum. Finally, timescales in the hippocampus fol-
lowed a posterior-to-anterior gradient, corresponding to the
longitudinal axis of increasing representational scale. Thus, hierar-
chical dynamics emerge as a global organizing principle of
mammalian brains.
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Brain activity continuously evolves over a wide range of spa-
tiotemporal scales extending from ∼102-Hz microcircuit dy-

namics to infraslow (<0.1 Hz) fluctuations synchronizing large-
scale brain networks (1). The identification of large-scale orga-
nizing principles provides context for relating this complexity to
macroscopic brain functions. Most prior work has sought to ex-
amine large-scale variation of oscillatory activity at frequencies
>1 Hz (2, 3). However, as viewed from a broadband perspective,
neural activity is aperiodic and scale-free, that is, exhibits a 1/f-like
spectral characteristic (1, 3–5). Are there general principles de-
scribing the functional organization of this activity?
Multimodal evidence suggests that neural dynamics support a

hierarchy of cortical functions (6, 7). Thus, dynamics are shaped
by increasing temporal windows of sensory information as one
moves from early sensory to higher-order cortical regions (7, 8).
Importantly, regions deemed to have longer “temporal receptive
windows” were subsequently found to exhibit more slowly
changing activity (7, 9). Similarly, at a cellular level, Murray et al.
(10) found that the single-unit activity autocorrelation function
(ACF) decays relatively rapidly in early sensory areas and more
slowly in distant cortical regions (see also ref. 11). These results
suggest that hierarchical timescales may emerge from properties
intrinsic to brain functional anatomy (12, 13).
Indeed, it is now apparent that hierarchy is deeply embedded

within the functional architecture of neocortex (14) and, hence,
likely shapes dynamics accordingly (12, 15). Yet, while the
above-mentioned evidence is derived from selected cortical re-
gions, multimodal evidence supports a global hierarchy of cor-
tical organization, placing at opposing ends early sensorimotor
(unimodal) and association (transmodal) regions (16). Moreover,
nonneocortical structures also exhibit hierarchically organized

functional properties at the macroscale (parallel to neocortex
or otherwise) (e.g., refs. 17–19). The possibility emerges that hi-
erarchical dynamics represent a general, intrinsic organizing
principle of mammalian brains. Testing this possibility re-
quires brain-wide coverage, which is not feasible with invasive
electrophysiology.
Functional MRI (fMRI) provides full-brain coverage, albeit at

infraslow frequencies (<0.1 Hz), which fall well below frequen-
cies studied in conventional electrophysiology (5, 20). None-
theless, in a series of elegant experiments, Hasson, Honey and
colleagues have used fMRI [as well as human electrophysiology
(9)] to demonstrate both functional relevance and hierarchical
structure of infraslow dynamics (7, 8). Indeed, the hierarchical
structure of brain dynamics appears temporally scale-invariant
(10, 21). Thus, across the broad range of temporal scales over
which all regions operate, anatomical hierarchy biases relative
regional timescales. Accordingly, temporal structure of large-
scale dynamics may be examined via resting-state fMRI
(rsfMRI), which measures ongoing brain activity manifesting in
fluctuations of the blood oxygen level-dependent (BOLD) signal
(22) (and hence is not restricted to task-responsive regions).
Such an investigation is further motivated by work suggesting a
fundamental relationship between intrinsic timescale and func-
tional connectivity (FC) (12), the conventional measure of in-
terest in rsfMRI research.
Several prior rsfMRI studies have examined regional variation

in spectral content (e.g., refs. 23–26). However, these studies
have incorporated variable metrics, regions of interest, and
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behavioral conditions, often with minimal attention to artifact
(Discussion), leaving unresolved the question of how infraslow
intrinsic timescales vary throughout the brain. Crucially, the
possibility of organized timescales within subcortical structures
also remains unexplored. Moreover, the relevance of spectral
content to FC has typically been assessed by examining the fre-
quency dependence of FC over a broad frequency range (e.g.,
refs. 27 and 28), or indirectly, by contrasting spectral content of
functional systems (e.g., ref. 24). Less attention has been given to
a potentially fundamental relationship between infraslow spec-
tral content and FC topology (29), which may be essential to FC
generative mechanisms (12). Accordingly, the present study in-
vestigates intrinsic timescales from a brain-wide perspective,
relating timescale patterns to both large-scale cortico-subcortical
functional networks as well as FC topology.

Results
Cortical Dynamics Follow Hierarchical Gradients. We assessed tem-
poral dynamics in two healthy adult human rsfMRI datasets
collected in the awake, eyes-open state. The primary dataset
comprises 6-min eyes-open runs collected from a large pop-
ulation (1,139 individuals) (30). A second dataset comprises 10,
30-min eyes-open rsfMRI runs from each of 10 individuals (31).
Using the atypically long runs in the secondary dataset, we first
confirmed that rsfMRI signals exhibit a scale-free, 1/f-like
spectral characteristic across all regions of the brain (4) over
nearly two decades (SI Appendix, Fig. S1). Next, regional devi-
ations from this roughly consistent spectral characteristic were
assessed in the primary dataset at the group level following
denoising according to conventional rsfMRI FC practice
(Methods). Intrinsic timescale (cf. correlation length) was char-
acterized at each voxel by the decay of the temporal ACF (10),
quantified here as the time taken for the ACF to decay to a value
of 0.5 (i.e., half of the full width at half maximum) (Fig. 1A and
Methods). We found that intrinsic timescales are organized along
spatial gradients extending from (unimodal) sensorimotor re-
gions to (transmodal) association cortex, peaking at regions in-
cluding medial prefrontal cortex and the temporoparietal
junction (7) (Fig. 1B).

Hierarchical Gradients Are Prominent outside of Neocortex. Impor-
tantly, prior work on intrinsic timescales has either neglected
subcortical structures (e.g., refs. 7, 10, and 12) or has treated
each structure as a functional unit (24, 26). Yet, striatum, thal-
amus, cerebellum, and hippocampus are each heterogeneous in
their functional anatomy, which is evident at the resolution of
fMRI (e.g., refs. 32–34). Hence, we extended our timescale
analysis to these structures. Consistent with prior literature (e.g.,
refs. 4, 23, and 26), we found that striatum, thalamus, and hip-
pocampus exhibited much higher-frequency content than cere-
bral cortex, which may in large part reflect relatively lower
signal-to-noise ratio (SNR) in these structures (26).
We proceeded to examine timescale variability within each of

these structures as well as the cerebellum. We found that each
structure exhibited large-scale intrinsic timescale gradients
(Fig. 2). Moreover, as in the cerebral cortex, gradients reflected
known hierarchical functional organization within each of these
structures, with longer timescales in higher-order regions. Thus,
timescale gradients in the striatum followed a posterolateral
-to-rostromedial progression, broadly corresponding to motor
-to-associative/limbic cortical input zones (35–37). Thalamic gra-
dients generally progressed in a ventrolateral-to-dorsomedial
pattern, corresponding to approximate locations of first-order
versus higher-order nuclei [as well as a recently described
within-pulvinar hierarchical functional gradient (38)]. Cerebellar
timescales increased along a gradient extending from lobules I–IV
toward posterior portions of Crus I/II (as well as lobule IX),
matching the dominant functional gradient found within this

structure (18, 39). Finally, the hippocampus exhibited a posterior
-to-anterior timescale gradient along the longitudinal axis. This
parallels the marked decrease in granularity of spatial and tem-
poral representations (19, 34), as well as cellular-level intrinsic
frequency within the theta range (40, 41) (see also ref. 42). The
present result suggests a similar gradient of intrinsic frequencies at
a much coarser spatiotemporal scale. Interpretation of this result
should also consider the potential contribution of signal dropout,
which is more prominent anteriorly (43, 44). Nonetheless, these
large-scale patterns make specific predictions regarding neural
dynamics in each of these structures that can be validated in the
future via multisite electrophysiological recordings.

Large-Scale Cortico-Subcortical Networks Exhibit Systematic Spectral
Differences. The cortical topography of intrinsic timescale (Fig. 1)
closely resembles recently described hierarchical gradients in FC,
in which modular large-scale functional networks occupy ste-
reotypical positions (45) (see also refs. 39 and 46). Accordingly,
to determine spectral variability among discrete functional net-
works, we quantified mean autocorrelation decay within six ca-
nonical networks (30). We found systematic spectral differences
among networks corresponding to their hierarchical relation-
ships (45) (Fig. 3 and SI Appendix, Fig. S2). The observed or-
dering of timescales closely followed the single-unit results
reported by Murray et al. (10), but in a much slower and com-
pressed range. Thus, absolute timescales reported here are an
order of magnitude slower and have a smaller relative spread in
comparison with single-unit timescales.
The striatum, thalamus, and cerebellum each exhibit func-

tional organization parallel to cortex, raising the question of
whether this organization is reflected in their respective time-
scale gradients. In each of these structures, we observed hierar-
chical organization of intrinsic timescales according to functional
system (Fig. 3C), as defined by FC (32, 33) (Methods). Impor-
tantly, subcortical topographic ordering was parallel to that of
the cerebral cortex: Timescales were shortest in sensorimotor
regions and longest in the default mode network. These find-
ings were replicated in an independent dataset (SI Appendix,
Fig. S2C).

Intersubject Variability in Spectral Content Predicts Intersubject
Variability in FC. The present results indicate that the default
mode network, the functional system with the most extensive
structural as well as FC (47), exhibits the slowest dynamics both
cortically and subcortically. This finding is consistent with prior
work suggesting that relatively slow dynamics are a correlate of

Fig. 1. Hierarchy of intrinsic timescales revealed from fMRI autocorrelation.
(A) Intrinsic timescale was estimated for each cortical vertex as the temporal
autocorrelation decay during the resting state, quantified as half of the full
width at half maximum of the ACF (Methods). (B) Vertex-wise map of mean
intrinsic timescale (n = 1,139 subjects).
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extensive FC, that is, strong correlations with regions widely
distributed throughout the brain (12, 29). To further investigate
this correspondence, we asked whether this relation extends to
individual differences in FC. Using the second dataset of highly
sampled individuals (31), we found that an individual’s own map
of intrinsic timescale tended to best predict their cortical

topography of FC “strength” or mean FC magnitude of a given
region (P < 0.001; Methods) (Fig. 4 and see SI Appendix, Fig. S3
for individual maps; see also SI Appendix, Quantifying Extensive
Functional Connectivity and Fig. S4). This result remained after
accounting for spectral variability prior to FC computation (SI
Appendix, Fig. S5 andMethods). Hence, intersubject variability in

Fig. 2. Hierarchical timescales in nonneocortical structures. Three-dimensional renderings rotated to highlight the major axes of variation in mean intrinsic
timescale (n = 1,139 subjects) in the left and right (A) striatum, (B) thalamus, (C) hippocampus, and (D) cerebellum. Timescales are given in seconds. Direction
labels indicate dorsal (D), posterior (P), and (anatomical) rightward (R). Three-dimensional maps generated from MNI152 voxel coordinates.

Fig. 3. Cortical and subcortical timescale gradients relate to functional organization. (A) Group-averaged intrinsic timescales computed for cortical (as in
Fig. 1) and nonneocortical (as in Fig. 2) structures, including striatum and thalamus (Middle) and cerebellum [Right, shown as flatmap (119)] (separate scale
used for each structure). (B) Canonical large-scale functional networks as defined by refs. 30, 32, and 33 (Methods). (C) Mean intrinsic timescale (ACF decay)
computed within each network for each brain structure analyzed. Mean and SE (error bars) computed across subjects (n = 1,139).
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FC (31) is related to intersubject variability in intrinsic time-
scales, further supporting a biological link between FC topology
and intrinsic timescale (12). In one individual (MSC03), the
subject’s own timescale map was not the best predictor of FC
strength. This subject exhibited aliased respiratory artifact (48)
and an anomalous timescale map (SI Appendix, Fig. S3); ac-
cordingly, future work should examine contribution of aliased
physiological artifact to <0.1 Hz BOLD spectral content.

Discussion
The present findings support the previously articulated hypoth-
esis that broadband spectral content is hierarchically organized
across the entire cerebral cortex (6, 7). In particular, our results
provide empirical support for emergent hierarchical dynamics
previously predicted from a large-scale dynamical model of
macaque cortex incorporating hierarchical heterogeneity in
synaptic excitation (12). We additionally extend the observation of
hierarchical dynamics to the striatum, thalamus, cerebellum, and
hippocampus. Thus, intrinsic timescale hierarchies may represent a
fundamental organizing principle of the mammalian brain.

Relationship to Prior fMRI Spectral Analyses. The topic of intrinsic
timescales has attracted interest from researchers using diverse
modalities. Following Murray et al. (10), autocorrelation decay
has become a standard measure of intrinsic timescale and is
likewise used in the present fMRI analyses. However, fMRI
spectral content has itself been a topic of interest for many
studies employing diverse analyses. In most cases, these analyses
were not performed with the intent to obtain characteristic re-
gional timescales. Below we summarize the unique aspects of the
present investigation and address findings of the most relevant
studies.
Most prior fMRI spectral analyses have been performed in the

frequency domain. Temporal autocorrelation- versus frequency-
based representations of spectral content are inherently linked
via the Wiener–Khinchin theorem, but discrepancies arise from
the different ways in which these representations are typically
quantified. First, many analyses quantify low-frequency power
over a broad range [e.g., the widely used “(fractional) amplitude
of low-frequency fluctuation (ALFF)” (49, 50) measures].
However, these measures essentially report variance within the
low-frequency range of interest (e.g., 0.01 to 0.1 Hz). Variance
and slower spectral content tend to spatially covary in fMRI
signals (24, 25) [e.g., see (f)ALFF topographies of refs. 49 and
50], but this need not be the case (as evident from SI Appendix,
Fig. S1). The frequency-domain approach most similar to ACF

decay in the infraslow range is to quantify, for a given region, the
spectral distribution of <0.1-Hz power. Previous studies have
modeled fMRI power spectral density [e.g., as log-log (24) or
log-linear (29)] and assessed regional variability in a single pa-
rameter used for fitting this model (e.g., slope). From a signal
variance perspective, log transformations of power are not ideal
as they nonlinearly distort the relative importance of different
frequencies. More generally, model-based measures [which can
also include time-domain measures such as Hurst exponent (24,
51)] require assumptions of spectral behavior over a broad fre-
quency range (e.g., monofractality); thus, regional differences in
these measures can be driven by differences in goodness of fit.
These assumptions are not necessary in the present study.
Methodological differences likely account for discrepant re-

sults between the present findings and prior work. For example,
Baria et al. (29) modeled spectra using log-linear fitting over a
frequency range extending to 0.2 Hz and obtained cortical results
broadly consistent with ours, but with portions of visual cortex
exhibiting relatively increased low-frequency content. We found
similar results using the same analysis strategy, but to a much
lesser extent when excluding frequencies above 0.1 Hz (SI Ap-
pendix, Fig. S6). We believe it is better to avoid modeling fre-
quencies above 0.1 Hz because of diminishing SNR (52, 53).
High-frequency noise would negatively impact all spectral mea-
sures extended to this frequency range, but would dispropor-
tionately affect log-linear spectral slope estimates as this
measure weights higher frequencies in great excess of their
proportional variance. Fitting power spectra via log-log slope
appropriately weights the lowest frequencies, but this method is
subject to error from undersampling of low frequencies because
of finite duration acquisitions. Finally, zones of signal dropout
[e.g., orbitofrontal and temporal poles and ventral striatum (44)]
are prone to both high-frequency artifact and low-frequency
head motion drifts. Hence, these regions—mostly restricted to
the cortical and subcortical limbic network (30, 33)—were ex-
cluded from the present analyses.
In addition to technical factors, state dependence is another

crucial variable in fMRI spectral analysis. For example, using an
autocorrelation-based approach, Kaneoke et al. (25) showed
thresholded maps that agree well with our results, as regions with
slowest dynamics fell within the bounds of the canonical fron-
toparietal and default mode networks. However, medial visual
cortex also showed, to a lesser extent, low-frequency activity; this
is expected as subjects were scanned in the eyes-closed state, in
which low-frequency content in this region is dramatically en-
hanced (e.g., refs. 54–56) [interestingly, this feature is likely

Fig. 4. Individual variability in FC is linked to individual variability in intrinsic timescales. (A) Maps of cortical ACF decay (Left) and mean FC magnitude (i.e., FC
strength; Methods) (Right) for two example individuals, MSC05 (Upper) and MSC06 (Lower). Compressed ACF decay range is due to high-pass filtering specific
to this analysis (Methods). (B) For each individual, spatial correlation between the individual’s mean FC magnitude and all 10 individuals’ maps of intrinsic
timescale (i.e., ACF decay) topography. The subject’s own map of intrinsic timescale is represented by solid colors.
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intrinsic to the eyes-closed state and not explained by reduced
visual input (56, 57)]. fMRI spectral content is also sensitive to
arousal state (52, 58, 59) and, in high-motion subjects, low fre-
quencies are preferentially enhanced within sensorimotor cortex
relative to associative cortex (60, 61) (likely reflecting decreased
arousal rather than motion artifact per se).
Here, we use a straightforward, model-free estimate of auto-

correlation decay to study intrinsic timescales in the eyes-open,
awake state. This approach minimizes the above-discussed tech-
nical issues and is readily combined with motion censoring as it
does not require continuous time series (62). To our knowledge,
one cortex-wide autocorrelation-based fMRI timescale analysis in
the awake, eyes-open state has been published: In a recent rsfMRI
investigation of autism, Watanabe et al. (63) derived intrinsic
timescales that were relatively faster in sensorimotor cortex,
showed excellent correspondence with electroencephalography-
derived timescales, and, interestingly, had significant and repro-
ducible behavioral and structural correlates (63). The present
study also replicates findings—including relatively fast fluctuations
in visual cortex and thalamus—across two large, independent
datasets. Task-based fMRI studies of functional timescales simi-
larly suggest faster timescales in visual cortex (8, 64), as does
neurophysiological evidence (e.g., refs. 6 and 10).

Biological Basis for Hierarchical Dynamics. Regional variability of
intrinsic timescales likely emerges through a combination of hi-
erarchically organized fine-scale features (14, 16, 65, 66) and
long-range, macroscopic patterns of connectivity (12, 16, 29, 67).
The interaction between these two features has been modeled
(12). Relevant fine-scale features in neocortex include pyramidal
cell dendritic spine density (68, 69) and the associated degree of
recurrent excitation (12, 15, 70). Excitation gradients are com-
plemented by inhibitory interneuron densities along the same
hierarchical axis (14, 65, 66). Topographically parallel gene ex-
pression gradients may also be present in basal ganglia, thala-
mus, and cerebellum (71–75). These structures lack local
recurrent excitation but contribute to recurrent activity within
cortico-subcortical loops (70, 76, 77). Fine-scale gradients along
the hippocampal longitudinal axis are also well-established (19).
Intrinsic timescales are also linked to relative connection degree
(29, 67, 78), which parallels anatomical hierarchy (79).
The present work examines infraslow intrinsic timescales. In

theory, the above-mentioned interplay between recurrent exci-
tation and connectivity architectures can account for the emer-
gence of infraslow fluctuations on the basis of millisecond-scale
neuronal dynamics (e.g., refs. 80 and 81). However, growing
evidence supports a contribution from neuromodulatory pro-
cesses that are intrinsically slow (82–84). The distinction between
fast and slow processes has been articulated (20, 85, 86). Still,
these timescales are intrinsically interdependent. For example,
the phase of ongoing infraslow fluctuations substantially explains
variability of higher-frequency activity (20). In this context, it is
interesting that regions with slower infraslow dynamics prefer-
entially couple with slower narrowband carrier frequencies (87).
The present study is based on fMRI, which measures hemo-

dynamic correlates of infraslow electrical activity rather than
electrophysiology directly. Nonetheless, similar hierarchical dy-
namics have been demonstrated in the infraslow envelopes of
broadband high-frequency activity using electrocorticography
(ECoG) (9), providing strong evidence that the long timescales
we report are functionally relevant and not simply due to he-
modynamic low-pass filtering. This evidence also argues against
a purely vascular explanation for hierarchical heterogeneity of
fMRI spectral content, although we cannot exclude this possi-
bility. Finally, it should be mentioned that intrinsic timescales
reflect just one way in which anatomical hierarchies can manifest
in the temporal domain (e.g., ref. 88).

Functional and Theoretical Significance of Hierarchical Dynamics.
Intrinsic timescales are informative of brain structure and func-
tion. The correspondence of slower dynamics to increased struc-
tural and FC (and thus, increased integration) can be viewed as a
result of a population acting as a low-pass filter of its aggregate
inputs, to a degree that varies as a function of its connectivity (29)
(see also refs. 79, 89, and 90). In turn, slower dynamics can provide
longer windows of opportunity for temporal summation and in-
tegration of inputs (7, 10). Thus, a series of elegant neuroimaging
and ECoG experiments in humans have defined a hierarchy of
“temporal receptive windows” (analogous to spatial receptive
fields) within multiple large-scale sensory pathways in relation to
experimentally controlled, time-varying sensory stimuli (reviewed
in ref. 7). Several of these studies explicitly link these sensory hi-
erarchies to those inferred from intrinsic timescales (i.e., measured
from ongoing brain activity) within the same infraslow frequency
range (9, 91, 92). More generally, evidence obtained from multiple
organisms over a wide range of spatiotemporal scales has explicitly
linked intrinsic timescales to behavior (10, 93–96). This corre-
spondence suggests that hierarchical dynamics are intrinsic to brain
function, which has important implications for understanding the
contribution of a given brain region to network-wide dynamics (12,
97, 98) [and hence, behavior (99)].
The present work extends the notion of hierarchical dynamics

to ongoing activity within large-scale cortico-subcortical systems.
From this perspective, the brain’s global functional architecture
hypothetically reflects an evolved embedding of deep temporal
structure within the (exteroceptive, proprioceptive, and intero-
ceptive) sensorium (6, 67). Theories along these lines appeal to
early cybernetic formulations of self-organization, for example
the good regulator theorem (100). For a brain, this theorem
implies that adaptively regulating homeostasis (allostasis) re-
quires, at some level, an internal predictive model of the multi-
scale statistical contingencies and probable causes of sensory
samples, including those generated from the organism’s own
actions (101, 102). This fundamental feature is reflected in the
architectures of deep temporal models from computational
neuroscience and machine learning (103–106). The added pre-
dictive value of increasingly slow processes may support emer-
gence of new functionalities in diverse biological systems (107).
Accordingly, it is noteworthy that the spatiotemporal hierarchy
described herein strongly resembles phylogenetic and ontoge-
netic maps of cortical expansion (108). Thus, the ability to in-
tegrate over long timescales may be essential to the functions
enabled by late-emerging large-scale association networks (109).

Methods
Primary Dataset: Genomics Superstruct Project. A large dataset (1,139) was
obtained from the Harvard–Massachusetts General Hospital Brain Genomics
Superstruct Project (GSP). Details regarding the GSP dataset are published
elsewhere (30, 110). Briefly, imaging was performed with a 3T Siemens Tim
Trio scanner. All participants were simply instructed to keep their eyes open,
remain still, and not fall asleep. Two 6-min fMRI runs (repetition time [TR] =
3.0 s; 3.0-mm isotropic voxels) were acquired per subject included in the
present analyses.

Secondary Dataset: Midnight Scan Club. A second, independent dataset was
used to validate findings from the primary dataset, examine spectral content
over long scan durations, and investigate individual differences. The Mid-
night Scan Club (MSC) dataset comprises 10 healthy, right-handed individuals
aged 24 to 34 y (five females). Details regarding the MSC dataset are pub-
lished elsewhere (31). Briefly, subjects each underwent 10 scanning sessions
performed at midnight. Images were collected on a Siemens Trio 3T MRI
scanner and included 30 contiguous minutes of eyes-open rsfMRI per session
(TR = 2.2 s; 4.0-mm isotropic voxels), totaling 300 min per subject. During
rsfMRI acquisition, subjects fixated a white cross-hair against a black
background.

fMRI Processing. Functional data were preprocessed to reduce artifact,
maximize cross-session registration, and resample to an atlas space. Details
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of further processing are included in SI Appendix. Briefly, atlas-transformed
data underwent motion-censoring (54), low-pass filtering to retain
frequencies <0.1 Hz and regression of nuisance signals as well as the whole-
brain mean. Processed data were converted to CIFTI format, which projects
data from cortical voxels to a surface while retaining volumetric time series
from the subcortex and cerebellum (111). Surface-projected time courses
were downsampled to a ∼4,000-vertex-per-hemisphere (∼6-mm spacing)
“fs_LR” (112) atlas-registered surface to improve SNR and reduce compu-
tational demand. All computations were performed on these ∼6-mm
-resolution cortical vertices and 3-mm-resolution subcortical voxels. See SI
Appendix for further details.

Network Parcellation. Cortical, striatal, and cerebellar parcellations were
obtained from refs. 30, 32, and 33 and resampled to the 4k surface (cortex)
or 3-mm resolution (subcortex). Low SNR [i.e., limbic (30)] and underrepre-
sented [dorsal attention and visual in striatum (74); visual in cerebellum (32)]
networks were excluded (see SI Appendix for further details). To generate a
comparable parcellation for the thalamus, we applied a similar
winner-take-all strategy as in Buckner et al. (32) to 1,139 individuals from
the original parcellation dataset (i.e., GSP). This resulted in a parcellation
broadly consistent with known functional organization of the thalamus as
well as published functional parcellations at the level of fMRI (e.g., refs.
113–116 and Fig. 3). This parcellation is publicly available at https://github.
com/RaichleLab.

Intrinsic Timescale Estimation. To obtain a model-free estimate of intrinsic
timescale while allowing for the exclusion of high-motion time points, we
used a previously described method for computing lagged (auto-) covariance
using blocks of contiguous time points (117). The precise abscissa corre-
sponding to an autocorrelation value of 0.5 (i.e., half of the ACF full width at
half maximum) was estimated by computing the zeros of a spline fit to the
ACF. This method was applied to low-pass-filtered time series (<0.1 Hz) (24).
Full details of this procedure are provided in SI Appendix. Custom MATLAB
code for intrinsic timescale estimation as described in this paper is publicly
available at https://github.com/RaichleLab.

Comparison with FC. We quantified the extent of FC for each region by the
graph metric of node strength, the weighted network equivalent of node
degree. For this analysis, BOLD time series were high-pass-filtered (>0.01 Hz)
to account for idiosyncratic drift artifacts that presented as outlier timescales
in regions surviving the group-level SNR mask. Filtering primarily influenced
signal dropout regions in cortex (by reducing outlier timescales likely arising
from low-frequency head motion drift) and compressed overall timescale
range, without substantively changing hierarchical topographies (SI Ap-
pendix, Fig. S3). For each individual, we computed FC strength of each
cortical vertex as its mean (absolute value) Fisher z-transformed correlation
across all other vertices. The intrinsic timescale (ACF decay) map for each of
the 10 MSC individuals was subsequently correlated with the FC strength

map of each individual, and these correlations were assembled into a 10 × 10
matrix. Statistical comparison between within-subject and between-subject
ACF decay:FC strength correlations was performed via a two-tailed t test
comparing the diagonal of this matrix (within-subject) against all other
values (between-subjects).

Due to use of absolute value FC, a potential trivial explanation for the
statistically significant relationship observed between intrinsic timescale and
FC strength (P < 0.001) is that slower dynamics translate to fewer indepen-
dent temporal samples, thereby biasing FC magnitudes toward higher values
in regions with lower-frequency signals (117). To rule out this possibility, we
computed the mean cortical power spectrum, P(ω), averaged over all 100
available MSC sessions (10 per subject) and applied the amplitudes
(i.e., square root of the power spectrum at each frequency bin) to each fMRI
time series, x(t):

~x(t) = z(F−1(P1
2 ·exp(i · arg[F(x)]))), [1]

where F(x) andF−1(x) are the Fourier and inverse Fourier transforms of x, arg
denotes the phase, i is the imaginary unit, and z denotes standardization
(i.e., enforcing a zero-mean, unit variance condition). Thus, the original
Fourier phase spectra are preserved, while the amplitudes are made to be
uniform across vertices. Following spectral amplitude normalization (x→ ~x),
we recomputed FC strength maps for each individual. In this way, we re-
moved any trivial (i.e., purely mathematical) relationship between correla-
tion magnitudes and spectral content. This maneuver did not materially
change the results (SI Appendix, Fig. S5).

Use of absolute value FC is motivated from the perspective that strong
anticorrelations reflect true antagonistic relationships, as evidenced, for
example, by stimulation (118). See SI Appendix, Quantifying Extensive
Functional Connectivity and Fig. S4 for further consideration of this topic.

Data Visualization. Cortical surface displays and volume images were rendered
using Connectome Workbench software (111). Cerebellar flatmap repre-
sentations of volume-averaged results were generated using the SUIT tool-
box (119) and used for display purposes only.

Data Availability. The GSP dataset is publicly available at https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/25833. The MSC
dataset is publicly available in the OpenfMRI data repository at https://
openneuro.org/datasets/ds000224. Processing scripts for the latter dataset have
been made available at https://github.com/MidnightScanClub/MSCcodebase.
Code for spectral analyses as performed in this paper, as well as the thalamic
network parcellation, have been made publicly available at https://github.
com/RaichleLab.
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