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Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/
Guangdong/1/96 lineage can cause severe disease in poultry and
wild birds, and occasionally in humans. In recent years, H5 HPAI
viruses of this lineage infecting poultry in Asia have spilled over into
wild birds and spread via bird migration to countries in Europe,
Africa, and North America. In 2016/2017, this spillover resulted in the
largest HPAI epidemic on record in Europe and was associated with
an unusually high frequency of reassortments between H5 HPAI
viruses and cocirculating low-pathogenic avian influenza viruses.
Here, we show that the seven main H5 reassortant viruses had var-
ious combinations of gene segments 1, 2, 3, 5, and 6. Using detailed
time-resolved phylogenetic analysis, most of these gene segments
likely originated from wild birds and at dates and locations that
corresponded to their hosts’ migratory cycles. However, some gene
segments in two reassortant viruses likely originated from domestic
anseriforms, either in spring 2016 in east China or in autumn 2016 in
central Europe. Our results demonstrate that, in addition to domestic
anseriforms in Asia, both migratory wild birds and domestic anseri-
forms in Europe are relevant sources of gene segments for recent
reassortant H5 HPAI viruses. The ease with which these H5 HPAI
viruses reassort, in combination with repeated spillovers of H5 HPAI
viruses into wild birds, increases the risk of emergence of a reassor-
tant virus that persists in wild bird populations yet remains highly
pathogenic for poultry.
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Infection with highly pathogenic avian influenza (HPAI) virus
of the H5 A/goose/Guangdong/1/96 (Gs/Gd) lineage can cause

severe disease in birds and in mammals, including people (1, 2).
Since the beginning of the century, H5 HPAI viruses have re-
peatedly spilled over from poultry to free-living wild birds, es-
pecially in Asia. This spillover in regions with a high poultry
density and intensive interaction between wild bird and poultry
populations has altered the epidemiology of H5 HPAI viruses in
several ways. First, migration of HPAI virus-infected wild birds
acts as a new route of long-distance spread of H5 HPAI viruses
into countries with bird populations that were free of these
viruses (3). Second, direct or indirect contact with infected wild
birds is a new route of HPAI virus incursion into poultry farms
(4–7). Third, H5 HPAI virus infection is a new source of con-
siderable mortality in wild birds themselves, and it may sub-
stantially affect population dynamics of wild birds and threaten
highly protected species like the white-tailed eagle (Haliaeetus
albicilla) and the peregrine falcon (Falco peregrinus) (8, 9). Be-
cause we have a poor understanding of wild birds as a new niche
for H5 HPAI viruses, it is difficult to design efficient surveillance
programs, as well as effective prevention and control measures.
Since 1996, the Gs/Gd lineage of H5 HPAI viruses has evolved

rapidly and is now highly diverse. Following the emergence of
Gs/Gd, the lineage has evolved into numerous genetically dis-
tinct clades (10, 11). Several of these clades have spread via wild

birds from Asia to Europe since 2004: clade 1 in 2004, clades 2.2
and 2.2.1 from 2005 to 2007, clade 2.3.2 from 2008 to 2010, and
clade 2.3.4.4 from 2014 to 2019 (1, 3, 12, 13). Gs/Gd lineage H5
HPAI viruses are now endemic in areas of Asia and continue to
evolve, so new epidemics are likely to occur.
The routes by which H5 HPAI viruses are carried over long

distances, as well as the particular migratory species involved, are
still only roughly known. From wintering grounds of migratory
birds in Southeast Asia, H5 HPAI viruses are carried north to
breeding grounds on the northern parts of the Eurasian and
North American continents and then west to wintering grounds
in Europe, east to wintering grounds in North America, or back
south to wintering grounds in Asia (3). The species involved are
thought to be long-distance migrants of the family Anatidae
(ducks, geese, and swans). Several species in this family (e.g.,
Eurasian wigeon [Mareca penelope], Eurasian teal [Anas crecca],
and northern pintail [Anas acuta]) have migratory routes that
correspond to the observed pattern of virus spread (3), have
been found infected with H5 HPAI virus at different locations
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along their respective migratory routes (3), and can be infected
with and excrete H5 HPAI virus—at least under laboratory
conditions—without showing detectable clinical signs (1, 14–17).
In 2016 and 2017, H5 HPAI viruses (belonging to cluster B,

Gochang like) spread again widely across Eurasia, causing the
largest and most widespread HPAI epidemic ever recorded in
Europe: between October 2016 and August 2017, 1,207 indi-
vidual HPAI virus outbreaks in poultry holdings were reported in
24 European Union countries, and 1,590 wild bird mortality
events were recorded in 29 countries of the European Union and
in Switzerland (18). In contrast, relatively few wild birds and
poultry farms were affected in 2014/2015: between November
2014 and February 2015, H5N8 HPAI was detected in only 11
poultry farms (turkey, duck, chicken) and other holdings and in a
small number of wild waterfowl across five European countries,
as well as in two mute swans (Cygnus olor) in Sweden (3, 19),
indicating a marked difference between epidemics.
During the 2016 to 2017 epidemic, five reassortant viruses

were detected in Germany alone, to which the H5 HPAI virus
contributed at least the clade 2.3.4.4 hemagglutinin (HA) gene
segment and often, also that clade’s corresponding matrix (M)
and nonstructural (NS) gene segments, while cocirculating low-
pathogenic avian influenza (LPAI) viruses contributed gene
segments coding for the other viral proteins (20). The genetic
diversity generated through reassortment plays an important role
in the evolution of influenza viruses (21) and may provide the
opportunity for the adaptation of H5 HPAI virus to wild bird
populations. Despite this, we know little about the genesis and
spread of these reassortants. We therefore performed extensive
phylogeographic and epidemiological analyses of the 2016 to
2017 H5 HPAI virus epidemic, including analysis of the temporal
and geographical spread of the reassortants and their individual
gene segments, and of the avian species involved. Our main goals
were to estimate where and when these reassortments occurred
and to identify which avian influenza viruses from which host
species provided gene segments for reassortment. We used ge-
netic sequences of avian influenza viruses obtained from poultry
and wild birds worldwide and shared through public databases
and epidemiological data obtained from the World Organization
for Animal Health. We focused on HPAI viruses of H5 clade
2.3.4.4 collected between May 2016 and July 2017. Data were
discussed within the Global Consortium of H5N8 and Related
Influenza Viruses (3). The aim of this consortium is to foster
data exchange and global analysis of H5Nx avian influenza
epidemics (3).

Results
Classification of Whole-Genome Sequences of HPAI Virus H5Nx into
Reassortants per Gene Segment. Sequence data for individual gene
segments 1 (polymerase basic 2, PB2), 2 (polymerase basic 1,
PB1), 3 (polymerase acidic, PA), 5 (nucleoprotein, NP), 7 (M),
and 8 (NS) were classified into groups based on phylogenetic
similarity, and sequence data for gene segment 6 (neuraminidase,
NA) were classified by subtype (Materials and Methods). Using
BEAST (22), time-scaled trees were inferred for each segment or
subtype for segment 6 (Figs. 1 and 2). The discontinuous character
of the phylogenetic groups was consistent with the importation of
novel sequences (i.e., reassortment or genetic shift), suggesting
that these groups corresponded to reassortants (Table 1). These
results suggested that segment 4 (the HA gene) had four main
combinations (A to D) with segment 1, three (A, C, D) with
segment 2, four (A, B, D, E) with segment 3, five (A, B, D, E, F)
with segment 5, two (N8 and N5) with segment 6, and one (A)
with segments 7 and 8. The phylogenetic analysis of the eight gene
segments indicated that, in some cases, multiple gene segments
transferred in the same reassortment event. An example is the
simultaneous reassortment of gene segments 1, 3, and 5 (Figs. 1
and 2 and Table 1).

By Influenza Reassortment analysis via Supernetworks (IRIS),
a total of 446 full-genome sequences of clade 2.3.4.4 H5 HPAI
viruses could be divided into 11 distinct reassortants, 7 of which
were common. Supernetworks are calculated from all eight
segment-sorted maximum-likelihood trees and visualize the
phylogenetic relationships of each HPAI virus where taxa are
represented by nodes and their relationships as edges (23). This
corresponded very closely to the reassortants distinguished by
BEAST analysis. The reassortants formed four groups: group I,
first detected in May 2016; group II, first detected in August
2016 and including the reassortant that caused the main epi-
demic in wild birds and poultry in Europe; group III, first de-
tected in December 2016 and including a change of the NA
serotype from eight to five; and group IV, also first detected in
December 2016 (Figs. 3 and 4 and Table 1).

Spatiotemporal Distribution of the Main Reassortants. The clade
H5N8 HPAI virus was widespread in Eurasia in 2016 and ex-
tended into North Africa (Fig. 5). During 2016 and 2017, the
virus spread widely from east Asia (SI Appendix, Table S1)
westward to Europe, eastward to north Asia, and southward to
south Asia and Africa between the second quarter (3-mo divi-
sion) of 2016 and the second quarter of 2017. In the second
quarter of 2016, the virus was detected sporadically in north-
central China (Qinghai Lake) and the border between Russia
and Mongolia (Uvs-Nuur Lake) (SI Appendix, Fig. S1). The
westward spread to Europe started with infrequent detections in
south-central Russia (Chany Lake and Kurgan in western Sibe-
ria) in the third quarter of 2016 (SI Appendix, Fig. S2) and west
Russia (Tatarstan) in the fourth quarter of 2016 (SI Appendix,
Fig. S3). Subsequently, the virus was detected at great frequency
in all parts of Europe (north, south, east, west, central) (SI Ap-
pendix, Table S1) in the fourth quarter of 2016 and the first
quarter of 2017 (SI Appendix, Fig. S4), followed by infrequent
detections in the second quarter of 2017 (SI Appendix, Fig. S5).
The virus also was detected in North Africa (Egypt) and south
Asia (India) in the fourth quarter of 2016, in central Africa
(Congo) in the second quarter of 2017, in north Asia (Kam-
chatka, Russia) in the fourth quarter of 2016, and in east Asia
(South Korea) from the fourth quarter of 2016 to the second
quarter of 2017. The species affected were primarily wild birds in
the second and third quarters of 2016, both wild birds and
poultry in the fourth quarter of 2016 and first quarter of 2017,
and poultry in the second quarter of 2017 (SI Appendix, Figs.
S1–S5). There was no apparent spatial association between the
distribution of sampled viruses and the density of the poultry
population in Eurasia (SI Appendix, Fig. S6). During the period
2016/2017, H5N8 HPAI viruses were not detected in other parts
of the world, including North and South America.

Inferred Hosts, Dates, and Locations of Origin of the Seven Main
Reassortants.
Reassortant 1 (CABAD8AA; n = 16). This is the most ancestral reas-
sortant in our analyses. The origin dates are estimated to be
November 2015 for the most recent common grand ancestor
(MRCGA) and February 2016 for the most recent common
ancestor (MRCA) (SI Appendix, Fig. S7). The gene segments are
inferred to originate from west, south, and east China for the
MRCGA and north China for the MRCA. The inferred hosts of
nearly all gene segments of both the MRCGA and MRCA are
either long-range anseriform migrants or wild anseriforms. The
exception is gene segment 6 (NA), for which the inferred hosts
are domestic anseriforms. These dates and locations suggest that
the MRCA of CABAD8AA originated at the end of the win-
tering period 2015/2016 or beginning of spring migration 2016,
with gene segment 6 contributed by domestic anseriforms from
east China and remaining gene segments contributed by wild
anseriforms (including long-range migrants) from wintering
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locations in west, south, and east China. It cannot be ruled out
that some gene segments (e.g., 3 and 7) were carried farther
south during autumn migration 2015 to unsampled wintering
locations in south Asia and then back to north China during
spring migration.
The first actual CABAD8AA detections were from May 2016

on Qinghai Lake in China and Uvs-Nuur Lake at the
Mongolian–Russian border (24, 25), just north of the median
inferred location of origin of the MRCA. This suggests that this
reassortant was carried farther north during spring migration

2016, presumably by wild birds on the way to breeding locations
in north Russia. The first detected virus (A/Brown-headed_Gull/
Qinghai/ZTO1-LU/2016) had an HPAI virus H5 clade 2.3.4.4b-
derived backbone of segments 4, 6, and 8, combined with seg-
ments 1, 2, 3, 5, and 7 from different Asian low pathogenic avian
influenza (LPAI) viruses (24, 25). After May 2016, this reas-
sortant was not detected until May 2017, when it reemerged in
domestic ducks in the Democratic Republic of Congo (26).
Reassortant 2 (CAEAF8AA; n = 13). The new gene segments in this
reassortant, compared with CABAD8AA, are segments 3 (PA)
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Fig. 1. Bayesian time-resolved phylogenetic trees for gene segments 1 to 4 of H5NX HPAI viruses sampled between May 2016 and July 2017 and for which
whole genomes were sequenced. Distinct clades (groups) in the trees are given different colored branches. The number of distinct groups differs per gene
segment: four for segment 1, three for segment 2, five for segment 3, and one for segment 4. Furthermore, all eight segments of each virus are represented as
eight parallel bars at the tips of each tree, with the colors in each segment’s bar corresponding to the branches of the individual gene sequences to indicate
reassortment. The final bar represents the geographic locations of the sequences in the tree.
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and 5 (NP). The inferred hosts of these new gene segments
could be wild anseriforms, long-range anseriform migrants,
other wild birds, or domestic anseriforms (SI Appendix, Fig.
S8). The origin dates are estimated to be May 2016 for the
MRCGA and August 2016 for the MRCA. The gene segments
are inferred to originate from almost the full breadth of Eurasia
(west Poland to east China) for the MRCGA and from a nar-
rower breadth of Eurasia (east Azerbaijan to west China, but
most locations in the region centered on the Kazakhstan–China

border) for the MRCA. These dates and locations suggest that
the MRCA of CAEAF8AA originated during premigratory
aggregation or autumn migration in the Kazakhstan–China
border region.
The first actual CAEAF8AA detection (A/gadwall/Chany/97/

2016) was from September 2016 in Russia. It was later found in
wild birds at widely dispersed locations: from Italy to Korea and
from Russia to Egypt and India. Except for Russia, these sites
might be wintering locations of wild migratory birds.
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Fig. 2. Bayesian time-resolved phylogenetic trees for gene segments 5 to 8 of H5NX HPAI viruses sampled between May 2016 and July 2017 and for which
whole genomes were sequenced. For segment 6, there are separate phylogenetic trees for subtypes N8 and N5. Distinct clades (groups) in the trees are given
different colored branches. The number of distinct groups differs per gene segment: five for segment 5, two for segment 6, and one for segments 7 and 8.
Furthermore, all eight segments of each virus are represented as eight parallel bars at the tips of each tree, with the colors in each segment’s bar corre-
sponding to the branches of the individual gene sequences to indicate reassortment. The final bar represents the geographic locations of the sequences in
the tree.
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Reassortant 3 (AAAAA8AA; n = 109). This is the main virus detected
in the 2016 to 2017 epidemic in Europe. The new gene segments
in this reassortant, compared with CAEAF8AA, are segments 1
(PB2), 3 (PA), and 5 (NP). The inferred hosts of these new gene
segments are long-range anseriform migrants (segment 1), other
wild birds (segment 3), or either of these two groups (segment 5)
(SI Appendix, Fig. S9). The origin dates are estimated to be June
2016 for the MRCGA and July 2016 for the MRCA. The gene
segments are inferred to originate from Belarus to India for the
MRCGA and from a much more restricted area (Belarus to west
Kazakhstan) for the MRCA. These dates and locations suggest
that the MRCA of AAAAA8AA originated during premigratory
aggregation or early autumn migration 2016 somewhere between
Belarus and Kazakhstan.
The first actual AAAAA8AA detection (A/gadwall/Kurgan/

2442/2016) was on 27 August 2016 in central Russia at the lon-
gitude of the Ural Mountains. The second detection occurred on
2 October 2016 in Tatarstan, Russia, several hundred kilometers
westward. From November 2016 onward, this virus was detected
in wild birds in coastal regions of the Baltic and North Seas, as
well as in wild birds on Lake Constance, Lake Biel, and Lake
Neuchâtel, farther south in Europe. It also was found in wild
birds in Ukraine, south Russia (Krasnodar), Hungary, and Italy.
This suggests that the virus was carried west during autumn
migration of wild birds in 2016, on the way to wintering locations
in central, west, and south Europe.
Throughout Europe, this virus caused both massive die-offs in

wild birds and outbreaks in poultry farms, lasting until at least
summer 2017 (8, 20, 27–33).
Reassortant 4 (AADAA8AA; n = 14). The new gene segment in this
reassortant, compared with AAAAA8AA, is segment 3 (PA).
The inferred hosts of this gene segment are other wild birds (SI
Appendix, Fig. S10). The origin dates are estimated to be August
2016 for the MRCGA and October 2016 for the MRCA. The
gene segments of the MRCA are inferred to originate from
Germany to west Russia. These dates and locations suggest that
the MRCA of AADAA8AA originated during late autumn
migration 2016.
The actual detections of AADAA8AA were first in the Neth-

erlands in November 2016 and then in Kaliningrad Oblast, Russia,
in February 2017. This suggests that, following its generation in
autumn 2016, this reassortant was restricted to a limited number
of wintering locations in central and west Europe.

Reassortant 5 (DCBAE5AA; n = 15). The new gene segments in this
reassortant, compared with CABAD8AA, are segments 1 (PB2),
5 (NP), and 6 (NA). The inferred hosts of these gene segments
are wild anseriforms (segments 1 and 5), with ancestry of seg-
ment 6 remaining unclear, although segment 6 clustered most
closely with those of LPAI viruses of the subtypes H9N5 or
H7N5 found in 2015 in shorebirds in Asia (A/common redshank/
Singapore/F83-1/2015, KU144675; A/black-tailed godwit/Ban-
gladesh/24734/2015, KY635758) (SI Appendix, Fig. S11). The
origin dates are estimated to be June 2016 for the MRCGA and July
2016 for the MRCA. The gene segments are inferred to originate
from west-central Russia to northwest China to Thailand for the
MRCGA and from south-central Russia for the MRCA. These
dates and locations suggest that the MRCA of DCBAE5AA origi-
nated during the breeding season or premigratory aggregation 2016.
The actual detections of DCBAE5AA were in Georgia, the

Czech Republic, Italy, and Germany from December 2016 to
February 2017, suggesting that the reassortant was carried by
wild birds during autumn migration 2016 to wintering locations
in Europe. This virus caused outbreaks in poultry farms in Croatia
and Germany. The reassortant also was detected in eastern
Eurasia—on the Kamchatka Peninsula, Russia—in October 2016,
which it likely reached via a different migration route.
Reassortant 6 (BABAB8AA; n = 56). This is the second most common
virus detected during the 2016 to 2017 epidemic in Europe, after
AAAAA8AA. The new gene segments in this reassortant,
compared with CABAD8AA, are segments 1 (PB2) and 5 (NP).
The inferred host of segment 1 is unclear (either domestic
anseriforms or other wild birds), and the inferred host of seg-
ment 5 is domestic anseriforms (SI Appendix, Fig. S12). The
origin dates are estimated to be July 2016 for the MRCGA and
September 2016 for the MRCA. The gene segments are inferred
to originate fromUkraine to west Russia for the MRCGA and from
several hundred kilometers due west—Hungary to Ukraine—for
the MRCA. These dates and locations suggest that the MRCA of
BABAB8AA originated during autumn migration 2016.
The first actual detections of BABAB8AA were in Croatia,

Hungary, and France from October 2016. This virus was later
detected farther north, in Germany and Poland in winter 2016
to 2017 (20, 33). This suggests that the reassortant spread in a
restricted part of Europe during late autumn migration and the
wintering period and potentially involved spillback of gene
segments from domestic anseriforms to wild birds, possibly
in Hungary.

Table 1. The names of the main reassortants and the phylogenetic groups within each gene segment

Reassortant
Date of first detection
(full-genome sequence)

Estimated date of origin and 95% highest
posterior density CIs

No. of
sequences

Phylogenetic group per gene
segment

1 2 3 4 5 6 7 8

No. Name Group PB2 PB1 PA HA NP NA M1 NS1

1 CABAD8AA I 5/1/16 3 February 2016 16 C A B A D 8 A A
11/15–4/16

2 CAEAF8AA I 9/10/16 9 August 2016 13 C A E A F 8 A A
5/16–9/16

3 AAAAA8AA II 8/27/16 13 July 2016 109 A A A A A 8 A A
5/16–8/16

4 AADAA8AA II 11/11/16 3 October 2016 14 A A D A A 8 A A
8/16–10/16

5 DCBAE5AA III 10/1/16 26 July 2016 15 D C B A E 5 A A
5/16–9/16

6 BABAB8AA IV 10/19/16 7 September 2016 56 B A B A B 8 A A
7/16–10/16

7 BDBAB8AA IV 12/2/16 4 November 2016 6 B D B A B 8 A A
9/16–11/16

20818 | www.pnas.org/cgi/doi/10.1073/pnas.2001813117 Lycett et al.
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Reassortant 7 (BDBAB8AA; n = 6). The new gene segment in this
reassortant, compared with BABAB8AA, is segment 2 (PB1). The
inferred hosts of this gene segment are wild anseriforms or long-
range anseriform migrants (SI Appendix, Fig. S13). The origin
dates are November 2016 for both the MRCGA and the MRCA.
However, gene segment 2 has an earlier origin date, May 2016,
suggesting that it reached west Europe in a two-step process:
transport to breeding location in Siberia during spring migration
2016 and transport to wintering location in west Europe during

autumn migration 2016. The gene segments of the MRCGA are
inferred to originate from a restricted region—Germany to
Ukraine—except for gene segment 2, from west China; those of
the MRCA are inferred to originate from an even more restricted
region, Poland to Ukraine. These dates and locations suggest that
the MRCA of BDBAB8AA originated during late autumn mi-
gration 2016 or wintering period 2016 to 2017.
The actual detections of BDBAB8AA were first in Poland and

Germany, from December 2016 onward. This suggests that the
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271710__A_Mulard_duck_Hungary_60369_2016__H5N8__2016-Nov-29

271712__A_Goose_Hungary_63743_2016__H5N8__2016-Dec-11

271713__A_Goose_Hungary_64909_2016__H5N8__2016-Dec-14

255190__A_Mute_swan_Hungary_119_2017__H5N8__2017-Jan-02

255196__A_Greylag_goose_Hungary_1941_2017__H5N8__2017-Jan-18
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Fig. 3. Supernetwork of 2016/2017 H5 HPAI viruses, based on full-genome sequences, generated by using maximum-likelihood (ML) phylogenetic trees of
sorted sequences according to segments. The eight ML trees of the segments were used to calculate a supernetwork. Each reassortant is indicated by a
different color and assembled into four groups. The seven most common reassortants are numbered 1 to 7. Less common reassortants (total: four) are in-
dicated in gray. Each circle represents full genome of HPAI virus, and the edges represent their phylogenetic relationship. Details as names, collection dates,
and coordinates are given in SI Appendix, Table S8.
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reassortant originated locally in Europe due to a reassortment
of its predecessor, BABAB8AA, with a gene segment from a
wild anseriform, likely a long-range migrant from Siberia. This
virus caused outbreaks in poultry farms in Poland, Germany,
and Russia.

Summary of the Genesis and Spread of Seven Main Reassortants. In
summary (Table 2 and SI Appendix, Fig. S13 and Table S2), most
of the new gene segments for the reassortant viruses originated
from wild birds (wild anseriforms, including long-range anseri-
forms, or other wild birds), and the dates and locations of origin
correspond with areas used by wild birds during different phases
of their migratory cycles: wintering period to spring migration in
north China, Mongolia, and Russia (Siberia) for reassortant 1;
breeding period to autumn migration in Belarus/Kazakhstan/
China/Russia for reassortants 2, 3, and 5; autumn migration in
Hungary/Germany/Ukraine/Russia for reassortants 4 and 6; and
autumn migration to wintering period in Poland/Ukraine for
reassortant 7. The only new gene segments not thought to
originate from wild birds were gene segment 6 of reassortant 1
and gene segment 5 of reassortant 6; these gene segments were
inferred to originate from domestic anseriforms.

Migratory Patterns of Wild Birds Found Positive for H5N8 HPAI Virus
in the European Union. Based on reports to the Office Interna-
tional des Epizooties (OIE), H5N8 HPAI viruses were detected
in a total of 56 species found dead in the European Union be-
tween 1 October 2016 and 5 July 2017 (18). Of these 56 species,
14 species had migratory populations that wintered in the Eu-
ropean Union and bred at longitudes at least 60°E, which is at

the longitude of the Ural Mountains (Table 3). Of these 14
species, 13 were water birds belonging to the family Anatidae
(including ducks, geese, and swans), while 1 species belonged to
the family Turdidae (thrushes).

Discussion
The overall impact of the 2016/2017 epidemic of H5N8 HPAI
virus (belonging to cluster B, Gochang like) differed markedly
from the 2014/2015 epidemic of H5N8 HPAI virus (belonging to
cluster A, Buan/Donglim like), both in geographical focus and
the breadth of the host species affected. The 2016/2017 epidemic
caused the largest recorded HPAI epidemic in poultry in Europe
(18, 36) but did not spread to North America or Japan. In
contrast, the 2014/2015 epidemic resulted in only limited poultry
mortality in Europe and Japan (3) but caused major losses in the
United States and to a lesser extent, in Canada, with over 48
million heads of poultry lost or destroyed (37). During the 2016/
2017 epidemic, there was high mortality in free-living wild birds
in Europe. In the Netherlands alone, ∼13,600 wild birds of 71
species were found dead during the epidemic (8). Considering an
estimated detection rate of only 10 to 25%, the actual mortality
probably was much higher and represented substantial percent-
ages of wintering populations of several species in the Nether-
lands: 5% of tufted ducks and Eurasian wigeons, 2 to 10% of
greater black-backed gulls, and 11 to 39% of peregrine falcons
(8). Also during the 2016/2017 epidemic, H5N8 HPAI virus
caused unusually high mortality in white-tailed eagles, with
17 laboratory-confirmed fatal infections in Germany between
November 2016 and April 2017 (9), and in a well-monitored

Fig. 4. Overview of the main reassortments described in this manuscript. Group designations and colors correspond to those in Fig. 3. The positions of the
reassortants correspond to the estimated dates of origin in Table 1. Dotted lines join the gene segments that are related.
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population of mute swans (C. olor) in the United Kingdom,
causing an age-adjusted mortality of 143 per 1,000 birds (38). In
most cases, the effect of this mortality of wild birds at the pop-
ulation level was not clear. However, the mortality rate of tufted
ducks in parts of the Netherlands was so high (estimated at 25%
of the local population) that population dynamics might have
been affected substantially (8). In contrast, high wild bird mor-
tality in Europe was not recorded in 2014/2015 (3). In the United
States in 2014/2015, the majority of wild ducks did not show clear
clinical signs of disease, although there was high mortality of wild
raptor species (eagles, hawks, falcons, and owls) and wild geese
(39). Experimental infections confirmed that the 2016/2017
H5N8 HPAI virus was substantially more virulent in domestic
ducks than that from 2014/2015 (40).
We speculate that the high virulence of the H5N8 HPAI virus

in 2016/2017 may be a side effect of selection for high excretion
in wild water birds. Higher virus excretion not only results in
more efficient transmission among hosts but also in increased
severity of clinical signs. According to the intermediate virulence
(or trade-off) hypothesis, there is selective advantage for higher
excretion up to the point that higher transmission is counter-
acted by increased clinical signs and even death (41). It is at this
point of intermediate virulence that the virus has the greatest

evolutionary fitness. This fitness level depends in part on the
level of population immunity, which will depend on the pro-
portion of naïve birds and the presence of other circulating
strains (38). It remains to be seen whether virulence of the H5N8
HPAI virus will change as it further evolves within the interna-
tional metapopulation of wild birds and poultry. It also remains
to be seen how the zoonotic potential of the H5N8 HPAI virus
will change; based on experimental ferret infections with three of
the viruses discussed here, the adaption of H5N8 HPAI virus to
avian hosts was associated with a reduced zoonotic potential
(40, 42).
The range of wild bird species involved in the 2016/2017 epi-

demic in Europe differed from that in 2014/2015, although
nonuniform sampling over time and space cannot be ruled out as
a potential bias. In 2014/2015, only four wild bird species were
found positive for H5N8 in Europe. In contrast, 56 species were
found positive in Europe in 2016/2017 (18). Of these 56 species,
14 had migratory populations that wintered in the European
Union and bred at longitudes at least 60°E (Table 3). These 14
species included the same species as found in 2014/2015 (Eur-
asian wigeon, common teal, mallard, and mute swan) but also, 10
others. Thus, in 2016/2017 there was evidence for many more
wild bird species that could have transported H5N8 viruses from

A B

C

Fig. 5. Geographical distribution of detected H5NX HPAI viruses with full-genome sequences between the second quarter of 2016 and the second quarter of
2017. Viruses were detected from the east coast of Asia to the northwest coast of Europe, southern to northern Africa, and in south Asia. A–C show magnified
maps of (A) the northwest coast of Europe, (B) southern Africa, and (C) the east coast of Asia. Lambert conformal conic projection. Light green: reassortant 1;
dark green: reassortant 2; red: reassortant 3; purple: reassortant 4; orange: reassortant 5; light blue: reassortant 6; dark blue: reassortant 7; circle: Wild-ans;
square: Wild-ans-long; pentagon: Wild-other; rhomboid: Dom-ans; triangle: Dom-gal. Map image credit: Copyright © 1995–2020 Esri. All rights reserved.
Published in the United States of America.
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breeding areas in Siberia to wintering areas in Europe. Which of
these species transport virus remains to be determined and re-
quires more detailed investigation of the candidate hosts, both in
the context of avian influenza epidemiology and long-range
movement ecology.
Reassortment frequency was much higher in the 2016/2017

epidemic than in the 2014/2015 epidemic and than in the Eu-
ropean epidemic of H5N1 HPAI virus in 2006/2007. In 2016/
2017, 11 reassortants were detected (Fig. 3), of which 7 were
common (Fig. 4 and Table 1). In 2014/2015, three reassortants
were detected in North America (10) and none elsewhere (3).
For the reassortment of gene segments from two influenza
viruses to occur, both viruses need to infect the same host cell at
the same time. Possible reasons for the high frequency of reas-
sortment in 2016/2017 may be related to the extent and timing of
the epidemic, the host range infected by H5N8 HPAI virus,
target tissues infected by H5N8 virus, and the ease with which
the H5N8 HPAI virus reassorts with other influenza viruses (e.g.,
due to special features of some gene segments). The extent of
the epidemic in wild birds was much greater in Europe in 2016/
2017 than in 2014/2015 and may explain the higher frequency of

reassortants in 2016/2017. Similarly, the fact that the 2014/2015
epidemic was greater in the United States than in Europe may
explain the occurrence of reassortants in the United States (10,
43). Based on estimated MRCAs, the epidemic in Europe in
2016/2017 (MRCA of most common reassortant 3: July) started
1 mo earlier than in 2014/2015 (MRCA for HA and NA: Au-
gust), so it may have coincided better with the peak of LPAI
virus infection in wild water birds in autumn (44), thereby in-
creasing the chance of reassortment between H5N8 HPAI virus
and LPAI virus. The likelihood of the two peaks coinciding de-
pends on how long it takes a virus to reach peak prevalence after
its appearance in a wild waterfowl population. Although the host
range of wild water birds infected with H5N8 HPAI virus in
Europe in 2016/2017 was larger than in 2014/2015, dabbling duck
species, particularly common teal and mallard, were found in-
fected with H5N8 HPAI virus in both epidemics (Table 3). These
latter species are considered to have the highest prevalence of
LPAI virus infection (45) and therefore, considered to be im-
portant “mixing vessels” between HPAI virus and LPAI virus.
Based on experimental infections of Pekin ducks, the H5N8
HPAI virus of 2016/2017 had greater tropism for the small

Table 2. Overview of spatiotemporal spread of reassortants of H5 HPAI viruses in the 2016/2017 epidemic from time of origin of MRCA
to 1 July 2017

No. Reassortant

Time of origin of MRCA

Country of origin of
MRCA

Host origin of new gene
segments

Subsequently detected spread of virus

Month in
2016

Phase of life
cycle* Europe†

Northern
Africa

Southern
Africa‡

South
Asia

East
Asia

1 CABAD8AA February M, W China Not relevant X X
3 AAAAA8AA July M, B Belarus to

Kazakhstan
Wild bird X

5 DCBAE5AA July M, B Russia Wild bird X X
2 CAEAF8AA August M Azerbaijan to China Not determined X X X X
6 BABAB8AA September M, W Hungary to Ukraine Wild bird and poultry X
4 AADAA8AA October M, W Germany to Russia§ Wild bird X
7 BDBAB8AA November M, W Poland to Ukraine Wild bird X

B, breeding; M, migration; W, wintering; X, virus detected.
*Phase of life cycle of long-distance migratory birds breeding in Siberia.
†Ural Mountains taken as geographical border between Europe and Asia.
‡South border of Sahara taken as geographical border between northern and southern Africa.
§Kaliningrad.

Table 3. Wild bird species in which H5N8 HPAI virus was detected in dead birds found in the
European Union between 1 October 2016 and 5 July 2017 and reported to the OIE and in which at
least some populations migrate long distance

Species migrating long distance*
No. of H5N8-positive

dead birds
Estimated

population size Ref.Common name Scientific name

Mute swan† C. olor 1,217 495,000 34, p. 46
Tufted duck Aythya fuligula 190 1,800,000 34, p. 187
Whooper swan Cygnus cygnus 149 57,000 34, p. 51
Eurasian wigeon† M. penelope 89 1,810,000 34, p. 117
Mallard† Anas platyrhynchos 55 3,250,000 34, p. 132
Greater white-fronted goose Anser albifrons 15 1,365,000 34, p. 66
Common pochard Aythya ferina 10 1,700,000 34, p. 177
Common teal† A. crecca 7 2,960,000 34, p. 123
Common shelduck Tadorna tadorna 2 155,000 34, p. 101
Lesser white-fronted goose Anser erythropus 2 63,000 34, p. 70
Red-crested pochard Netta rufina 2 250,000 34, p. 171
Bewick’s swan Cygnus bewickii 2 17,000 34, p. 55
Common goldeneye Bucephala clangula 1 420,000 34, p. 217
Common fieldfare Turdus pilaris 1 42,850,000 35

*Here defined as wintering in the European Union and breeding at least beyond longitude 60°E, at the level of the
Ural Mountains.
†Those species that were also detected positive for H5N8 in 2014/2015 in Europe.
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intestine than that of 2014/2015 (40) and therefore, may have
had a greater chance for reassortment with LPAI viruses, which
mainly target the intestine in wild water birds (46). Even before
2016/2017, there was clear evidence that—unlike other clades of
H5 HPAI virus, which are mostly found as H5N1—the H5 HPAI
segment of the clade 2.3.4.4 viruses reassorted frequently, ac-
quiring NA segments including N5, N2, N8, and N6 (3, 13). This
indicates that the gene constellation of clade 2.3.4.4 H5 HPAI
viruses is promiscuous, allowing efficient reassortment with gene
segments from cocirculating LPAI viruses (3, 20). The range of
wild bird species in which H5N8 HPAI virus was detected, the
important role of wild birds as donors of new gene segments for
reassortant viruses, and the inferred timing and location of reas-
sortment events provide valuable support for continued surveil-
lance of avian influenza in wild bird populations and provide
information to improve the efficiency of such surveillance.
The origin of gene segments of the reassortant viruses was not

only wild birds but also poultry. Specifically, gene segment 6 of
reassortant 1 and gene segments 1, 2, 5, and 6 of reassortant 6
were inferred to originate from domestic anseriforms (Table 2).
Transfer of LPAI virus gene segments between domestic
anseriforms and wild birds has been observed before in Asia
(47). Based on phylogenetic analysis, most of the reassortants of
HPAI virus H5 clade 2.3.4.4 observed between 2006 and 2012
were generated in domestic anseriforms and particularly, do-
mestic anseriforms in eastern Asia (China) (3). However, this
spillback from domestic birds to wild birds has also been ob-
served in Europe and implies that poultry populations in Europe
form an additional source of viral genetic material for reassort-
ment of circulating H5 HPAI clade 2.3.4.4 viruses.
An intriguing aspect of the 2016/2017 reassortants is the lack

of reassortment involving gene segments 7 (M) and 8 (NS) in the
time span of this study. Among the seven most common reas-
sortants, segments 1, 2, 3, and 5 had three to five reassortments,
segment 6 had only two reassortments, and segments 7 and 8 had
no reassortments at all (Table 1). We did not consider segment 4
(HA) because the selection of genome sequences for analysis
was based on segment 4 belonging to H5 HPAI virus clade
2.3.4.4, so any reassortments of this gene segment would auto-
matically have been discounted. In the three reassortants de-
tected during the 2014/2015 epidemic in North America (39),
reassortment was observed for gene segments 2, 3, and 6 but not
for gene segments 1, 5, and 7. Therefore, the lack of reassort-
ment of gene segment 7 (M1) is common to both the 2014/2015
and the 2016/2017 reassortants. It appears that some gene seg-
ments (1 to 3, 5, 6) of the H5 HPAI 2.3.4.4 virus clade can be
switched without noticeable loss in fitness, while switching was
not observed for other segments (7, perhaps 8). It remains to be
determined whether 1) selective epistasis occurs between seg-
ments 4 and 7, such that particular combinations are especially
fit, or 2) there is some mechanistic reason why reassortment
events do not occur between segments 4 and 7; for example, the
viral RNA packaging signals in the segments might play a role
(48, 49). Further factors have to be identified by future studies
using, for example, reverse genetics and in vivo experiments with
the different reassortants. Caveats in a global phylogeographic
analysis such as this one are that the dataset depends on the
availability of sequence information and that sampling of poultry
and wild birds may be biased and differ per country. However,
the large amount of data collected and analyzed with different
techniques likely helped to reduce any study-related bias.
In conclusion, the 2016/2017 H5NX HPAI virus has caused

the largest known HPAI epidemic in Europe, with high mortality
in both poultry and wild birds, involvement of at least 14 long-
distance migratory bird species, and the generation of an un-
usually high number of reassortant viruses. Further studies are
required 1) to understand the relationship between level of vir-
ulence of the 2016/2017 H5NX HPAI virus and its fitness in wild

bird populations (e.g., by comparative experimental infections);
2) to determine the overlap in breeding areas in Siberia among
long-distance migratory birds wintering in Africa, Europe, Asia,
and North America (e.g., through satellite telemetry); and 3) to
determine the viral, host-related, and environmental circum-
stances that favor the generation of reassortants between H5NX
HPAI and LPAI viruses (e.g., by experimental exchange of gene
segments among genetically engineered viruses). This knowl-
edge is critical to evaluate the risk of evolution of an H5NX
HPAI virus that is able to be maintained in wild water bird
populations in absence of its presence in poultry. Should H5NX
HPAI become established in wild water bird populations,
eradication will no longer be possible, and this disease will
continue to pose a global risk for animal and human health in
the foreseeable future.

Materials and Methods
Sequence Data. Sequence data obtained from field isolates collected from
domestic and wild birds were contributed by the partners from 25 member
countries in the Global Consortium for H5N8 Avian Influenza Viruses. The
data were shared via the EpiFlu database from the Global Initiative on
Sharing All Influenza Data (GISAID) and the International Nucleotide Se-
quence Database Collaboration (INSDC). Additional viral sequences from
both GISAID and INSDC were also used, including other clade 2.3.4.4 se-
quences and non-H5 sequences. Data used included viral sequence data, host
species, and date and location of sampling. Where specific location or in-
formation on province or city level was not uploaded, it was extracted by
matching country and outbreak date with entries from official sources. The
data used for analysis consisted of 1) 240 isolates (232 complete genomes, 8
partial genomes) from 25 different countries during the period May 2016 to
July 2017, including viruses of the subtypes H5N8 (218), H5N5 (21), and H5N6
(1), from domestic (93) and wild birds (147) (Figs. 1 and 2 and SI Appendix,
Table S3) and 2) an expanded dataset of 251 to 279 sequences per internal
segment, 284 sequences for segment 4 (H5), 236 sequences for segment 6
(N8), and 20 sequences for segment 6 (N5) (SI Appendix, Table S4). The data
providers are summarized and acknowledged (SI Appendix, Table S5). The
additional sequences were chosen from Basic Local Alignment Search Tool
(BLAST) analyses to be genetically close to the different groups (labeled
groups A to G) (Figs. 1 and 2) but from earlier time points and not restricted
to any particular subtype. Specifically, BLAST analyses were performed on an
early representative of each group in each segment, retrieving up to 500
sequences from GISAID. Neighbor-joining trees were created for all of the
unique retrieved sequences and original dataset, and sequences within the
larger clades encompassing the clades of the original data and also including
sequences from earlier time points were selected. The earliest sequences in
the extended datasets were from 2014 for segments 1, 5, 6-N8, 7, and 8;
autumn 2011 for segments 2 and 3; autumn 2009 for segment 4; and spring
2015 for segment 6-N5.

Phylogenetic Analysis Using BEAST.
Time-scaled trees. Bayesian time-resolved phylogenetic trees were estimated
using BEAST 1.10.4 (22) using the SRD06 nucleotide substitution model with
a four-category gamma distribution model of site-specific rate variation and
separate site partitions for codon positions 1 + 2 vs. position 3 with HKY
(Hasegawa–Kishino–Yano) substitution models on each, an uncorrelated
relaxed clock with a log-normal distribution, and two coalescent tree priors
[constant population size and the flexible sky grid tree prior (50)].

For dataset 1, at least two independent Markov Chain Monte Carlo
(MCMC) chains were run for each internal segment, for segment 4-H5, and for
segment 6-N8. Each chain consisted of 200,000,000 steps and was sampled
every 20,000 steps, and the first 10% of samples were discarded as burn-in.
Segment N5 was run with only 10,000,000 steps, with sampling at every
1,000 steps, because of its much smaller number of sequences. The MCMC
settings were chosen to achieve a post burn-in effective sample size of at
least 200, which is the accepted standard in BEAST analyses. A post burn-in
sample of 1,000 posterior trees was obtained for each segment (or N sub-
type) in the dataset.
Time-scaled trees with group labels. Segments 1, 2, 3, and 5 were divided into
well-supported monophyletic distinct groups with labels A to G, with A
having the greatest number of sequences; segment 6 (the NA gene) was
divided into NA subtypes and was thus N8 or N5. Genetic diversity in seg-
ments 4, 7, and 8 was limited, and a distinct clade structure similar to seg-
ments 1, 2, 3, and 5 was not present, so these were placed in only one group
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(labeled A). The average genetic pairwise genetic distances within groups
were 0.003 to 0.006 for segments 1, 2, 3, and 5; 0.006 to 0.008 for segments
4, 6 (N8), 7, and 8; and 0.014 for segment 6 (N5). The latter was due to a
single more distant sequence (Fig. 2). The average pairwise genetic distances
between groups were larger than 0.025 in all cases.

Therefore, the annotation for each reassortant consisted of a letter for
each of the gene segments 1 to 5, 7, and 8 and a numeral for gene segment 6
(e.g., CABAD8AA). These groups and subtypes were mapped as discrete traits
onto the posterior sample of time-scaled trees of all segments, and the
number of label changes was estimated in BEAST [using a Markov Jumps
model (51) with an asymmetric transition rate matrices] to indicate the rel-
ative frequency of reassortment of the internal segments.
Time-scaled trees with spatial coordinates. The expanded dataset 2 was split into
groups on a per-segment basis, generating several smaller datasets (SI Ap-
pendix, Table S6). Time-scaled trees of these groups were inferred with
BEAST using the SRD06 model, a relaxed log-normal clock model, and con-
stant population size models. Groups that were adjacent to each other in a
neighbor-joining tree of the expanded dataset and that shared a common
outgroup in the expanded dataset were combined for the purposes of in-
ferring BEAST trees (e.g., segment 1 groups A and C, segment 3 groups A
and B). In this way, closely related sequences from the autumn and winter
2016/2017 epidemics along with other previously isolated and closely related
sequences not from those epidemics were analyzed together with the result
that analyses of diverse groups and trees containing long branches were
avoided. For each dataset, the post burn-in independent BEAST MCMC
chains were combined and then down sampled to create posterior tree sets
containing 1,000 trees. As before, MCMC settings were chosen to achieve a
post burn-in effective sample size of at least 200.

Phylogeographic continuous trait spatial diffusion models were inferred
for each of the datasets using the 1,000 posterior trees as an empirical tree
distribution andMCMC chain lengths of 1,100,000 steps, sampling every 1,000
steps. Different diffusion models were tested using the N8 data, and the
homogeneous Brownian motion model with latitude and longitude of the
sampling locations was selected for use with all. In cases where exactly the
same latitude and longitude for isolates were reported, a small random jitter
of mean 0.001° was applied. A video illustrating the temporal and spatial
spread across Eurasia of seven main H5 reassortant viruses is shown in
Movie S1.
Origin of reassortments estimation. Summary maximum clade credibility (MCC)
trees for the post burn-in posterior time-scaled trees with spatial location
reconstructions were created using TreeAnnotator. The MCC trees contained
estimates of the time and location (and the 95% highest posterior density
CIs of these values) at each internal (ancestral) node. Estimates of the origin
of a reassortant genotype were made for each of its constituent segments by
finding the MRCA nodes for all of the sequences of each reassortant code
(e.g., AAAAA8AA) in each of the corresponding MCC trees and reporting the
time and location of these identified internal tree nodes. The time and lo-
cation of the immediate ancestors (MRCGAs) of these identified MRCAs are
also reported in order to indicate the overall direction.
Host species origin of reassortments estimation. In addition to the time-scaled
trees with spatial coordinates, the inferred host type of the MRCA and the
MRCGA nodes were also estimated by using a five-state structured coales-
cent approximation model [MASCOT (52)] for host species: domestic
anseriform birds (Dom-ans), domestic galliform birds (Dom-gal), long-range
migratory wild anseriform birds (Wild-ans-long), other wild anseriform birds
(Wild-ans), and other wild birds (Wild-other) (SI Appendix, Table S7). The
MRCGA and MRCA host categories were extracted in order to indicate
whether a gene segment was established in a particular host category or
whether it was switching between host categories. Those species that have
both long-distance and short-distance/resident populations—mallard, tufted
duck, mute swan, and common goldeneye were placed in the “Wild-ans”

category to be conservative. Additionally, the one peacock sample was
classified with the “Wild-other” birds. Results from these models are
reported as probabilities for each host-type state at the node of interest.
These structured coalescent approximate models are less susceptible to
sampling bias than the simpler discrete trait models and are considered to be
appropriate for analyzing cross-species transmission in avian influenza (52).

Phylogenetic Analysis Using IRIS. For IRIS, full-genome sequences were re-
trieved from the Influenza Research database (https://www.fludb.org/) and
the EpiFlu database (https://www.gisaid.org/) (SI Appendix, Table S8). We
acknowledge the laboratories for providing sequence information via EpiFlu
(SI Appendix, Table S5). Full-genome sequences of influenza A H5 clade
2.3.4.4 viruses were manually curated and annotated using Geneious v11.1.5
(Biomatters). The sequences were sorted into segments, and segment-based
multiple alignment using fast Fourier transform (53) was performed. Sub-
sequently, maximum-likelihood phylogenetic analyses were performed us-
ing Randomized Axelerated Maximum Likelihood (54), including 1,000
bootstrap replicates. SplitsTree4 (55) was used to generate a supernetwork
(23) from the resulting trees. Supernetworks are calculated as consensus split
networks obtained as a combination of all eight generated segment-sorted
maximum-likelihood trees. They represent and visualize the phylogenetic
relationships of each influenza virus where taxa are represented by nodes
and their relationship as edges. Data were filtered to omit sequences with a
collection date after 1 July 2017.

Maps. Maps were created with ArcGIS Desktop 10.5.1 (ESRI) using the loca-
tions recorded in the GISAID database and background layers from ArcGIS
Online (https://www.arcgis.com/index.html) and the Gridded Livestock of the
World (GLW 3) (56) to show date and location of sampling of the virus se-
quences used for the above phylogenetic analysis by IRIS (SI Appendix, Table
S8). Birds sampled at the same location were manually shifted slightly to
avoid completely overlapping shapes in the map display.

Annual Migration Patterns of Wild Birds Involved in H5NX HPAI Epidemics. Our
phylogenetic analyses indicate that migrating wild birds carried HPAI virus
H5NX to Europe in 2016/2017. Therefore, we first determined which wild bird
species had been reported positive for H5NX virus in the European Union
between 1 October 2016 and 5 July 2017, based on information extracted
from the World Organization for Animal Health (57) and summarized by the
European Food Safety Authority (18). Subsequently, we selected those spe-
cies that had populations that migrated long distances (i.e., wintering in the
European Union and breeding beyond at least longitude 60°E). We also
reported estimates for the size of these populations (Table 3).
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