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Our purpose was to assess the performance of full-dose (FD) PET

image synthesis in both image and sinogram space from low-dose
(LD) PET images and sinograms without sacrificing diagnostic

quality using deep learning techniques. Methods: Clinical brain

PET/CT studies of 140 patients were retrospectively used for LD-
to-FD PET conversion. Five percent of the events were randomly

selected from the FD list-mode PET data to simulate a realistic LD

acquisition. A modified 3-dimensional U-Net model was imple-

mented to predict FD sinograms in the projection space (PSS)
and FD images in image space (PIS) from their corresponding LD

sinograms and images, respectively. The quality of the predicted

PET images was assessed by 2 nuclear medicine specialists using

a 5-point grading scheme. Quantitative analysis using established
metrics including the peak signal-to-noise ratio (PSNR), structural

similarity index metric (SSIM), regionwise SUV bias, and first-,

second- and high-order texture radiomic features in 83 brain regions

for the test and evaluation datasets was also performed. Results: All
PSS images were scored 4 or higher (good to excellent) by the

nuclear medicine specialists. PSNR and SSIM values of 0.96 ±
0.03 and 0.97 ± 0.02, respectively, were obtained for PIS, and
values of 31.70 ± 0.75 and 37.30 ± 0.71, respectively, were

obtained for PSS. The average SUV bias calculated over all brain

regions was 0.24% ± 0.96% and 1.05% ± 1.44% for PSS and PIS,

respectively. The Bland–Altman plots reported the lowest SUV bi-
as (0.02) and variance (95% confidence interval, −0.92 to 10.84)

for PSS, compared with the reference FD images. The relative

error of the homogeneity radiomic feature belonging to the gray-level

cooccurrence matrix category was −1.07 ± 1.77 and 0.28 ± 1.4 for
PIS and PSS, respectively. Conclusion: The qualitative assessment

and quantitative analysis demonstrated that the FD PET PSS led to

superior performance, resulting in higher image quality and lower SUV
bias and variance than for FD PET PIS.
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Molecular neuroimaging using PET is ideally suited for mon-
itoring cell and molecular events early in the course of a neurodegen-
erative disease and during pharmacologic therapy (1). PET is a
molecular imaging technique that produces a 3-dimensional (3D)
radiotracer distribution map representing properties of biologic tis-
sues, such as metabolic activity or receptor availability. PET images
suffer from a relatively high noise level dictated by the Poisson nature
of annihilation photon emission and detection. Apart from the tech-
nical aspects, PET image quality depends on the amount of injected
radiotracer or acquisition time, which are proportional to the statistics
of the detected events. The main argument in favor of a reduction of
the injected radiotracer’s activity is linked to the potential risks of
ionizing radiation (2). Albeit low, this increase in risk motivates pre-
caution, particularly in pediatric patients, healthy volunteers, or in the
case of multiple scanning for follow-up or monitoring of the response
to treatment using different tracers. Therefore, there has always been
a desire to moderate the injected activity to minimize the potential
health hazards. A reduced acquisition time could have a positive
impact on the patient’s comfort and on the scanner’s throughput.
However, dose and time reduction can adversely affect image
quality, inevitably leading to a lower signal-to-noise ratio (SNR)
and thus hampering the quantitative and diagnostic value of PET
imaging.
To address this issue, several approaches have been proposed in

the literature to produce standard-dose and full-dose (FD) PET im-
ages from corresponding low-dose (LD) and low-count images
(3). Formerly, iterative reconstruction algorithms with accurate
statistical modeling (4) and postprocessing or filtering (5,6) were
the 2 common methods. However, these approaches tend to re-
duced spatial resolution and quantitative accuracy by producing
overly smooth structures (7,8). In the past few years, deep learning
algorithms have witnessed notable growth in the fields of com-
puter vision and medical image analysis (9,10). Contrary to other
denoising approaches, which are applied directly on LD PET im-
ages, deep learning algorithms are capable of learning a nonlinear
transformation to predict standard-dose images from LD inputs. In
particular, convolutional neural network (CNN) models have dem-
onstrated outstanding performance in cross-modality image synthe-
sis, such as MRI-to-CT conversion (11,12), joint PET attenuation
and scatter correction in image space (PIS) (13,14), and synthesis of
FD PET images from LD images (15–21). Xiang et al. suggested a
deep auto-context CNN architecture that estimates FD PET images
on the basis of local patches in LD PET images (19). A major
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limitation of this work is that 2-dimensional (2D) transaxial slices
were extracted from PET images and used for 2D training of the
CNN model. Another group claimed that reliable FD PET could be
estimated from a 200th LD image using a residual U-Net architec-
ture (22). Other work from the same group used 2D slices of LD
18F-florbetaben PET images along with various MR sequences, such
as T1-weighted, T2-weighted, and diffusion-weighted imaging
(DWI), to predict FD images using a U-Net architecture (15).
Häggström et al. (23) developed a deep encoder–decoder network
for direct reconstruction of PET images from sinograms, whereas
Hong et al. (24) proposed a data-driven, single-image superresolu-
tion technique for sinograms using a deep residual CNN to improve
the spatial resolution and noise properties of PET.
A more recent work reported on the use of a 3D U-Net along

with anatomic information from coregistered MRI to improve the
SNR of PETwithout using higher-SNR PET images in the training

dataset (25). Cui et al. (26) presented an unsupervised PET-denoising
model that was fed by the patient’s prior high-quality images and
used the noisy PET image itself as the training label. As such, this
approach does not need any paired dataset for training. Furthermore,
Lu et al. (27) investigated the effect of different network architectures
and other parameters pertaining to both noise reduction and quan-
titative performance. The optimized fully 3D U-Net architecture is
capable of reducing the noise in LD PET images while minimizing
the quantification bias for lung nodule characterization.
Previous studies relied on deep learning–based approaches to

establish an end-to-end pipeline to synthesize FD PET image space
(15–21). As such, these approaches are optimized for a specific
protocol, such as an image reconstruction algorithm or a postrecon-
struction filter. Therefore, adoption of a different reconstruction
technique requires retraining of the CNN. Conversely, the prediction
of FD PET images in projection space allows selection of any re-
construction or postreconstruction filter without the need for retrain-
ing the CNN. Furthermore, PSS provides a more comprehensive
data representation than PIS, effectively containing detailed infor-
mation about count statistics and spatial and temporal distributions.
To take advantage of this fact, a 3D U-Net was trained to predict FD
sinograms from LD sinograms in an end-to-end fashion. Thereafter,
the synthesized sinogram can be reconstructed using any reconstruc-
tion algorithm. The results achieved using the proposed framework are
compared with the PIS implementation using the same 3D U-Net
architecture. LD PET imaging using the proposed approach would
be beneficial in pediatric and adolescent clinical studies as well as
in research protocols requiring serial studies.

MATERIALS AND METHODS

PET/CT Data Acquisition

The present study was conducted on 18F-FDG brain PET/CT stud-

ies collected between June 2017 and May 2019 at Geneva University

TABLE 1
Demographics of Patients Included in This Study

Demographic Training Test Validation

Number 100 20 20

Sex (n)

Male 45 11 8

Female 55 9 12

Age, mean ± SD (y) 73 ± 8 68 ± 18 73 ± 4.5

Weight, mean ± SD (kg) 70 ± 13 67 ± 12 71 ± 11

Indication/diagnosis: cognitive symptoms of possible neurode-

generative etiology.

FIGURE 1. Schematic diagram of modified 3D U-net, consisting of encoder–decoder CNN. Tensors are indicated by boxes, whereas arrows

denote computational operations. Number of channels is indicated beneath each box in bottom left panel. Input and output of this network are LD

and FD image PET pairs either in image or sinogram space. BN 5 batch normalization; ReLU 5 rectified linear unit activation.
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Hospital. The database consisted of 140 patients presenting with cog-

nitive symptoms of possible neurodegenerative disease (73 6 8 y):
66 men and 74 women (736 9 y and 726 11 y, respectively). Detailed

demographic information on the patients is summarized in Table 1. The
study protocol was approved by the institution’s ethics committee, and

all patients gave written informed content. The PET/CT acquisitions
were performed on a Biograph mCT scanner (Siemens Healthcare)

about 35 min after injection. An LD CT scan (120 kVp, 20 mAs)
was performed for PET attenuation correction. The patients under-

went a 20-min brain PET/CT scan after injection of 205 6 10 MBq
of 18F-FDG. PET data were acquired in list-mode format and recon-

structed using e7 tool (an offline reconstruction toolkit provided by Sie-
mens Healthcare) to produce FD PET sinograms and images.

Subsequently, a subset of PET data containing 5% of the total events
was extracted randomly from the list-mode data to produce LD sinograms

(400 · 168 · 621 matrix) using a validated code (28). Both FD and LD
PET images were reconstructed into a 200 · 200 · 109 image matrix

(2.03 · 2.03 · 2.2 mm voxel size) using an ordinary Poisson ordered-
subsets expectation-maximization (OP-OSEM) algorithm (5 iterations, 21

subsets). The PET images underwent postreconstruction gaussian filtering

(2 mm in full width at half maximum), similar to the clinical protocol.

U-Net Architecture

A modified 3D U-Net based on a model proposed previously (29)
was developed to predict FD images (PIS) and sinograms (PSS) from

their corresponding LD images and sinograms. Figure 1 shows the
structure of the modified 3D U-Net, which consists of an encoder–

decoder module. In the encoder part, each layer contains two 3D

convolutions (30) followed by a rectified linear unit (ReLu) activation
function and a 3D maxpooling with a stride size of 2. In the decoder

part, each layer consists of 3D up-sampling with a stride of 2 followed
by two 3D convolutions and a ReLu. The size of all convolutional

kernels is 3 · 3 · 3 voxels in each convolutional layer. The shortcut
connections between the outputs of each layer in the encoder network

and the corresponding layer in the decoder network aimed at addressing
the gradient vanishing problem that occurs in complex deep learning

models. In CNN, the bottleneck is a layer that contains fewer neurons
than its neighboring layers (31). To avoid this issue, the number of

channels was doubled before maxpooling and before each ReLu func-
tion. The network input is either a 101 · 101 · 71 matrix (after

cropping) in PIS or a 400 · 168 · 62 matrix in PSS.
The modified 3D U-net architecture also includes a series of pooling

options, dilated convolutional layers, and 16 convolutional layers. The
Adam optimizer with a learning rate of 0.001 was used to minimize the

loss function. A dataset of paired LD and FD images and sinograms of
100 subjects were used to train the network using the adaptive moment

estimation implemented in the Keras open-source package (32,33), which
computes adaptive learning rates for each parameter and saves an expo-

nentially decaying average of past gradients using Equations 1 and 2:

Lt 5 r1Lt21 1 ð1 2 r1Þgt Eq. 1

Vt 5 r2Vt21 1 ð1 2 r2Þg2t ; Eq. 2

where Lt and Vt indicate the estimation of the mean and the uncentered
variance of the gradients, respectively; gt denotes the gradient at a

subsequent time step t; and r1 and r2 are exponential decay rates
with r1, r2 2 [0, 1].

The model was implemented on NVIDIA 2080Ti GPU with 8 GB
of memory running under a Microsoft Windows 10 operating system.

The training was performed using mini-batch size of 5 for 250 epochs.
Data Augmentation. To increase the size of the training dataset while

avoiding overfitting, 3 types of data augmentation methods were

implemented. These included rotations, transformations, and zooming,

which were randomly applied to the training dataset. Hence, the model
was trained using the 300 augmented images along with the 100 original

images. Applying such a rigid deformation to the training dataset
assisted the network to learn features that are invariant to these

transformations (34).
Training, Validation, and Testing. The training and hyperparameter

fine tuning of the model were performed on 100 patients. Twenty

TABLE 2
Summary of 28 Radiomic Features Belonging to 6 Main

Categories Estimated for 83 Brain Regions

Radiomic feature
category Radiomic feature

Conventional indices SUVmean

SUVSD

SUVmax

SUV Q1

SUV Q2

SUV Q3

TLG (mL)

First-order features:

histogram

Kurtosis

Entropy_log10

Entropy_log2

First-order features:

shape

SHAPE_volume (mL)

SHAPE_volume (no. of voxels)

Gray-level zone
length matrix

Short-zone emphasis (SZE)

Long-zone emphasis (LZE)

Short-zone low gray-level

emphasis (SZLGE)

Short-zone high gray-level

emphasis (SZHGLE)

Long-zone low gray-level

emphasis (LZLGLE)

Long-zone high gray-level

emphasis (LZHGLE)

Zone percentage (ZP)

Gray-level run

length matrix

Short-run emphasis (SRE)

Long-run emphasis (LRE)

Short-run low gray-level

emphasis (SRLGLE)

Short-run high gray-level

emphasis (SRHGLE)

Run length nonuniformity (RLNU)

Run percentage (RP)

Gray-level
cooccurrence

matrix

Homogeneity

Energy

Dissimilarity
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patients were used for model evaluation, whereas a separate unseen

dataset of 20 patients served as the test dataset. The mean squared
error loss function was used for the training of the model.

Evaluation Strategy

Clinical Qualitative Assessment. The PSS and PIS FD PET images

along with their corresponding reference FD and LD PET images were
anonymized and randomly enumerated for qualitative evaluation by 2

nuclear medicine physicians. In total, 80 PET images were evaluated,
including 20 reference FD, 20 LD, 20 PIS, and 20 PSS PET images

belonging to the test dataset. The quality of PET images was assessed
using a 5-point grading scheme, where 1 indicates uninterpretable; 2,

poor; 3, adequate; 4, good; and 5, excellent (Supplemental Fig. 1;
supplemental materials are available at http://jnm.snmjournals.org).

Quantitative Analysis. The accuracy of the predicted FD images
from LD PET data were evaluated using 3 quantitative metrics, includ-

ing the root mean squared error (RMSE), peak signal-to-noise ratio
(PSNR), and structural similarity index metrics (SSIM) (Equations 3, 4,

and 5, respectively). Moreover, these metrics were also calculated for
the LD images to provide insight about the noise levels and significant

signal in the LD images.
RMSEðX; YÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+L

j 5 1ðX2YÞ2
L

s
Eq. 3

PSNRðX;YÞ 5 20 · log

�
MaxðYÞffiffiffiffiffiffiffiffiffiffiffi
MSEðX;YÞ

p
�

10 Eq. 4

SSIMðX;YÞ 5
�
2mxmy 1 c1

��
2sxy 1 c2

��
m2

x 1m2
y 1 c1

��
s2
x 1s2

y 1 c2

� Eq. 5

In Equation 3, L is the total number of voxels in the head region, X is
the reference image (FD), and Y is the predicted FD image. In Equa-

tion 4, MaxðYÞ indicates the maximum intensity value of X or Y,
whereas MSE is the mean squared error. mx and my in Equation 5

denote the mean value of the images X and Y, respectively. sxy indi-
cates the covariance of sx and sy, which in turn represent the

variances of X and Y images, respectively. The constant parameters
c1 and c2 (c1 5 0:01 and c2 5 0:02Þ were used to avoid a division

by very small numbers.

FIGURE 3. Result of image quality assessment by 2 nuclear medicine

specialists for LD, PIS, PSS, and FD PET images. Mean scores are

presented on top of bar plots. 1 5 uninterpretable; 2 5 poor; 3 5
adequate; 4 5 good; 5 5 excellent.

TABLE 3
Comparison of Results Obtained from Analysis of Image

Quality in LD PET Images and Predicted Images in PIS and
PSS for Validation Dataset

Dataset SSIM PSNR RMSE

Validation

PIS 0.97 ± 0.02 34.60 ± 1.08 0.18 ± 0.02

PSS 0.98 ± 0.01 38.25 ± 0.66 0.15 ± 0.03

LD 0.84 ± 0.04 29.00 ± 0.92 0.40 ± 0.03

P (PIS vs. PSS) 0.022 0.019 0.016

P (PIS vs. LD) 0.037 0.021 0.036

P (PSS vs. LD) 0.042 0.025 0.030

Test

PIS 0.96 ± 0.03 31.70 ± 0.75 0.18 ± 0.04

PSS 0.97 ± 0.02 37.30 ± 0.71 0.17 ± 0.01

LD 0.82 ± 0.15 29.92 ± 0.71 0.41 ± 0.04

P (PIS vs. PSS) 0.031 0.024 0.018

P (PIS vs. LD) 0.040 0.036 0.041

P (PSS vs. LD) 0.041 0.031 0.031

FIGURE 2. Representative 18F-FDG brain PET images of 65-y-old

male patient. Reference FD (A) and corresponding LD (B) and predicted

FD images in image (C) and sinogram space (D) are presented. SUV bias

maps for LD (E), PIS (F), and PSS (G) PET images with respect to ref-

erence FD PET image are also shown.
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Region-based analysis was also performed to assess the agreement of
the tracer uptake and 28 radiomic features between predicted and

ground-truth images. Using the PMOD medical image analysis software
(PMOD Technologies LLC) and the Hammers N30R83 brain atlas, 83

brain regions were delineated on the ground-truth FD PET images. Then,
the delineated volume regions were mapped to LD, PIS, and PSS PET

images to quantify 28 radiometric features using the LIFEx analysis tool
(35). Moreover, the regionwise SUV bias and SD were calculated for the

83 brain regions on the predicted as well as LD PET images, with the FD
PET images serving as a reference. A joint histogram analysis was also

performed to depict the voxelwise correlation of the activity concentra-
tion between PIS and PSS and reference FD PET images.

Overall, 28 radiomic features were extracted for each brain region,
including 7 conventional indices, 5 first-order features, 7 gray-level

zone length matrix features, 6 gray-level run length matrix features,

and 3 gray level cooccurrence matrix features. The list of these
radiomic features is shown in Table 2. The relative error (RE%) was

also calculated for the radiomic features using Equation 6.

RE 5
ðPIS; PSSÞf 2 FDf

FDf
· 100%: Eq. 6

In Equation 6, f denotes the value of a specific radiomic feature calculated

in a brain region. The MedCalc software (36) was used for the calculation
of the pairwise t test for statistical analysis of RMSE, SSIM, and PSNR

between LD, PSS, PIS, and reference FD PET images. The significance
level was set at a P value of less than 0.05 for all comparisons.

RESULTS

The predicted images in both PIS and PSS exhibited notable en-
hancement in image quality compared with LD images, providing
almost similar appearance with respect to reference FD PET im-
ages. Figure 2 displays representative transverse, coronal, and
sagittal views showing reference FD, LD, PIS, and PSS PET images

along with their corresponding bias maps. The visual inspection
revealed that the images derived from training in the PSS better
reflected the underlying 18F-FDG uptake patterns and anatomy than
those obtained from implementation in PIS. The image quality
scores assigned by the 2 physicians to FD, LD, PIS, and PSS images
are shown in Figure 3. The mean scores for each group are indicated
at the top of each bar. The PIS images were scored as poor (score of
2) or better. The FD and PSS images exhibited comparable quality,
with scores of 4.9 and 4.55 (good) or higher, respectively.
Table 3 summarizes the PSNR, SSIM, and RMSE calculated

separately on the validation and test datasets for PIS, PSS, and LD
PET images. Overall, the predicted images in PSS showed im-
proved image quality, noise properties, and quantitative accuracy
(Table 4), with statistically significant differences with respect to
the implementation in PIS.
Figure 4 illustrates linear regression plots depicting the corre-

lation between tracer uptake for LD, PIS, and PSS with respect to
FD. The scatter and linear regression plots showed an increased
correlation between PSS and FD (R2 5 0.99, RMSE 5 0.28)
compared with PIS (R2 5 0.98, RMSE 5 0.33). A relatively
higher RMSE (0.42) was obtained for LD PET images.
The Bland–Altman plots, in which each data point reflects a brain

region, confirmed the results obtained from joint histogram analysis,
with the lowest SUV bias (0.02) and smallest SUV variance (95%
confidence interval,20.92 to10.84) being observed for PSS images
(Fig. 5). Though the SUV bias is extremely low for LD images,
increased variance compared with FD images was observed (95%
confidence interval, 22 to 12), reflecting their poor image quality.
Figure 6 compares the deep learning predicted images (PIS and

PSS) and images reconstructed from the LD sinogram using 4
state-of-the-art iterative reconstruction methods, including OSEM,
OSEM1 TOF, OSEM1 PSF, and OSEM1 TOF1 PSF. The FD
sinogram was also reconstructed using OSEM and OSEM1 TOF1
PSF as a reference.
Supplemental Figure 2 depicts the regionwise quantitative

accuracy of the tracer uptake for LD, PSS, and PIS images. The
SD of tracer uptake in all brain regions (Supplemental Fig. 3), SUV
bias, and its SD within each brain region were calculated using the
Hammers N30R83 brain atlas to delineate the 83 brain regions. It
was shown that the SUV bias was below 4% for PSS, PIS, and LD
images, with LD exhibiting a relatively high SD compared with PIS
and PSS. The PSS approach led to the lowest absolute average SUV
bias (0.69% 6 0.7%) across all brain regions, whereas PIS and LD

FIGURE 4. Joint histogram analysis of LD PET images (left), predicted FD images in PSS (middle), and PIS (right) vs. FD PET images.

TABLE 4
Average and Absolute Average SUV Bias ± SD Calculated
Across 83 Brain Regions for LD, PIS, and PSS PET Images

Bias (%) PSS PIS LD

Average SUV 0.24 ± 0.96 1.05 ± 1.44 0.10 ± 1.47

Absolute average SUV 0.69 ± 0.70 1.35 ± 1.15 1.12 ± 0.93
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resulted in an absolute average SUV bias of 1.35% 6 1.15% and
1.12% 6 0.93%, respectively (Table 4). Even though a very low
SUV bias was observed in LD images, a remarkably increased SD
was seen, reflecting the high noise level in LD images. The sym-
metric left and right sides of the brain regions were merged, report-
ing a single value to reduce the number of regions. Hence, the 83
brain regions were reduced to 44 in Figure 6. The higher SD of
SUV bias was observed in LD images, reflecting the noisy nature of
low-count images. Lower SDs were observed in PSS than in PIS.
Supplemental Figures 4 and 5 show the relative error (%) of 28

radiomic features calculated for PSS and PIS images across the 83
brain regions for the 20 subjects in the test dataset. The mean RE of
SUVmean calculated across all brain regions was 0.24% 6 0.96% and
1.05% 6 1.44% for PSS and PIS, respectively. The largest SUVmean

bias between PSS and PIS images with respect to reference FD im-
ages was observed in the brain stem (4.04%), corpus callosum (3.8%),
pallidum (3.08%), caudate nucleus (1.6%), and superior frontal gyrus
(3.38%). SUVmax had a mean RE of 1.18% 6 1.5% and 0.81% 6
0.51% for PIS and PSS, respectively. The mean RE of the homoge-
neity radiomic feature belonging to the gray-level cooccurrence ma-
trix category was 21.07% 6 1.77% and 0.28% 6 1.4% for PIS and
PSS, respectively. Only 12 and 5 regions had an RE greater than 2%
for PIS and PSS, respectively. The middle frontal gyrus, medial orbital
gyrus, and posterior orbital gyrus displayed substantial variances for
dissimilarity radiomic feature of both PIS and PSS (3.68% vs. 4.89%,
21.7% vs. 2.91%, and 21.7% vs. 2.9%, respectively).

DISCUSSION

Table 5 summarizes the study design and outcomes of previous
works reporting on the prediction of FD PET images from LD

images based on deep learning approaches (15–21). In this work,

we aimed to generate diagnostic-quality 18F-FDG brain PET im-

ages from LD PET data in PIS or PSS corresponding to only just

5% of injected activity compared with the regular FD scan. The

neural network was trained using a 3D scheme, considering a

batch of image slices as input, since there is a dependence of tracer

distribution along the z-axis. Hence, by including the neighboring

slices, the model would be able to capture the underlying mor-

phologic information. In contrast to previous studies, we aimed to

train the network in PSS and PIS to evaluate the performance of

both approaches for estimation of FD PET images. It was shown

that the synthesized FD images predicted from LD sinograms had

a superior image quality and lower regional SUV bias and vari-

ance than either LD or FD images predicted in PIS. This finding

highlights the value of using raw data in PSS (400 · 168 · 621 5
41,731,200) rather than the data in PIS (101 · 101 · 71 5
724,271). The data representation in PIS is different from that in

PSS. Let us consider an ideal point source located at the center of

the field of view, which would appear as a hot spot in the corre-

sponding location in PIS. The same point source would be

reflected in PSS by numerous correlated lines of response, con-

veying different data representations of the same element. The

FIGURE 6. Comparison of images of 2 clinical 18F-FDG brain PET studies (1 and 2) reconstructed from 5% LD sinograms using 4 different

reconstruction algorithms, including OSEM (A), OSEM 1 TOF (B), OSEM 1 PSF (C), and OSEM 1 TOF 1 PSF (D) with deep learning–based

predicted images in PIS (E) and PSS (F). Reference FD images reconstructed using OSEM (G) and OSEM 1 TOF 1 PSF (H) are also shown.

FIGURE 5. Bland and Altman plots of SUV differences in 83 brain regions calculated for LD (left), PIS (middle), and PSS (right) PET images with

respect to reference FD PET images in test dataset. Solid blue and dashed lines denote mean and 95% confidence interval of SUV differences,

respectively.
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extended or detailed data available in PSS helped the convolu-
tional network to better decode the underlying features, thus
resulting in superior performance. The convolutional network
trained in PIS applied simplistic noise reduction, thus leading to
blurred, highly smoothed, and slightly biased FD images.
The qualitative assessment of image quality performed by nuclear

medicine specialists demonstrated the superior performance of the
PSS approach, showing close agreement between PSS and the
reference FD images. The RMSE calculated on LD and synthesized
PSS and PIS images were 0.41 6 0.03, 0.17 6 0.01, and 0.18 6
0.04, respectively, reflecting the effectiveness of model training in
PSS (P, 0.05). Moreover, the SSIM improved from 0.846 0.04 for
LD to 0.966 0.03 for PIS images and further to 0.976 0.02 for PSS
images. It would be enlightening to consider the resulting metrics in
conjunction with those obtained from LD images for better interpre-
tation of the extent of improvement achieved by the proposed meth-
ods. For instance, Ouyang et al. (21) claimed that only 1% of the
standard dose was used, yielding LD images with better or at least
comparable SSIM (0.86 vs. 0.84) and RMSE (0.2 vs. 0.4), compared
with ours with 5% of the FD. This finding might partly stem from
differences in sensitivity between PET scanners—differences that
directly affect the quality of the PET images. In this regard, previous
studies conducted on the GE Healthcare Signa PET/MRI device (1,2)
took advantage of its higher sensitivity (21cps/kBq) and better count-
rate performance characteristics (peak noise-equivalent count rate of
210 kcps at 17.5 kBq/cm3) than those of the Biograph mCT scanner
used in this study, a scanner that had a considerably lower detection
sensitivity (9.7 cps/kBq) and count-rate performance (noise-equivalent
count rate, 180 kcps at 28 kBq/cm3). Furthermore, their technique
relied on support from coregistered MR images, which could partly
explain why a 5% LD image in the present study and a 1% LD in
abovementioned studies resulted in a comparable RMSE (;0.15).
The quantitative analysis of 83 brain regions in terms of 28 radiomic

features showed high repeatability of the radiomic features for both PSS
and PIS techniques. From the 2,324 data points corresponding to the
number of regions multiplied by the number of radiomic features, only 3
and 9 data points for PIS and PSS, respectively, had an RE larger than
5%, with the remaining data points exhibiting no significant REs. The
quantitative evaluation showed less than 1%mean absolute error in most
brain regions for PSS. We involved both patients and healthy individuals
to offer a heterogeneous dataset. Neurologic abnormalities present in our
dataset included patients presenting with cognitive symptoms of possible
neurodegenerative disease. Since the dataset for the training contained
both patients and healthy individuals, data augmentation was applied to
avoid overfitting and to guarantee robust and effective training. The
Bland and Altman analysis showed reduced bias and variance in the
83 regional SUVmean values obtained from PSS and PIS PET images,
compared with LD images. The Bland and Altman plots further dem-
onstrated the superior performance of the PSS approach, resulting in
SUVs that are comparable to the original FD images.
In terms of computation time, training in PIS is less demanding than

training in PSS. Training in PIS took about 38 h, versus about 210 h in
PSS. Moreover, synthesis of a single PET image (after training) in PIS
takes about 100 s, versus the approximately 370 s required in PSS.
This difference stems from the increased data size and consequently
added processing burden for the PSS implementation.
One of the limitations of the present study was that during the

clinical evaluation, the LD images were relatively easily identified
by physicians. Hence, the physicians could have been subcon-
sciously biased and could have assigned lower scores to these
images. Moreover, patient motion during the PET/CT scan, particularly

for patients with dementia, who are more susceptible to involuntary
motion, may impair the quality of both LD and FD PET images.
However, motion might affect LD and FD PET images differently since
the randomly selected events for creation of the LD images might not
exactly follow the same motion pattern as in the FD PET data.

CONCLUSION

We have demonstrated that high-quality 18F-FDG brain PET
images can be generated using deep learning approaches either
in PIS or in PSS. The noise was effectively reduced in the pre-
dicted PET images from the LD data. Prediction of FD PET im-
ages in sinogram space exhibited superior performance, resulting
in higher image quality and minimal quantification bias.
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KEY POINTS

QUESTION: Does implementation of deep learning–guided LD

brain 18F-FDG PET imaging in PSS improve performance over

implementation in PIS?

PERTINENT FINDINGS: Using a cohort study comparing 140

clinical brain 18F-FDG PET/CT studies, among which 100, 20, and

20 patients were randomly partitioned into training, validation, and

independent validation sets, respectively, we demonstrated

through qualitative assessment and quantitative analysis that the

FD PET prediction in PSS led to superior performance, resulting in

increased image quality and decreased SUV bias and variance

compared with FD PET prediction in PIS.

IMPLICATIONS FOR PATIENT CARE: The proposed deep

learning–guided denoising technique enables substantial reduction

of radiation dose to patients and is applicable in a clinical setting.
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