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Cytotoxic T cell differentiation is guided by epigenome adaptations,
but how epigenetic mechanisms control lymphocyte development
has not been well defined. Here we show that the histone
methyltransferase DOT1L, which marks the nucleosome core on
active genes, safeguards normal differentiation of CD8+ T cells. T
cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells
and premature differentiation toward a memory-like state, indepen-
dent of antigen exposure and in a cell-intrinsic manner. Mechanisti-
cally, DOT1L controlled CD8+ T cell differentiation by ensuring normal
T cell receptor density and signaling. DOT1L also maintained epige-
netic identity, in part by indirectly supporting the repression of de-
velopmentally regulated genes. Finally, deletion of Dot1L in T cells
resulted in an impaired immune response. Through our study, DOT1L
is emerging as a central player in physiology of CD8+ T cells, acting as
a barrier to prevent premature differentiation and controlling
epigenetic integrity.
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Lymphocyte development and differentiation are tightly regu-
lated and provide the basis for a functional adaptive immune

system. Development of mature T cells initiates in the thymus with
progenitor T cells that have to pass two key checkpoints: T cell
receptor (TCR) β selection and positive selection, both of which
are controlled by intricate signaling pathways involving the pre-
TCR/CD3 and αβTCR/CD3 complexes, respectively (1). Upon
positive selection, mature thymocytes are licensed to emigrate and
populate peripheral lymphatic organs as naïve T cells (TN). Fur-
ther differentiation of naïve T cells into effector or memory T cells
normally depends on TCR-mediated antigen recognition and
stimulation. However, it has become evident that a substantial
fraction of mature CD8+ T cells acquires memory-like features
independent of exposure to foreign antigens. The origin and
functionality of these unconventional memory cells in mice and
humans, also referred to as innate or virtual memory cells, are only
just being uncovered (2–4).
The dynamic transitions during development and differentiation

of CD8+ T cells are governed by transcriptional and epigenetic
changes, including histone modifications that are controlled by
chromatin modifiers. Well-established histone marks are mono-
and trimethylation of histone H3K4 at enhancers (H3K4me1) and
promoters (H3K4me3), H3K27me3 at repressed promoters, and
H3K9me2/3 in heterochromatin (5–10). Although epigenetic
“programming” is known to play a key role in T cell development
and differentiation, the causal role of epigenetic modulators in
T cell differentiation is still poorly understood, especially for
chromatin modifiers associated with active chromatin (5).

One of the histone modifications positively associated with gene
activity is mono-, di-, and trimethylation of histone H3K79 medi-
ated by DOT1L. This evolutionarily conserved histone methyl-
transferase methylates H3K79 in transcribed promoter-proximal
regions of active genes (11, 12). Although the association with gene
activity is strong, how H3K79 methylation affects transcription is
still unclear and repressive functions have also been proposed (11,
13). DOT1L has been linked to several critical cellular functions,
including embryonic development, DNA damage response, and
meiotic checkpoint control (14) and DOT1L has also been shown
to function as a barrier for cellular reprogramming in generating
induced pluripotent stem cells (15). DOT1L gained wide attention
as a specific drug target in the treatment of MLL-rearranged leu-
kemia, where MLL fusion proteins aberrantly recruit DOT1L to
MLL target genes leading to their enhanced expression (16). A
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similar dependency on DOT1L activity and sensitivity to DOT1L
inhibitors was recently observed in thymic lymphoma (17). Inter-
estingly, inhibition of DOT1L activity in human T cells attenuates
graft-versus-host disease in adoptive cell transfer models (18) and it
regulates CD4+ T cell differentiation (19).
Given the emerging role of DOT1L in epigenetic reprog-

ramming and T cell malignancies, we investigated the role of
DOT1L in normal T cell physiology using a mouse model in
which Dot1L was selectively deleted in the T cell lineage. Our
results suggest a model in which DOT1L plays a central role in
CD8+ T cell differentiation, acting as a barrier to prevent pre-
mature antigen-independent differentiation and maintaining
epigenetic integrity.

Results
DOT1L Prohibits Premature Differentiation toward Memory-Like CD8+

T Cells. Given the essential role of DOT1L in embryonic devel-
opment (20), we determined the role of DOT1L in T cell devel-
opment and differentiation by employing a conditional knockout
(KO) mouse model in which Dot1L is deleted in the T cell lineage
by combining floxed Dot1L with a Cre-recombinase under the
control of the Lck promoter. This leads to deletion of exon 2 of
Dot1L during early thymocyte development (SI Appendix, Fig.
S1A) (17). The observed global loss of H3K79me2 in T cells in
Lck-Cre+/−;Dot1Lfl/fl mice, as confirmed by immunohistochemis-
try on fixed thymus tissue (SI Appendix, Fig. S1B), agreed with the
notion that DOT1L is the sole methyltransferase for H3K79 (11,
17, 20, 21).
To validate the efficacy of Dot1L deletion at the single-cell

level, we developed an intracellular staining protocol for
H3K79me2. Histone dilution by replication-dependent and -in-
dependent means has been suggested to be the main mechanisms
of losing methylated H3K79 (22). Flow-cytometric analyses of
thymocyte subsets from Lck-Cre+/−;Dot1Lfl/fl mice (hereafter,
KO) revealed that double-negative (DN, CD4−CD8−) thymocytes
started losing H3K79me2. From the subsequent immature single-
positive state (ISP) onward, all of the thymocytes had lost
DOT1L-mediated H3K79me2 (SI Appendix, Fig. S1C). This con-
firmed that upon early deletion of Dot1L, successive rounds of
replication in the thymus allowed for loss of methylated H3K79.
No changes in H3K79 methylation levels were found in T

lineage cells of Lck-Cre+/−;Dot1Lwt/wt control mice (hereafter,
wild type [WT]).
Ablation of Dot1L resulted in a reduction of overall thymic

cellularity, mainly caused by reduced numbers of double-positive
(DP), mature single-positive (SP) CD4+ and CD8+ thymocytes
(1.4-, 2.2-, and 1.8-fold, respectively) (SI Appendix, Fig. S1 D and
E). Further analysis of the CD8+ SP subset revealed that Dot1L-
KO mice harbored fewer CD8+ SP thymocytes expressing CD69,
a marker of recent positive selection (23) (SI Appendix, Fig.
S1F). In line with the lower percentage of SP CD8+CD69+ cells,
the transition of semimature to mature stage was also affected in
Dot1L-KO mice. The percentage of mature SP CD8+ T cells, as
characterized by surface expression of Qa2 and CD24, was re-
duced in Dot1L-KO (SI Appendix, Fig. S1G) (24, 25). Together
this suggests a role of DOT1L in controlling intrathymic T cell
selection and maturation of CD8+ SP T cells.
In the spleen, overall cellularity was not affected, but within

the T cell compartment, CD4+ T cells were drastically reduced
(3.2-fold), whereas CD8+ T cells were increased (1.7-fold) in
number (SI Appendix, Fig. S1 E and H). However, while flow
cytometry of H3K79me2-stained splenic T cells confirmed the
lack of DOT1L activity in CD8+ T cells and CD44−CD62L+

CD4+ T cells, CD44+CD62L− CD4+ T cells showed a partial
loss of H3K79me2 and CD4+CD25+ regulatory T cells (Treg)
remained H3K79me2 positive (SI Appendix, Fig. S1I). Since
earlier in development, CD4-expressing cells in the thymus were
mostly H3K79me2 negative, this suggests that a strong selection

occurred for the maintenance of DOT1L for the development of
Tregs in this mouse model. Indeed, partial deletion of Dot1L in
CD4+ cells was confirmed by PCR analysis (SI Appendix, Fig.
S1J). Here, we focused our study on defining the role of DOT1L
in the cytotoxic T cell compartment in which efficient deletion of
Dot1L and loss of H3K79me2 was found in both the thymus and
the periphery.
CD8+ T cell differentiation was strongly affected by the ab-

sence of DOT1L. Analysis of CD8+ T cell subsets in the spleen
revealed that Dot1L-KO mice showed a severe loss of naïve
(CD44−CD62L+) CD8+ T (TN) cells and a massive gain of the
CD44+CD62L+ phenotype, a feature of central memory T cells
(TCM; Fig. 1 A and B). In Dot1L-KO, the cells in the naïve gate did
not form a distinct population as in WT, but rather were a tail of
the TCM population. This is in line with the observed aberrant
thymic maturation in Dot1L-KO. In Lck-Cre+/−;Dot1Lfl/wt hetero-
zygous knockout mice (Het), CD8+ T cells did not show any
phenotypic differences compared to WT (Fig. 1 A and B). The lack
of haploinsufficiency was further confirmed by principal compo-
nent analysis of RNA sequencing (RNA-Seq) data indicating that
WT and Het CD8+ T cells were similar, but were dissimilar from
the KO CD8+ T cells, excluding gene-dosage effects (SI Appendix,
Fig. S1K). Therefore, we restricted our further studies to the
comparison of the KO and WT mice. The strong shift toward a
CD8+ memory phenotype in Dot1L-KO was unexpected because
Dot1L-KO mice were housed under the same conditions as their
WT controls and the mice had not been specifically
immunologically challenged.
To unravel the molecular identity of the CD44+CD62L+

Dot1L-KO cells in more detail we performed RNA-Seq analysis
on sorted CD44−CD62L+ (TN) and CD44+CD62L+ (TCM)
CD8+ T cell subsets from WT and KO mice. Based on differ-
ential gene expression between TN and TCM CD8+ cells from
WT mice, naïve and memory gene signatures were defined. In-
terestingly, overlay of these signatures on WT CD44−CD62L+

(TN) and KO CD44+CD62L+ (TCM) cells showed that differ-
ential expression between TN and TCM cells was mostly pre-
served when Dot1L was ablated. (Fig. 1C), although there was
misregulation of other genes as well (see below). These data
suggest that in the absence of DOT1L, CD8+ T cells acquire,
prematurely and in the absence of any overt immunological
challenge, a transcriptome of memory-like CD8+ T cells.

Dot1L-KO Memory-Like Cells Are Antigen Inexperienced. Although
WT and KO mice were exposed to the same environment, it
cannot be excluded that KO mice responded differentially to
antigens in the environment. If this is the case, one expects
skewing in the clonality of the TCRβ gene usage. In order to
investigate this possibility, we examined the TCRβ repertoire.
Tcrb sequencing revealed no difference in productive clonality
scores between WT and KO CD8+ T cells (SI Appendix, Table
S1). Also, CDR3 length as well as Tcrb-V and Tcrb-J gene usage
were unaffected (SI Appendix, Fig. S2 A–C). These data, to-
gether with the nearly complete loss of naïve CD8+ T cells, ar-
gued against any antigen-mediated bias in the selection for
CD8+ T cells and indicated that CD44+CD62L+ memory-like
CD8+ T cells in KO mice were polyclonal and arose by antigen-
independent differentiation of TN cells.
Antigen-independently differentiated memory-like CD8+

T cells have already been described in the literature and their
origins and functions are the subject of ongoing studies (2–4, 26).
Depending on their origin and cytokine dependency they are
referred to as “virtual” or “innate” memory cells. Virtual mem-
ory CD8+ T cells have been suggested to arise in the periphery
from cells that are CD5high, related to high TCR affinity, and
require IL-15 (4, 27). In contrast, innate memory CD8+ T cells
develop in the thymus and their generation and survival are
generally considered to be dependent on IL-4 signaling (3). We
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Fig. 1. Ablation of Dot1L results in CD44+CD62L+ memory-like CD8+ T cells. (A) Flow-cytometry analysis of CD8+ T cell subsets in the spleen based on CD44
and CD62L expression in WT and heterozygous and homozygous Dot1L-KO mice. Subsets are indicated in the Top Left. (B) Quantification of CD8+ T cell
subsets in the spleen indicated in the representative plots in A. Data from three to five individual experiments with three to four mice per genotype per
experiment, shown as mean ± SD. (C) Mean average (MA) plot of RNA-Seq data from FACS-sorted CD44+CD62L+ (TCM) and CD44−CD62L+ (TN) CD8

+ T cells from
four mice per indicated genotype. Naïve and memory signatures were defined based on differentially expressed genes (false discovery rate [FDR] < 0.01)
between WT TN and WT TCM cells. (D) Percentage of CD49d+ cells in CD44+CD62L+ CD8+ T cells from unchallenged mice and in CD44+CD62L− CD8+ T cells from
WT mice challenged with L. monocytogenes for 7 d. Data are from one experiment with four mice per genotype, represented as mean ± SD. (E) Repre-
sentative flow-cytometry plots of T-bet and Eomes expression in CD8+ T cells from the spleen. (F) Median fluorescence intensity (MFI) of T-bet and Eomes in
CD44+CD62L+ CD8+ T cells from the spleen. Data are from one experiment with three mice per genotype, represented as mean ± SD.

20708 | www.pnas.org/cgi/doi/10.1073/pnas.1920372117 Kwesi-Maliepaard et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1920372117


here collectively refer to them as antigen-independent memory-
like CD8+ T cells (TAIM). A common feature of these TAIM cells
is reduced expression of CD49d (28), a marker that is normally
up-regulated after antigen exposure. In addition, they express
high levels of T-bet and Eomes, encoding two memory/effector
transcription factors (29, 30). In both Dot1L-KO and WT, the
majority of the CD44+CD62L+ (TCM) cells were CD49d nega-
tive. As a control, CD44+CD62L− effector T cells (TEFF) from
WT mice challenged with Listeria monocytogenes were mostly
CD49d positive (Fig. 1D). This further indicates that the gen-
eration of CD44+CD62L+ memory-like T cells in KO mice is
independent of antigen exposure. Of note, the percentage of
CD49d-negative CD44+CD62L+ cells that we observed in WT
mice corresponds to the percentage of TAIM cells reported in
WT C57BL/6 mice (31). Regarding the expression of T-bet and
Eomes, most of the KO CD8+ T cells coexpressed T-bet and
Eomes. Furthermore, Eomes was expressed at a higher level in
KO CD8+ T cells as compared to their WT counterpart (Fig. 1 E
and F). Together these characteristics are all in agreement with
antigen-independent differentiation of naïve CD8+ T cells in the
absence of DOT1L.

The TAIM Phenotype in Dot1L-KO Initiates in the Thymus and Is Cell
Intrinsic. To determine whether peripheral TAIM cells observed in
the Dot1L-KO setting originate intrathymically, as reported
previously for IL-4-dependent innate memory T cells (3), we
compared RNA-Seq data from SP CD8+ thymocytes from KO
and WT mice. Analyzing the relative distribution of memory and
naïve signature genes revealed that memory genes were among
the genes up-regulated in KO SP CD8+ thymocytes (Fig. 2A).
Importantly, like in peripheral CD8+ T cells the expression of
T-bet and Eomes was up-regulated in KO SP CD8+ thymocytes.
This transcriptional up-regulation was corroborated by flow-
cytometric analysis of protein expression. Intracellular staining
for the transcription factors showed that among KO SP CD8+

thymocytes a small but substantial subset was double positive for
T-bet and Eomes (T-bet+ Eomes+) (Fig. 2 B and C). This subset
was nearly absent in WT SP CD8+ thymocytes. Regarding T cell
maturity as characterized by CD69 and MHC-I surface expres-
sion, the T-bet+ Eomes+ subset behaved differently from the
T-bet− Eomes− subset. The T-bet+ Eomes+ subset had a more
mature phenotype (M2; CD69−MHC-I+) compared to
T-bet−Eomes−CD8+ KO SP T cells that were more semimatured
(SM; CD69+MHC-I−) (32), suggesting that in Dot1L-KO CD8+

SP thymocytes started to acquire the TAIM phenotype just before
emigrating from the thymus (SI Appendix, Fig. S2 D and E).
Another possible scenario that could have explained the gain of
intrathymic memory-phenotype cells (thymic TAIM cells) in KO
was their recirculation from the periphery into the thymus.
However, as compared to the spleen, the T-bet+Eomes+CD8+

SP subset in the thymus had a lower fraction of memory-
phenotype cells. This observation is inconsistent with the possi-
bility that thymic TAIM cells originated from recirculating pe-
ripheral T cells (SI Appendix, Fig. S2F). Together with the
unperturbed TCRβ repertoire, this further supports the notion that
differentiation of Dot1L-KO CD8+ T cells toward memory-like
cells initiates intrathymically in an antigen-independent manner.
Innate memory cells have been suggested to arise in the thy-

mus in response to an increase in IL-4-producing PLZFhigh in-
variant NKT (iNKT) cells or γδ T cells (3). However, iNKT cells
(CD1d-PBS57+TCRβ+) were nearly absent in the thymus of
Dot1L-KO mice (Fig. 2D and SI Appendix, Fig. S2G). Further-
more, the number of γδ T cells (γδTCR+) did not differ signif-
icantly between WT and KO mice (Fig. 2E). In addition,
introduction of the transgenic OT-I TCR, a condition under
which the number of iNKT and γδ T cells is strongly reduced
(33–36), did not affect the memory phenotype of Dot1L-KO
CD8+ T cells (SI Appendix, Fig. S2H). Together, these findings

indicate that the intrathymic differentiation of TAIM CD8+ cells
in the absence of DOT1L did not depend on an excess of IL-4-
producing cells in the thymic microenvironment as reported for
innate memory T cells. To test whether the differentiation toward
TAIM cells in Dot1L-KO occurs by cell-intrinsic mechanisms, we
generated mixed bone-marrow chimeras. Bone-marrow cells from
WT Ly5.1+ mice were mixed with Ly5.2+;Lck-Cre+/−;Dot1Lwt/wt

(WT) or Ly5.2+;Lck-Cre+/−;Dot1Lfl/fl (KO) bone-marrow cells
and transplanted into lethally irradiated Ly5.1+ recipient mice
(Fig. 2F). While T cells derived from WT Ly5.2+ hematopoietic
stem cells gave rise to both naïve and memory-phenotype CD8+

T cells, KO Ly5.2+CD8+ T cells were predominantly of memory
phenotype. This indicated that the Dot1L-KO TAIM phenotype is
cell intrinsic and not dictated by environmental stimuli (Fig. 2 G
and H). In addition, the memory phenotype of the WT Ly5.1+

cells remained indistinguishable between the two mixed bone-
marrow chimera conditions. This indicated that within the same
environment, Dot1L-KO T cells do not instruct WT T cells to gain
a memory phenotype and have no effect on WT T cells as shown
by the differentiation of Ly5.1+ WT cells (Fig. 2 G and H). The
increased percentage of memory-phenotype Ly5.1+ cells is most
likely a result of homeostatic proliferation of the T cells of the
recipient after irradiation (Fig. 2H) (37, 38). Together, the results
from the mixed bone-marrow chimeras further indicated that the
TAIM phenotype is cell intrinsic for Dot1L-KO CD8+ T cells.

Dot1L Ablation Impairs TCR/CD3 Expression.One of the cell-intrinsic
mechanisms reported to be involved in the formation of TAIM
cells is aberrant TCR signaling (2, 27, 39, 40). Furthermore,
treatment of human T cells with DOT1L inhibitor impaired TCR
sensitivity and attenuated low avidity T cell responses (18). This
led us to investigate the expression of genes encoding TCR sig-
naling components in the absence of DOT1L. RNA-Seq analyses
confirmed that many TCR signaling genes were differentially
expressed between WT and KO SP CD8+ thymocytes (Fig. 3A).
Importantly, CD3ζ (Cd247), a critical rate-limiting factor in
controlling the transport of fully assembled TCR/CD3 complexes
to the cell surface, was down-regulated in Dot1L-KO T cells (1,
41, 42). In addition, other components of the TCR/CD3 complex
like Cd3e and its associated coreceptor Cd8a/b were also down-
regulated in KO T cells. H3K79me2 chromatin immunoprecip-
itation sequencing (ChIP-Seq) showed that these genes con-
tained H3K79me2 in WT mice and might therefore be directly
regulated by DOT1L (SI Appendix, Fig. S3 A–C). As a conse-
quence, one expects TCR/CD3 and CD8αβ to be reduced at the
cell surface of TAIM cells, which we confirmed by flow cytometry
(Fig. 3B). Reduced expression of TCR in KO peripheral CD8+

T cells can be a consequence of T cell activation and might not
be directly influenced by DOT1L activity. However, when ana-
lyzing DP3 (TCRβhighCD5int) and CD8+ SP thymocytes, the
stages where T cell activation can be excluded, TCR levels were
reduced in Dot1L-KO (Fig. 3C). This suggested that down-
regulation of TCR expression in KO is most likely a direct ef-
fect of Dot1L ablation. In addition to the CD3/TCR complex, we
observed down-regulation of Itk, a key TCR signaling molecule
reported to be involved in innate memory CD8+ T cell formation
(43). To exclude that the impaired TCR signaling in KO T cells
could be compensated for by the selection of thymocytes
expressing TCRs with altered affinity, we kept the TCR affinity
identical by crossing the OT-I TCR transgene into our system.
Thymocytes expressing OT-I are positively selected in the pres-
ence of MHC class I (H-2Kb), mainly generating CD8+ SP
T cells expressing the exogenous OT-I TCR, with concomitant
reduction of the CD4+ lineage (44). If DOT1L deficiency im-
pairs TCR surface density and signaling, positive selection of
conventional OT-I CD8+ thymocytes is expected to be com-
promised. In Dot1L-KO mice expressing OT-I, the number of SP
CD8+ thymocytes was decreased (3.8-fold) compared to WT
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mice expressing OT-I (Fig. 3D). This revealed that, similar to the
situation in mice with endogenous TCR, early intrathymic ab-
lation of Dot1L in the T cell lineage prohibits positive selection
of conventional OT-I CD8+ T cells, but yet supports the gen-
eration and selection of TAIM cells (SI Appendix, Fig. S2F) of
which the vast majority expressed both exogenous TCR chains
(TCRαV2 and TCRβV5) (Fig. 3E and SI Appendix, Fig. S3D).
Consistent with the low surface expression of TCR/CD3 and
CD8 in the KO condition, the surface expression of OT-I TCR
was also lower, as determined by SIINFEKL/H-2Kb tetramer
staining (SI Appendix, Fig. S3E). This was further validated by
staining with antibodies for the transgenic TCR chains TCRαV2
and TCRβV5 which indicated two-fold reduction in KO (Fig. 3 B
and E). The TCRαV2 element of the OT-I TCR was under the
control of an exogenous promoter, suggesting that the reduced
surface expression of OT-I TCR on KO T cells did not relate to
transcriptional silencing of native TCR gene promoters. Instead,
the observed lower TCR surface levels in KO T cells likely relate
to the reduced CD3ζ expression (42). In conclusion, DOT1L
regulates the levels of TCR complex and signaling molecules
independent of the selected TCR. In the absence of these reg-
ulatory mechanisms, the identity of naïve CD8+ T cells cannot be
maintained, contributing to premature T cell differentiation.

DOT1L Is Required for Maintenance of Epigenetic Integrity of CD8+

T Cells. In order to mechanistically understand how the aberrant
differentiation of Dot1L-KO CD8+ T cells in vivo relates to the
epigenome, we performed H3K79me2 ChIP-Seq on sorted WT
CD8+ T cell populations and compared it to the RNA-Seq data of
sorted WT and KO CD44−CD62L+ (TN) and CD44+CD62L+

(TCM) populations. RNA-Seq analyses from CD44− TN and TCM
cells revealed that genes that were up-regulated in Dot1L-KO were
biased toward being lowly expressed, whereas down-regulated genes
tended to have a higher expression level (Fig. 4 A, Left). To assess
how the transcriptome changes in T cells and the transcriptional
bias are related to the chromatin-modifying function of DOT1L, we
compared the level of H3K79me2 at the 5′ end of genes in WT cells
with the mRNA expression changes caused by the loss of DOT1L.
H3K79me2 was enriched from the transcription start site into the
first internal intron of transcribed genes (SI Appendix, Fig. S4A), as
reported for human cells (45). Further analysis showed that most of
the lowly expressed genes up-regulated in Dot1L-KO contained no
or very low H3K79me2 in WT cells (Fig. 4 A, Right and B).
Therefore, these genes are unlikely direct targets of DOT1L and
are likely to be indirectly controlled by DOT1L. In contrast, most of
the more highly expressed genes down-regulated inDot1L-KO were
marked by H3K79me2 (Fig. 4 A, Right and B). This demonstrates
that in normal CD8+ T cells DOT1L-mediated H3K79 methylation
generally marks expressed genes, but only a subset of the methyl-
ated genes needs H3K79 methylation for maintaining full expres-
sion levels. Thus, in normal T cells DOT1L does not act as a
transcriptional switch but rather seems to be required for tran-
scription maintenance of a subset of H3K79-methylated genes that
are already expressed and it indirectly promotes repression of genes.
Dot1L mRNA expression levels were not different between naïve,
true memory, and virtual memory cells (SI Appendix, Fig. S4B),
suggesting that not the global expression level, but rather differen-
tial translation, differential methylation of DOT1L targets, or dif-
ferential “reading” of the H3K79me modifications may play an
important role in preventing premature TAIM differentiation.
To search for candidate direct target genes that could explain

the prominent gene derepression in Dot1L-KO cells, we ana-
lyzed the relatively few differentially expressed genes marked
with H3K79me2. To this end we selected genes that were sig-
nificantly down-regulated in KO and had harbored H3K79me2
at the 5′ end of the gene, both in TN and TCM. We further
narrowed the list down to genes that were annotated as “negative
regulator of transcription by RNA polymerase II,” resulting in 14

transcriptional regulators. Among those, Ezh2 emerged as a
potentially relevant target of DOT1L that could explain part of
the derepression of genes in TN and TCM Dot1L-KO cells (SI
Appendix, Table S2). EZH2 is part of the Polycomb-repressive
complex 2 (PRC2), which deposits H3K27me3 (46, 47), a mark
involved in repression of developmentally regulated genes and in
switching off naïve and memory genes during terminal differ-
entiation of effector CD8+ T cells (34, 48). While the change in
Ezh2 mRNA expression was modest between WT and KO (SI
Appendix, Fig. S4C), the Ezh2 gene was H3K79me2 methylated
and therefore possibly affected by Dot1L loss (SI Appendix, Fig.
S4D). EZH2, being a catalytic unit of master transcriptional
regulator PRC2, can greatly affect the transcriptional landscape.
To further investigate the idea that misregulation of PRC2 tar-
gets could be one of the downstream consequences of loss of
DOT1L in CD8+ T cells, we compared the gene expression
changes in an Ezh2-KO model (49) with those seen in Dot1L-KO
CD8+ T cells. This revealed substantial overlap between the
derepressed genes in the two models (Fig. 4 C and D), suggesting
a functional connection between two seemingly opposing epi-
genetic pathways. Furthermore, we determined H3K27me3
scores based on previous ChIP-Seq studies (50) and compared
them with the gene expression in WT and Dot1L-KO SP CD8+

thymocytes and peripheral CD8+ T cells. This analysis showed
that the genes that were up-regulated in Dot1L-KO lack
H3K79me2 in WT and were strongly enriched for H3K27me3 in
WT memory precursor CD8+ T cells (Fig. 4E). As a control,
expression matched nondifferentially expressed genes were not
enriched for H3K27me3, indicating that the enrichment is not a
consequence of low expression (Fig. 4E). Taken together, these
findings suggest that one of the consequences of loss of DOT1L-
mediated H3K79me2 is derepression of a subset of PRC2 targets
that are actively repressed in WT. This, together with the other
transcriptional changes likely contributes to the perturbation of
the epigenetic identity of CD8+ TAIM cells.

Deletion of Dot1L in T Cells Leads to an Impaired Immune Response.
Our Lck-Cre+/−;Dot1Lfl/fl mouse model showed that deletion of
Dot1L in the T cell lineage leads to a reduction in CD4+ and
iNKT cells. Furthermore, lower TCR surface levels and aberrant
TCR signaling in Dot1L-KO CD8+ cells was associated with
antigen-independent differentiation toward memory-type cells
that also show loss of epigenetic integrity. These distinct changes
in the T cell compartment of this mouse model suggested an
altered immune response. To determine the immune respon-
siveness of Dot1L-KO T cells in vivo, mice were challenged with
a sublethal dose of L. monocytogenes. At day 3 and day 7 post-
injection, mice were killed and spleen and liver were used to
determine clearance of the Listeria by counting colony-forming
units (CFUs). From the 14 Dot1L-KO mice that were analyzed
7 d after infection, 3 mice were excluded from further analysis as
either they died at day 5, were sick at day 7, or had almost no live
T cells. In WT mice, no adverse effects were observed. At day 7
complete clearance was observed in the spleen from WT mice,
which is in accordance with literature (51); however, the Dot1L-KO
mice failed to clear Listeria (Fig. 4F and SI Appendix, Fig. S4E).
Furthermore, in WT mice, the peak of activated (CD44+CD62L−)
CD8+ T cells was at day 7, whereas inDot1L-KOmice the response
was very heterogeneous with some KO mice showing the peak of
CD44+CD62L− cells at day 3 and others at day 7 (SI Appendix, Fig.
S4 F and G). To test whether the failure to respond is a general
feature of KO T cells or specific for L. monocytogenes, we made use
of the HPV-E7 DNA vaccination system (52). One advantage of
this system is the possibility to monitor the expansion capacity and
differentiation of antigen-specific CD8+ T cells. In WT mice, E7-
specific CD8+ T cells increased over time, whereas in Dot1L-KO
the cells did not expand, as measured in the blood (Fig. 4G). Taken
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together, two independent immunization challenges indicated a
compromised response upon challenges in vivo.
Also in vitro Dot1L-KO TAIM cells showed a compromised ef-

fector response. A hallmark of memory T cells is that they produce
IFNγ rapidly upon stimulation compared to naïve T cells (53).
Likewise, innate and virtual memory T cells rapidly produce IFNγ
upon TCR stimulation (31, 40). We activated B cell-depleted sple-
nocytes in vitro with anti-CD3 and anti-CD28 antibodies. Dot1L-KO
CD8+ T cells rapidly became activated (CD44+CD62L−, SI Ap-
pendix, Fig. S4 H and I). However, in contrast to WT, KO CD8+

T cells failed to produce IFNγ (SI Appendix, Fig. S4 J and K), and
expressed lower levels of CD69, a marker of activation (23) (SI
Appendix, Fig. S4L). This indicates a functional impairment of
Dot1L-KO T cells. To test their intrinsic competence to produce
IFNγ, Dot1L-KO T cells were stimulated in a TCR-independent
manner with phorbol myristate acetate (PMA) and ionomycin,
which act downstream of the TCR, thereby bypassing membrane-
proximal events. Intracellular staining for IFNγ revealed that the
percentage of stimulated CD8+ T cells producing IFNγ was 1.9-
fold higher in KO as compared to WT (SI Appendix, Fig. S4M and
N). This suggests that although Dot1L-KO CD8+ T cells intrin-
sically do have the capacity to produce IFNγ when exposed to
nonphysiological stimuli, they only partially respond to physio-
logical, TCR-mediated stimulation, possibly due to their aberrant
TCR signaling. Taken together, these results show that deletion of
Dot1L in the T cell lineage in the thymus leads to an impaired
immune response.

Discussion
The histone methyltransferase DOT1L has emerged as a drug-
gable target in MLL-rearranged leukemia and additional roles in
cancer have been suggested (16, 54–57). This in combination
with the availability of highly specific DOT1L inhibitors make
DOT1L a potential target for cancer therapy. However, the role
of DOT1L in normal lymphocyte physiology has remained un-
known. Here we show that DOT1L plays a central role in en-
suring normal T cell differentiation.
T cell differentiation is intimately linked to epigenetic pro-

gramming, but the mechanistic role of epigenetic marks in
steering T cell differentiation (34, 48, 49, 58, 59) and thymic
selection (34, 48, 49, 58–61) has only recently become clearer.
Here we observed that ablation of Dot1L in the T cell lineage
differentially affected CD4+ and CD8+ T cells. Following de-
letion of Dot1L by Lck-Cre during early thymocyte development,
CD4+ T cells were strongly reduced, while the number of CD8+

T cells was increased. The fact that a substantial fraction of the
remaining CD4+ T cells had not lost DOT1L activity indicates
that the CD4+ compartment and especially regulatory T cells
depend on DOT1L for their normal development. Further re-
search exploring the dependency of CD4+ T cells on DOT1L
may provide novel strategies for immune modulation and
treatment of CD4+ T cell malignancies.
In CD8+ T cells, loss of DOT1L resulted in a massive gain of

CD44+CD62L+ memory-like cells. These cells start to acquire
memory features intrathymically, express a diverse unskewed
TCRβ repertoire, and lack expression of CD49d. Taken to-
gether, this suggests that these memory-like CD8+ T cells arose
independently of foreign antigens, leading us to designate these
cells as antigen-independent memory-like TAIM CD8+ cells.
Importantly, such unconventional memory-phenotype cells con-
stitute a substantial (15 to 25%) fraction of the peripheral CD8+

T cell compartment in WT mice and humans (4, 28, 40, 62, 63).
The fraction of unconventional memory-phenotype T cells fur-
ther increases with age (64, 65). The biological role of antigen-
inexperienced memory CD8+ T cells is still not completely un-
derstood, but these cells have been observed to respond more
rapidly to TCR activation than TN cells and they have been
suggested to provide bystander protection against infection in an

antigen-independent way (27, 40). However, in older mice, vir-
tual memory cells have been reported to lose their proliferative
potential and acquire characteristics of senescence (66). The
mechanism of unconventional memory-phenotype differentia-
tion is also poorly understood (2). In some mouse models CD8+

T cells differentiate upon excess production of IL-4 by iNKT or
γδ T cells (3, 33, 67–70). In contrast, other mouse models report
that antigen-inexperienced memory CD8+ T cell differentiation
is cell intrinsic (71, 72). Here we show that DOT1L plays an
important role in TAIM CD8+ cell differentiation by cell-intrinsic
mechanisms.
It has been established in several independent mouse models

that the quality of TCR signaling closely relates to the formation
of TAIM cells (27, 39, 40). Our results show that loss of DOT1L
leads to reduced surface expression of the CD3/TCR complex
and coreceptors. This phenotype is likely related to the reduced
expression of CD3ζ (Cd247), a target of DOT1L and a rate-
limiting molecule for assembly and transport of TCR/CD3
complexes to the cell surface (1, 41, 42). The failure to up-
regulate the TCR/CD3 complex upon positive selection likely
prohibits differentiation of conventional TN and supports for-
mation of TAIM cells. In addition, Dot1L ablation perturbed
expression of TCR signaling genes, including Itk (IL-2-inducible
T cell kinase; a member of the Tec kinase family). Disruption of
ITK signaling has also been reported to lead to antigen-
independent T-cell differentiation (43). Together, this suggests
that one of the key functions of DOT1L in T cells is to ensure
adequate TCR surface expression and signaling to maintain
naïvety and prevent TAIM cell differentiation. The discovery of
DOT1L as a key player in preventing premature antigen-
independent differentiation toward memory-type cells warrants
further investigation and will aid in further uncovering the origin
and regulation of this emerging and intriguing subset of the
immune system. It will also be important to further dissect the
cause of the compromised immune response in mice lacking
DOT1L in the T cell lineage. Specifically, given the TAIM phe-
notype, the reduced TCR levels and aberrant TCR signaling, as
well as the epigenetic changes in Dot1L-KO CD8+ T cells, it will
be relevant to determine the intrinsic cytotoxic potential of
antigen-specific T cells lacking H3K79 methylation and under-
stand the role that this modification plays in effector differenti-
ation, specifically in the presence of an uncompromised CD4+

T cell compartment.
How does DOT1L affect T cell differentiation at the chromatin

level? Inspection of the transcriptome and epigenome provided
evidence that DOT1L methylates transcriptionally active genes in
T cells and positively affects gene expression. However, only a
subset of the targets required DOT1L for maintenance of normal
expression levels, which agrees with previous observations (73, 74).
Why some genes depend on DOT1L/H3K79 methylation and
others do not is not known yet, although a recent study indicates
that in MLL-rearranged leukemic cell lines, some genes harbor a
3′ enhancer located in the H3K79me2/3 marked genic region,
which can make them more sensitive to loss of DOT1L (73). One
of the genes that was H3K79 methylated and dependent on
DOT1L in normal peripheral CD8+ T cells was Ezh2. Of note,
Ezh2 expression was not reduced in Dot1L-KO CD8+ SP thy-
mocytes. Importantly, analysis of data from Kagoya et al. (18)
showed that Ezh2 expression is also reduced in human T cells in
which DOT1L was inactivated, not by deletion but by treatment
with a DOT1L inhibitor (SI Appendix, Fig. S4O). This suggests
that the epigenetic cross-talk that we uncovered in mice is evo-
lutionarily conserved. However, the exact mechanisms by which
DOT1L affects EZH2/PRC2 activity are still unknown.
Derepression of some of the targets of PRC2 is just one of the

consequences of loss of DOT1L. Besides Ezh2, DOT1L affects
the expression of other genes, including several additional can-
didate transcription regulators (SI Appendix, Table S2). In the
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future, it will be important to determine other mechanisms by
which DOT1L affects the CD8+ T cell transcriptome to fully
understand its central role in CD8+ T cell biology. Furthermore,
we cannot exclude that DOT1L has additional methylation tar-
gets besides H3K79 that contribute to the role of DOT1L in
safeguarding T cell differentiation and effector functions. Al-
though understanding the mechanisms in more detail will require
further studies, the role of DOT1L in preventing premature
differentiation and safeguarding the epigenetic identity is con-
served in other lymphocyte subsets. In an independent study
(75), we observed that loss of Dot1L in B cells also led to pre-
mature differentiation, perturbed repression of PRC2 targets,
and a compromised humoral immune response. Therefore,
DOT1L is emerging as a central epigenetic regulator of lym-
phocyte differentiation and functionality.
In conclusion, we identify H3K79 methylation by DOT1L as

an activating epigenetic mark critical for CD8+ T cell differen-
tiation and maintenance of epigenetic identity. Further investi-
gation into the central role of the druggable epigenetic writer
DOT1L in lymphocytes is likely to provide novel strategies for
immune modulations and disease intervention (76).

Methods
Mice. Lck-Cre;Dot1Lfl/fl mice have been described previously (17). OT-I (B6J)
mice were a kind gift from the Ton Schumacher group, originally from The
Jackson Laboratory, Bar Harbor, ME. Details of animal breeding, crossing
and selection, and genotyping are described in SI Appendix, Materials and
Methods. Mice used for experiments were between 6 wk and 8 mo old and
of both genders. For each individual experiment mice were matched for age
and gender. All experiments were approved by the Animal Ethics Committee
of the Netherlands Cancer Institute (NKI) and performed in accordance with
institutional, national, and European guidelines for animal care and use.

Flow Cytometry. Single-cell suspensions were made from spleen and thymus.
Erylysis was performed on blood and spleen samples. Cells were stained with
fluorescently labeled antibodies in a 1:200 dilution unless otherwise indi-
cated (SI Appendix, Table S3). Details of the antibodies used are provided in
SI Appendix, Materials and Methods. For H3K79me2 staining, cells were first
stained with surface markers and fixed and permeabilized. After fixation
and permeabilization, cells were washed with Perm/Wash buffer containing
0.25% sodium dodecyl sulfate (SDS) in order to expose the epitope. Flow
cytometry was performed using the LSR Fortessa (BD Biosciences) and
data were analyzed with FlowJo software (Tree Star, Inc.). Histograms
were smoothed.

In Vitro Stimulation. To determine cytokine production upon in vitro stimu-
lation, splenocytes were stimulated with 20 ng/mL PMA (Sigma) and 0.5 μg/
mL ionomcyin (Sigma), and incubated with 1 μL/mL Golgi Plug protein
transport inhibitor (Becton Dickinson) for 4 h. Cells were stained as described
above. To determine proliferation and IFNγ production upon in vitro TCR-
mediated stimulation splenocytes were enriched for T cells using CD19
microbeads depletion (Miltenyi Biotec) or pan-T cell Isolation Kit II (Miltenyi
Biotec) on LS columns (Miltenyi Biotec). Cells were plated in a 96-well plate
coated with anti-CD3 (145-2C11) (BD) and anti-CD28 (37.51) (BD) was added
to the medium.

In Vivo Immunization and Vaccination. L. monocytogenes strain LM-OVA was
a gift from Ton Schumacher, NKI, Amsterdam, The Netherlands. A sublethal
dose (10,000 CFUs) of L. monocytogenes in Hank’s balanced salt solution
(HBSS) was injected i.v. into the mice. The Help-E7SH vaccination was per-
formed as described in ref. 52.

Mixed Bone-Marrow Chimera. Whole bone-marrow cells were isolated from
femurs of the indicated mice. Single-cell suspensions from Ly5.1+ and Ly5.2+

were mixed in a 1:1 ratio in HBSS. A total of 106 cells were injected i.v. into
Ly5.1+ lethally irradiated recipients. After 20 wk, mice were killed and
spleens isolated for further analysis.

RNA-Seq and ChIP-Seq Sample Collection, Preparation, and Analysis. Flow
cytometrically purified cell populations were prepared as described in SI
Appendix, Materials and Methods. For RNA-Seq, strand-specific cDNA li-
braries were generated using the TruSeq Stranded mRNA sample prepara-
tion kit (Illumina) according to the manufacturer’s protocol. For ChIP-Seq,
chromatin was cross-linked with paraformaldehyde. Antibodies against
H3K79me2 (NL59, Merck Millipore) or H3K4me3 (ab8580, Abcam) were
added to purified chromatin and incubated overnight at 4 °C. Protein G
Dynabeads (Life Technologies) were added to the IP and beads with bound
immune complexes were subsequently washed and libraries were prepared
using the KAPA LTP Library preparation kit (Roche). All samples were se-
quenced as 65 base single reads on a HiSeq2500 (Illumina). Detailed de-
scription of the methods and analysis can be found in SI Appendix, Materials
and Methods.

Statistics. Statistical analyses were performed using Excel. Variance was de-
termined using a F test, and an unpaired Student’s t test with two-tailed
distribution was used for statistical analyses. Data are presented as means ±
SD unless otherwise indicated in the figure legends. For Fig. 1B and SI Ap-
pendix, Fig. S1 D, E, and H, a Student’s t test with Bonferroni correction was
performed in R. A P value <0.05 was considered statistically significant.

Data availability. Next-generation sequencing data have been deposited in
Gene Expression Omnibus (GEO, National Center for Biotechnology Infor-
mation) under GSE138908 and GSE138910 for ChIP-Seq and RNA-Seq data,
respectively. A detailed description of all materials and methods is provided
in SI Appendix, Materials and Methods.
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