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A B S T R A C T   

Efficient delivery of multiple resources for emergency recovery during disasters is a matter of life and death. 
Nevertheless, most studies in this field only handle situations involving single resource. This paper formulates the 
Multi-Resource Scheduling and Routing Problem (MRSRP) for emergency relief and develops a solution 
framework to effectively deliver expendable and non-expendable resources in Emergency Recovery Operations. 
Six methods, namely, Greedy, Augmented Greedy, k-Node Crossover, Scheduling. Monte Carlo, and Clustering, 
are developed and benchmarked against the exact method (for small instances) and the genetic algorithm (for 
large instances). Results reveal that all six heuristics are valid and generate near or actual optimal solutions for 
small instances. With respect to large instances, the developed methods can generate near-optimal solutions 
within an acceptable computational time frame. The Monte Carlo algorithm, however, emerges as the most 
effective method. Findings of comprehensive comparative analysis suggest that the proposed MRSRP model and 
the Monte Carlo method can serve as a useful tool for decision-makers to better deploy resources during 
emergency recovery operations.   

1. Introduction 

In emergency situations, such as major earthquakes or widespread 
outbreaks of infectious disease, quickly supplying diverse and critically 
needed rescue resources from various relief centres to many demand 
points can be a matter of life and death. A typical example is delivering 
urgent medical treatments\supplies from emergency recovery operation 
(ERO) control centres to various hospitals in a short period of time to 
treat a large number of injured patients when a destructive natural 
disaster strikes. For instance, in the ERO following the attack of Hurri-
cane Katrina on New Orleans, USA, in 2005, delays in the treatment of 
victims occurred as a result of a shortage of nurses even though the 
medical supplies were distributed on time to those who needed them 
[1]. In another example, on Saturday, February 7, 2009, also known as 
Black Saturday, over 400 bushfires swept through parts of rural Victoria, 
Australia. The day is remembered for the deadliest and most devastating 
bushfires in the nation’s history, with 173 deaths and 414 injuries. 
However, the Victorian emergency response teams’ efforts were 
hampered by the fact that medical services were unavailable in local 
areas and some first aid services were uncoordinated in their initial 
response. It was reported that resources such as medical teams and 

medical supplies were poorly coordinated, especially in providing relief 
to smaller, remote communities and people who stayed on their prop-
erties [2]. Such delay and poor coordination could be avoided or 
minimised if scheduling of both expendable and non-expendable re-
sources could be taken into consideration in the same optimisation 
process. However, scheduling problems for multiple resources during 
emergency situations have become more complicated than in the case of 
single resource scheduling [1,3,4]. The ERO will be more complex 
considering the fact that relief centre (RC) is usually subject to severe 
resource limitations and acute time pressures in deciding what resources 
are to be sent to which hospitals to rescue/save lives. 

Since time is critical in emergency situations and short response time 
can help save more lives, appropriate schedule and routing plans for 
emergency vehicles in delivering multiple resources from RCs to hos-
pitals are of utmost importance. Reducing human casualties and fatal-
ities is critically dependent on the rapid deployment of resources for 
EROs at demand points. Failure to assign adequate resources in a timely 
manner has been the root cause of many disastrous situations [3,5–7]. 
This is a challenging task given the scarceness of resources and the un-
certain scale of the disasters [8,9]. Hospitals in a city are usually 
dispersed in geographical location and diverse in their ability to handle a 
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surge capacity. An unexpected flood of patients can overwhelm hospitals 
and exceed their surge capacities, thereby affecting their preparedness 
for responding to emergencies and disasters [10,11]. 

ERO often mandates many types of resources to serve the demand 
points. Both expendable resources, such as food, clothing, shelter, and 
medical items, and non-expendable resources, such as nurses, surgeons, 
and medical equipment, are required in a devastation scenario in order 
to reduce the number of casualties. Among the resources that can be 
delivered from RCs, some are expendable, such as medical supplies, 
which can be simply unloaded at the destination so that the delivery 
vehicle can continue with its journey to other stops. The unloading of 
these resources will not impact much on the total completion time of the 
trip. However, some resources are non-expendable, for instance 
specialist surgeons and special medical equipment, which can be needed 
at multiple locations. As such, the delivery vehicle will have to wait until 
the relief operation at one stop is finished before it can deliver the re-
sources to another stop to provide relief. The wait can significantly 
impact on the total journey time of the vehicle hence its opportunities to 
operate another run. This being the case, optimisation of routes and 
schedules of vehicles supplying multiple resources to different locations, 
referred to as the Multi-Resource Routing and Scheduling Problem 
(MRRSP) for emergency relief, is paramount for disaster management to 
be effective. To the best of the authors’ knowledge, no previous studies 
have contextualised the ERO problem to address key operational chal-
lenges, such as timely distribution, by developing mechanisms to facil-
itate the coordination among resources. Both expendable and non- 
expendable items need to be examined with a consideration of collab-
oration between resources using various heuristics and clustering 
algorithms. 

This paper, hence, aims to develop algorithms as a solution frame-
work so that the emergency authorities can implement reasonably good 
to excellent solutions that generate, allocate and schedule resources for 
the EROs at an entire set of demand points in a disaster relief scenario 
within acceptable computational time. Hence, in this study, the MRSRP 
is modelled for disaster management centres to route and schedule 
emergency vehicles, in order to deliver expendable and non-expendable 
resources to hospitals. It will take into account the linear programming 
optimisation model, aiming to determine the routing of the demand 
points (e.g., hospitals) visited by chosen vehicle(s) to deliver requisite 
resources. At the same time, it will minimise completion times of re-
covery operations at individual demand points weighted by the severity 
level of EROs in each demand point. 

Since MRSRP is related to the multiple Travelling Salesman Problem 
(mTSP) [12,13], involving both the routing and scheduling problems 
has proved to be NP-hard [14,15]. An efficient way to find a 
near-optimal schedule for multiple resources in emergency response 
facilitates the eventual attainment of effective resource management 
and ensures the welfare of disaster victims [16]. Six heuristics algo-
rithms, namely, Greedy, Augmented Greedy, k-Node Crossover, Sched-
uling, Monte Carlo, and Clustering have been developed to obtain 
near-optimal solutions for the MRSRP. The heuristics are first vali-
dated, using small cases with only a few RCs, demand points and vehi-
cles, against the exact solutions. Upon validation, ten large cases with a 
maximum of 15 RCs, 500 demand points and 50 vehicles, are imple-
mented to evaluate the performance of the heuristics by comparing the 
solutions against those of the well-known genetic algorithm - a 
meta-heuristic approach. 

The remainder of this paper is structured as follows: Section 2 re-
views the relevant literature on vehicle routing and scheduling in EROs 
and identifies the research gap that this study attempts to address. 
Section 3 details the statement and formulation of the MRSRP. Section 4 
shows the pseudo codes of the six heuristics used in this study. Section 5 
empirically validates the six heuristics against the exact solutions for 
small instances. It then compares the performance of the six heuristics 
against that of the genetic algorithm for large instances and identifies 
the best heuristic. Section 6 concludes the study with a discussion on its 

limitations and what future research directions could pursue. 

2. Related works 

This study falls in the field of logistics and transportation operations 
spanning across the categories of routing or scheduling optimisation and 
emergency relief. There has been a substantial amount of work on 
vehicle routing and scheduling for emergency relief or related problems 
using mathematical programming. Some of the latest works include 
Pillac et al. [17]; Shahparvari et al. [18]; Bruni et al. [19]; Zhang et al. 
[20] and Schneider and Nurre [21]. 

In routing and scheduling, for example, Bertazzi et al. [22] develop a 
mixed-integer programming model to solve the Multi-Depot Inventory 
Routing Problem which minimises routing costs by determining how to 
serve the customers from different depots while managing their in-
ventory levels to avoid stock-outs. A three-phase meta-heuristic algo-
rithm is designed to solve the problem. The proposed algorithm 
performs better than a branch-and-cut algorithm for this type of prob-
lem. Li et al. [23] apply Whittle’s restless bandits approach to develop an 
index policy to optimize the scheduling of limited resources to a large 
number of jobs, such as medical treatments, with uncertain lifetimes and 
service times, in the aftermath of a mass casualty incident. The new 
approach enables the development of state-dependent policy to priori-
tise jobs to better utilise the resource. 

Jung et al. [24] develop a model for allocating operating room ca-
pacity in hospitals to scheduled patients while accommodating 
randomly arrived emergency patients without incurring excessive de-
lays. The aim is to develop a framework for aggregating weekly sched-
ules and generating detailed daily schedules that minimise the total cost 
of the expected operating time, idle time, and overtime of the operating 
rooms. Using the proposed approach, the optimal capacity allocation of 
operating rooms to elective patients can be determined as a function of 
the emergency arrival rate. Mahmoudi et al. [25] develop a new network 
data envelopment analysis model for the sustainable Urban Network 
Design Problem. By integrating data envelopment analysis, game theory 
and sustainability requirements, a bi-level model is proposed for 
selecting and scheduling urban road construction projects which is 
solved using a meta-heuristic algorithm. The model improves the envi-
ronmental and social performance of the urban network during all 
evaluation periods. Shi et al. [26] formulate a model for a Home Health 
Care Routing and Scheduling Problem from the perspective of Robust 
Optimisation (RO) to take into account uncertain travel and service 
times. The non-deterministic variables are defined based on the theory 
of budget uncertainty and arrival time of each caregiver is rewritten as a 
complicated recursive function. The model overcomes the shortcomings 
of many deterministic models for this problem. 

In emergency relief research, Bababeik et al. [27] investigate the 
optimal location and allocation of relief trains to enhance the resilience 
level of the rail network. Using link exposure measure which considers 
the operational attributes of links and accessibility to road system, a 
bi-objective programming model is formulated and solved using an 
augmented e-constraint method combined with a fuzzy-logic approach. 
The proposed framework shows superiority in providing an economical 
and effective layout compared to conventional maximal covering model. 
Wu et al. [28] propose to use microblogging data to identify water-
logging locations during urban rainstorm to optimize post-disaster 
rescue routes. By developing a location-routing problem model and 
solving it with NSGA-III algorithm, new routes to dissipate road traffic 
can be assigned timely which can be of great significance to the emer-
gency rescue of victims during rainstorm disasters. The approach is 
novel in that it leverages social media data to obtain critical information 
on disasters to facilitate emergency relief. Zhu et al. [29] consider equity 
and priority issues in optimizing routing of rescue vehicles during 
emergency relief. Two models are developed taking into account the 
different levels of injury representing equity and the in-transit tolerable 
suffering duration representing rescue priority. The models excel in the 
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fairness of human sufferings mitigation and outperform other models 
both in operational cost control and psychological sufferings alleviation. 

While the above reviewed studies are successful in suggesting new 
approaches or formulating advanced strategies in solving routing and 
scheduling problems for emergency relief, one common shortcoming is 
that only single resource is considered or resource is not the focus of the 
optimisation. Reviews by Caunhye et al. [30]; Galindo and Batta [31]; 
Özdamar and Ertem [32] and Zhou et al. [33] reveal that most of the 
models developed for emergency relief only permit scheduling of one 
type of resource, either expendable or non-expendable. For example, 
optimisation models that consider only the resource scheduling of 
expendable resources include Haghani and Oh [34]; Özdamar et al. 
[35]; Chang et al. [36]; Balcik et al. [37]; Huang et al. [38]; Zokaee et al. 
[39]; among others. Another set of optimisation models consider only 
the resource scheduling of non-expendable resources in disaster emer-
gencies. They include Rolland et al. [6]; Falasca and Zobel [40]; Wex 
et al. [15]; Lassiter et al. [41]; Schryen et al. [42]; Bodaghi and Pala-
neeswaran [43]; and so on. 

To date, only a few studies, including Lee et al. [3]; Lei et al. [1] and 
Shahparvari and Bodaghi [44] have proposed models for emergency 
resource scheduling that include both expendable and non-expendable 
resources. Most of these studies put forward a mixed integer program-
ming model (MILP) and applied heuristic algorithms for the assignment 
and scheduling of multiple resources in a supply network. Table 1 
summarises the characteristics and limitations of some of the above 
mentioned vehicle routing and scheduling models for emergency relief 
distribution. It can be seen that many of them are deterministic in nature 
with minimisation of travel time as one of the objectives. Also, many of 
them assume that the sequence of the route is known beforehand and use 
heuristic methods to find a near-optimal rather than an exact solution. 
This is due to the NP-hard nature of the problem and it is especially so 
when delivery of both expendable and non-expendable resources in the 

same trip is considered. In practice, this assumption may not be valid 
and needs to be addressed in the optimisation model. 

Vehicle routing problem (VRP) for emergency relief differs from 
other VRPs in that vehicles are often not required to return to the depots 
where they are dispatched (Open VRP (OVRP)). Or if they do, the final 
leg is not critical. Despite there being much less research when 
compared to classical VRP, studies have been undertaken on OVRP using 
various heuristics, such as evolutionary algorithm [49], particle swamp 
optimisation methodology [50], genetic algorithm [51], variable 
neighbourhood search algorithm [52], simulated annealing [53], and 
ant colony optimisation [54], among others, to generate near-optimal 
solutions. While OVRP can have one or more starting points, in prac-
tice, multiple depots are more common to accommodate a large fleet and 
the class of problems is referred to as multi-depot OVRP (MDOVRP). 
Research on MDOVRP is relatively limited because it is more chal-
lenging than the conventional MDVRP, which is a complex combinato-
rial problem. For example, Tarantilis and Kiranoudis [55] studied 
MDOVRP using the fresh meat industry in Greece as a case study. Liu 
et al. [56] proposed a MILP formulation for MDOVRP and used a hybrid 
genetic algorithm to find routes that minimise total travelling costs. 
Pichka et al. [57] also proposed a MILP model for the MDOVRP and 
developed a simulated annealing algorithm to establish near-optimal 
solutions for medium-sized and large instances. For the ERO, 
MDOVRP is akin to the MRSRP that is investigated in this present 
analysis as vehicles are sent from multiple RCs; they visit more than one 
demand point to deliver multiple resources. 

As far as heuristic methods for solving VRP for emergency response 
are concerned, Wex et al. [15] have systematically categorised the 
different types of heuristic methods and compared computationally 
their performance. The different heuristic methods were used to solve a 
rescue unit assignment scheduling problem under randomly generated 
scenarios using data generated from the major earthquake in Japan in 

Table 1 
Summary of reviewed vehicle routing and scheduling optimisation models for emergency relief.  

Study Resource Sequence Mode Objective Solution Model Limitation 

Chang et al. [36] Expendable – Stochastic To minimise transportation cost, 
facility set up cost, equipment cost 

Exact 
method  

– Sequencing and scheduling of resources are not 
considered 

Balcik et al. [37] Expendable Known Stochastic To maximise total expected demand Exact 
method  

– Assumes sequence of visit is known  
– The only sequencing/routing decision is whether 

the node should be visited each day 
Huang et al. [45] Expendable Unknown Deterministic To minimise total travel time, sums of 

arrival times and unsatisfied demand 
Heuristic 
method  

– Considers only a single type of expendable 
resource 

Falasca and Zobel 
[40] 

Non- 
expendable 

– Deterministic To minimise cost of task shortage, 
total number of undesired tasks and 
time blocks 

Exact 
method  

– Sequencing and scheduling of volunteers are 
ignored 

Lee et al. [3] Both Known Deterministic To minimise total weighted tardiness Heuristic 
method  

– Assumes sequence of visit to demand points is 
known in advance 

– Difference in quantity of non-expendable re-
sources to be delivered is ignored 

Wex et al. [15] Non- 
expendable 

Unknown Deterministic To minimise total weighted 
completion times 

Heuristic 
method  

– Assumes identical unit and ignores the different 
types and quantities of non-expendable resources 
to be delivered  

– Model is non-linear programming 
Schryen et al. [42] Non- 

expendable 
Unknown Stochastic To minimise total weighted 

completion times 
Heuristic 
method  

– Assumes difference in quantity of non- 
expendable resources is negligible  

– Model is non-linear programming 
Lei et al. [1] Both Known Deterministic To minimise total weighted tardiness Heuristic 

method  
– Assumes sequence of visit to demand points is 

known in advance 
– Difference in quantity of non-expendable re-

sources to be delivered is ignored 
Caunhye et al. 

[47] 
Expendable Unknown Stochastic To minimise cost of setting up 

warehouse, total response time 
Exact 
method  

– Only one type of expendable resource is 
considered  

– Response time is calculated based on 
transportation time 

Shahparvari and 
Bodaghi [44] 

Both Known Deterministic To minimise operational costs of the 
vehicle fleet 

Heuristic 
method  

– Assumes sequence of visit to demand points is 
known in advance  

– Uses fuzzification to generate inexact variable 
values, such as time windows and risk levels 

Bodaghi et al. [48] Both Unknown Probabilistic To minimise weighted completion 
time 

Exact 
method  

– The model could be applied for small to medium 
size case studies  
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2011. The heuristics examined include the Greedy method, construction 
heuristics, improvement heuristics, the Greedy randomised adaptive 
search procedure (GRASP), and the Monte Carlo-based heuristic 
method. Upon comparison, Wex et al. [15] reported that performance of 
the examined heuristic methods varies according to the size or context of 
the problem. Nevertheless, they concluded that using appropriate heu-
ristic methods, reasonably feasible solutions for NP-hard routing and 
scheduling problem for emergency response could be obtained quickly. 
Table 2 summarises some of the other heuristics methods proposed by 
recent studies for solving the routing and scheduling problem in emer-
gency relief distribution. 

As such, an optimisation model with appropriate heuristic algo-
rithms could serve as an automated decision support system for 
decision-makers in emergency situations characterised by a high level of 
complexity and high time pressure. They could enhance human-based 
decision-making through rapid scenario analysis to maximise opera-
tional efficiency in emergency situations. Doing so will minimise losses 
in human lives. The MRSRP model and the heuristic algorithms pro-
posed in this study are developed with reference to the above analyses 
and with such an objective in mind. It aims to supplement the in-
adequacies of the previous studies by considering multiple resources in 
the problem formulation. Using mixed integer programming and heu-
ristics to find near-optimal solution like many of the previous studies, 
the study extends the previous work by accommodating in the model 
conditions closer to reality. It not only addresses inadequacies in the 
extant literature of multi-resource scheduling problem for EROs but also 
assists decision-makers in making better decisions during emergency 
situations. Based on an extensive literature review, six heuristic algo-
rithms are developed and evaluated in this study, seeking the most 
appropriate method for solving the MRRSP in the context of supplying 
both expendable and non-expendable resources from relief centres to 
hospitals during emergency situations. The search for most efficient 
heuristics for solving the MRRSP aligns with the views many researchers 
in this field. For example, Bélanger et al. [63] review studies on the 
development of models to support decision making in emergency med-
ical services (EMS) in the last decade. The need arises from the fact that 
dynamism inherent to EMS, as well as considerations of equity and pa-
tient medical outcomes, have demanded for new modelling approaches 
to address problems related to emergency vehicle location and 

relocation, in addition to dispatching decisions. While it is found that the 
size of the EMS problems under study is growing, and that there is an 
increasing use of stochastic and dynamic programming, they also opine 
that considerable efforts will need to be devoted to the development of 
more efficient solving methods. 

Examples of previous efforts in this regard include Knight et al. [64]; 
which proposed new models for locating emergency medical services by 
incorporating survival functions for capturing multiple classes of het-
erogeneous patients, and Shahparvari et al. [18]; which developed a 
capacitated vehicle routing solution to evacuate short-notice evacuees 
with time windows and disruption risks under uncertainties during a 
bushfire. Bodaghi and Palaneeswaran [43]; Bodaghi et al. [4] have 
developed a bi-objective MILP model to address the problem where both 
expendable and non-expendable resources are considered. However, 
they did not consider the collaboration and quantity of different 
non-expendable resources. Wex et al. [15] have systematically cat-
egorised the different types of heuristic methods and compared 
computationally their performance for only the non-expendable re-
sources. Also, they have not considered the collaboration between 
non-expendable resources. Table 3 gives an overview of the heuristic 
algorithms developed and evaluated in this study. 

3. Notations and formulation 

The notations employed in the model are as follows: 
Sets and Indices  

V Set of vehicles 
I Set of n demand points + {0, n+1} where 0 and n + 1 represent the dummy 

starting and ending nodes.  
K Set of relief centres (RCs) 
G Set of all resource types 
T Set of resource types for expendable resources 
R Set of resource types for non-expendable resources 
i,j, l  Indices for demand points, i, j, l ∈ {0,1,…,n,n + 1}
v Index for vehicle, v ∈ {1,…,V}
k Index for RCs, k ∈ {1,…,K}
t Index of resource types, t ∈ G   

Table 2 
Heuristic methods for solving VRP in emergency relief proposed in recent studies.  

Study Algorithm Purpose Approach Merit 

Duque 
et al. 
[58] 

Iterated Greedy- 
randomise constructive 
procedure (IGRCP) 

For scheduling and routing of a repair 
crew after a disaster 

Based on the GRASP meta-heuristic method 
with multiple runs of the construction phase 
plus improvement routine 

Overcomes the problem size limitation 
of dynamic programming and solves 
medium- to large-scale instances 
efficiently 

Fontem 
et al. 
[59] 

Decomposition-based 
method 

To solve the Emergency Open Routing 
under Stochastic Travel Times and 
Deadlines (EORSTTD) Problem for quick 
relief during emergency 

Renders the EORSTTD problem tractable by 
formulating a counterpart problem, and 
decomposes it into two sub-problems 

Produces a solution that enables flexible 
decisions to be made according to the 
decision-maker’s preference to avoid the 
risk of deadline violation 

Osman 
and Ram 
[60] 

Centralised Point-to- 
Point Look-Back (C- 
PTPLB) 

To find evacuation routes from an urban 
building and out of its predetermined 
neighbourhood 

Based on looking back from intermediate 
destination nodes at a current time T, and 
identifying the objects that can be point-to-point 
routed to reach there precisely at time T from 
preceding nodes 

Provides point-to-point optimal route 
schedules while minimising the number 
of iterations when compared with other 
methods 

Bruni et al. 
[19] 

Iterated Greedy method For routing of vehicles carrying critical 
supplies and to disaster victims 

Implements an adaptive local search procedure 
and a destroy procedure to enable extensive 
searching for a solution space where near- 
optimal solutions can be employed 

Flexible and applicable to various risk 
measures, can provide good solutions 
quickly 

Faiz et al. 
[61] 

Column generation and 
Path generation 
algorithm 

For vehicle routing operations during a 
humanitarian crisis 

Devises a task adjacency graph for a path-based 
integer linear program, using a column 
generation framework to solve large-scale 
instances 

Outperforms the exact method 
(traditional arc-based mixed integer 
linear program) in solution time without 
sacrificing solution quality 

Moreno 
et al. 
[62] 

Branch-and-Benders-cut, 
construction and local 
search heuristics 

To solve the Crew Scheduling and 
Routing Problem in road restoration 
after disasters 

Decomposes an integrated problem into a 
master problem with scheduling decisions and 
sub-problems with routing decisions 

Provides feasible solutions and 
optimality gaps where instances cannot 
be solved utilising exact methods  
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Parameters  

dt
i  Quantity of a resource type t required by a demand point i 

capv
t  Capacity of vehicle v for carrying expendable and/or non-expendable 

resources 
capt

k  Capacity of RC k for expendable and/or non-expendable resources 
trv

ij  Travel time required for vehicle v to transport resources from i to j 
npt

i  Processing time for recovery operations at demand point i for a non- 
expendable resource t ∈ R  

cpt
i  Reduction factor to adjust the normal processing time of non-expendable 

resource t per extra resources at i 
wi  Severity level of demand point i 
m An arbitrary big positive number  

Variables 
The decision variables can be defined as shown below:  

Xv
ij ∈ {0, 1} A binary variable to identify the sequence of demand points served by 

vehicle v. Xv
ij = 1 if demand point i is processed by vehicle v 

immediately before processing demand point j; 0 otherwise.  
Yv

ki ∈ {0, 1} A binary variable to identify an RC that can supply resources for 
demand point i with vehicle v. Yv

ki = 1 if the RC k supplies resources for 
demand point i with vehicle v; 0 otherwise.   

The auxiliary variables are:  
Qt

kv  The quantity of resource type t shipped from the RC k with vehicle v; ∀k ∈ RC, 
v ∈ V.  

Si  Starting time of relief operation at demand point i. 
Ci  Completion time of relief operation at demand point i. 
Pt

i  Required processing time for each non-expendable resource t at demand point 
i.  

With these notations, parameters, and variables, the objective 
function of the MRSRP model [48] is expressed as: 

Min Z=
∑n

i=0
wiCi (1) 

The objective function (1) minimises the weighted sum of comple-
tion times over all demand points. The weighted factor depends on the 
severity level of each demand point. The set of constraints considered in 
the MRSRP model is listed below: 

∑n+1

j=1

∑
|V|
v=1X

v
ij = 1 ∀i ∈ I\{n+ 1} i ∕= j (2)  

∑n+1

j=1
Xv

0(j) = 1 ∀v ∈ V (3)  

∑|V|

v=1
Xv
ij +

∑|V|

v=1
Xv
ji ≤ 1 ∀i ∈ I & j ∈ I; i ∕= j (4)  

∑n

i=0
Xv
il −

∑n+1

j=1
Xv
lj = 0 ∀v ∈ V;∀l ∈ I − {0, n+ 1} (5)  

∑|K|

k=1

∑|V |

v=1
Xv
ij Yv

ki = 1 ∀i ∈ I − {0, n+ 1} (6)  

Qt
kv =

∑n+1

i=1
Yv
ki d

t
i ∀ k ∈ K; ∀ v ∈ V; ∀t ∈ T (7)  

Qt
kv ≥ Max

i

(
Yv
ki d

t
i

)
∀k ∈ K;∀v ∈ V; ∀i ∈ I − {0, n+ 1}; ∀t ∈ R (8)  

∑|K|

k=1
Yv
ki ≤ m

∑n+1

j=1
Xv
ij ∀i ∈ I − {0, n+ 1}; ∀v ∈ V (9)  

∑|K|

k=1
Qt

kv ≤ capvt ∀v ∈ V;∀t ∈ G (10)  

Table 3 
Overview of the heuristics developed in this study for solving the MRRSP for emergency response.  

Heuristic Description Related Works Shortcomings 

Greedy 
Algorithm  

– Decision rule is used to prioritise demand points (nodes) 
to visit 

Liu et al. [65]; Ceselli et al. [66]; Majzoubi [67]; 
Tang and Zhu [68]; Zhao et al. [69]; Ciancio 
et al. [70]  

– Solution may not be the best especially 
when there are multiple factors to consider  

– Optimal nodes are then selected to constitute the route 
or schedule of the vehicle  

– Can be trapped in a local optimum instead of 
finding the global optimum 

Augmented 
Greedy  

– Adjustments are made to the priorities of the nodes 
based on the outcome of the Greedy algorithm 

Li and Wang [71]; Almutairi [72]; Bettinelli 
et al. [73]; Kritikos and Ioannou [74]  

– Same issues with the Greedy algorithm 
except that the final solutions might be 
improved Algorithm  – Rerouting or rescheduling is then initiated 

k-Node 
Crossover 
Algorithm  

– Crossover procedure is applied to improve initial 
solution of a heuristic 

Baptista and Tavares [75]; Zhang et al. [76]; 
Zheng et al. [77]  

– Longer running time due to many iterations 
during the crossover  

– A certain number of nodes in the route are randomly 
exchanged prior to recalculation 

Scheduling 
Algorithm  

– More sophisticated decision rule taking multiple factors 
into account is used to prioritise nodes to visit 

Jaw et al. [78]; Weng et al. [79]; Ramchurn et al. 
[80]; Wex et al. [15]  

– Can be trapped in a local optimum instead of 
finding the global optimum  

– Adjustments are made to the priorities of the nodes 
based on the outcome 

Monte Carlo 
Algorithm  

– Once the nodes are prioritised, a certain percentage of 
them are randomised to generate a route or schedule 

Wex et al. [81]; Abdullah et al. [82]; Al-Harthei 
et al. [83]; Wu and Sioshansi [84]  

– Can be challenging to determine the 
appropriate level of randomness and 
number of iterations  

– Instead of a single iteration, multiple iterations are used 
to find near-optimal solutions  

– Running time can be long due to many 
iterations 

Genetic 
Algorithm  

– A meta-heuristic served as a benchmark for assessing 
the performance of other heuristics 

Baker and Ayechew [85]; Okhrin and Richter 
[86]; Zidi et al. [87]; Mguis et al. [88]; Zheng 
et al. [77]; Qin et al. [89]  

– Running time can be long due to many 
iterations  

– Based on the principle of evolution with crossover of 
chromosomes, representing a sequence of nodes in a 
route, to find better solutions 

Clustering 
Algorithm  

– A large problem is first broken down into a number of 
sub-problems, each with many clusters, and solved 
using the exact method or heuristics 

Özdamar and Demir [90]; He et al. [91]; 
Vargas-Florez et al. [92]; Pillac et al. [17]; 
Gharib et al. [93]; Penna et al. [94]  

– Can be challenging in splitting the original 
problem into an appropriate number of 
clusters to obtain optimality  

– Solutions for the sub-problems are then aggregated to 
form the overall solution of the bigger problem  

– Running time can be long due to many 
iterations  
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Pt
i = npti − cpti

(
∑|K|

k=1

∑|V |

v=1
Qt

kvY
v
ki − dti

)

∀i ∈ I − {0, n+ 1}; ∀t ∈ R

(11)  

trvkiY
v
ki ≤ Si ∀v ∈ V;∀i ∈ I − {0, n+ 1}; ∀k ∈ K (12)  

Si+Pt
i+ trvij≤Sj+m

(
1 − Xv

ij

)
∀i∈ I − {n+1}&j∈ I − {0};∀t∈R;∀v∈V;i∕= j

(13)  

Ci ≥ Si + Pt
i ∀i ∈ I;∀t ∈ R (14)  

Ci ≥ 0, Si ≥ 0,Pt
i ≥ 0,Qt

kv ≥ 0 ∀i ∈ I;∀k ∈ K; ∀v ∈ V;∀t ∈ G (15)  

Xv
ij,Y

v
ki ∈ {0, 1} ∀i ∈ I&j ∈ I;∀v ∈ V;∀k ∈ K (16) 

Constraint sets (2) to (5) relate to determining the sequence of de-
mand points visited by each vehicle to deliver the required resources for 
the recovery operations. Two additional dummy points (the starting and 
ending points) are defined for each vehicle (denoted by ‘0’ for the 
starting point and ’n+ 1’ for the ending point). The processing times and 
transportation time from or to these dummy points are equal to zero (i.e. 
Pt∈R

0 = Pt∈R
n+1 = trv

0i = trv
i(n+1) = 0). Constraint (2) guarantees that there is 

exactly one demand point instantly processed after each demand point 
for each vehicle to deliver resources. Constraint (3) ensures that each 
vehicle initially starts from its starting point (i.e. the RC in which the 
vehicle is located). Constraint (4) eliminates the loops in processing the 
demand points by a particular vehicle. Constraint (5) guarantees that if 
an instant predecessor is available for each demand point and each 
vehicle, it would be an immediate successor in this case, unless it is in 
fact the last demand point (demand point n+ 1). 

Constraint (6) establishes the relationship between a covered inci-
dent, the vehicle (v), and the RC (k) from where the vehicle carried the 
resources. Constraint (7) calculates the total quantity of expendable 
resources delivered from RC k by vehicle v. Similarly, constraint (8) 
calculates the maximum quantity of non-expendable resources by a 
vehicle. 

Constraint (9) establishes the relationship between variable Yv
ki and 

Xv
ij. Constraint (10) ensures that the total quantity of resources delivered 

by a vehicle does not exceed its capacity. Constraint (11) calculates the 
processing time required for each non-expendable resource to process 
each demand point. The non-expendable resource usage and the pro-
cessing time of the relief operation at each demand point are assumed to 
have a linear relationship. Each demand point has associated with it a 
normal processing time for each type of non-expendable resource. If the 
quantity of a particular non-expendable resource carried by a vehicle is 
greater than the requirement of a specific demand point, the processing 
time for the demand point is adjusted by a factor cpt

i as described in 
constraint (11). Since multiplication of two decision variables (Qt

kv and 
Yv

ki) makes this constraint non-linear, an auxiliary variable (Ht
kvi =

Qt
kvY

v
ki) with a positive real value is used to linearise this constraint as 

follows: 

Ht
kvi ≤ Qt

kv + m
(
1 − Yv

ki

)
∀i ∈ I − {0, n+ 1};∀k ∈ K;∀v ∈ V; ∀t ∈ R

(12a)  

Ht
kvi ≥ Qt

kv − m
(
1 − Yv

ki

)
∀i ∈ I − {0, n+ 1};∀k ∈ K;∀v ∈ V; ∀t ∈ R

(12b)  

Ht
kvi ≤ mYv

ki ∀i ∈ I − {0, n+ 1}; ∀k ∈ K; ∀v ∈ V; ∀t ∈ R (12c) 

The developed constraints can cover both possible cases. If binary 
variable Yv

ki = 1, then Ht
kvi = Qt

kv. In this case, constraints (12a) and 
(12b) imply Ht

kvi ≤ Qt
kv and Ht

kvi ≥ Qt
kv, respectively. Since m has an 

arbitrary big positive value, constraint (12c) has always been satisfied in 
this situation, and then Ht

kvi = Qt
kv. In the second scenario, if binary 

variable Yv
ki = 0, then Ht

kvi = 0. Since m has an arbitrary big positive 
value, constraints (12a) and (12b) have always been satisfied. Constraint 
(12c) implies Ht

kvi ≤ 0 and since Ht
kvi has a strictly positive real value, 

constraint (12c) ensures that Ht
kvi = 0. 

Constraints (12)-(13) are time-related constraints. Constraint (12) 
ensures that the starting time of a relief operation at each demand point 
is not earlier than the latest transportation of resources from RC to de-
mand point i with vehicle v. Constraint (13) ensures that the starting 
time of the relief operation is not earlier than the earliest arrival time of 
the resources from the previous demand points. Constraint (14) calcu-
lates the completion time of the relief operation at each demand point. 
Constraints (15) and (16) define the domains of employed variables. 

4. Solution approaches 

If non-expendable resources are relaxed and assuming that the pro-
cessing time of operations depends on vehicle rather than resources, our 
model falls into the category of VRP problem. Since the VRP model is 
NP-hard, our model’s complexity is NP-hard too and an optimal solution 
cannot be found for large instances [95]. In addition, decision support 
must be provided quickly in real emergency situations [42] and an exact 
solution or exact solutions cannot be identified in a reasonable amount 
of time for our model even for small to medium cases. Hence, several 
heuristics are developed to provide a high-quality solution within the 
running time limitation in emergency situations. In this paper, six 
heuristics and a mixed heuristic and Clustering algorithm are con-
structed and compared with the genetic algorithm. The details of these 
heuristics are described in the subsections below. 

4.1. Greedy algorithm 

In the Greedy algorithm, we follow the problem-solving heuristic of 
identifying the least weighted completion time choice as a local optimal 
at each stage with the intent of finding a near global optimum. To reach 
the minimum total weighted completion time, it is obvious that demand 
of incidents with high severity value (weight) should be met as early as 
possible. To accommodate this into the algorithm, locations (e.g. in-
cidents/demand points) are sorted by decreasing the order of their 
severity level (wi). Starting from location i with the highest severity 
weight, an incident is allocated to a node (RC or a visited hospital) where 
the node has the least total time. 

In the Greedy algorithm, the decision rule for selecting the next 
incident is based on identifying a node with the least total time which 
incorporates two components: (a) transportation time from capable 
nodes with capable vehicles to the next incident (i), and (b) current 
completion time of capable vehicles. It is worth noting that in this 
method processing time of non-expendable resources for the next inci-
dent (i) is not considered in the decision-making process when selecting 
the most suitable node and vehicle to cover the demand of the next 
incident. However, after selecting the most suitable vehicle to cover the 
next incident (i), the vehicle’s completion time is updated. This is con-
ducted by considering the following elements: (a) transportation time 
from the most suitable node to the next incident (i), (b) current 
completion time of the vehicle, and (c) maximum processing time for 
non-expendable resources regarding incident i. Algorithm 1 describes 
the pseudo code for the Greedy heuristic algorithm. 

The use of the Greedy algorithm in this study has its merit because at 
each level of recursion the size of the problem becomes smaller. The 
algorithm is fast, but there is the issue of â€œcorrectnessâ€ to overcome 
[96,97]. It is obvious that the obtained solution from the Greedy algo-
rithm may not be the best, since the Greedy heuristic operates based on 
sorting the location for incidents by curtailing the severity level of the 
location. It also ignores the operations’ processing times in each location 
in the decision-making process where the next incident to cover has to 
be identified. 

B. Bodaghi et al.                                                                                                                                                                                                                                



International Journal of Disaster Risk Reduction 50 (2020) 101780

7

4.2. Augmented Greedy 

As explained earlier, one of the main contributions of this study is to 
highlight that the number of available non-expendable resources affects 
the processing time and therefore planning of EROs. For example, if a 
vehicle carries three doctors and five nurses as non-expendable re-
sources, and if the next incident requires only two nurses, since the 
remaining three nurses can help to expedite the operations, the pro-
cessing time of this incident is reduced. Therefore, this adjustment 
should be performed on the Greedy algorithm to obtain a more accurate 
schedule. 

Augmented Greedy (Algorithm 2) is developed to apply this adjust-
ment on the output of the Greedy algorithm. In this method, the 
sequence of visiting incidents by each vehicle (which is the output of the 
Greedy algorithm) is considered as an input of the Augmented Greedy 
heuristic. To apply this adjustment, for each vehicle and for every non- 

expendable resource, the difference between the maximum number of 
non-expendable resources which have been used to cover all incidents 
(by the current vehicle) and the demand of each incident (covered by the 
current vehicle) is computed. Following this, the current processing time 
of each incident is updated by multiplying the computed value of the 
difference by cp which is a random reduction coefficient. It is obvious 
that updating the processing time of a node (i) affects the completion 
time of all subsequent nodes visited after node i. Consequently, this al-
gorithm re-calculates the completion time of all succeeding nodes after 
making the adjustment on any node’s processing time. 

The Augmented Greedy algorithm addresses the correctness issue of 
the Greedy algorithm and can produce better result. Owing to the need 
to recalculate the completion time of all succeeding nodes upon 
adjustment of processing time at the proceeding node in every recursion, 
however, the overall processing time is much longer than that of the 
Greedy algorithm. 

Algorithm 1 
Greedy Algorithm. 
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4.3. k-node crossover algorithm 

In the literature, Crossover procedure has been employed to improve 
the heuristic algorithms, where in each iteration the initial solution can 
be improved by applying the Crossover procedure [77]. Crossover 
methods can be implemented as a post-analysis improvement heuristic. 
In the Greedy-based algorithms it is quite possible that selecting the 
most optimal short-term solutions may lead to losing the chance of 
identifying the optimal outcome. Making the local optimal choice at 
each stage does not necessarily result in finding a global optimum and 
thus randomly exchanging the location of k number of nodes might 
improve the identified initial solution. After the scheduling of all 

incidents for each vehicle is determined, we apply the Crossover heu-
ristic to randomly substitute the sequence of k number of locations in 
each iteration. 

In this study, we apply 2-node and 3-node Crossover heuristics on the 
output of the Augmented Greedy algorithm to further improve the 
scheduling of available vehicles, in order to cover the incidents (Fig. 1). 
In a 2-node crossover algorithm, the sequence of each vehicle’s routing 
and its corresponding values of completion time from the Augmented 
Greedy algorithm are imported as inputs. Then, vehicles which have 
been engaged in the recovery operations are identified. Out of all 
engaged vehicles, α per cent is randomly selected, where α = 0.1 in our 
study. If no vehicle is selected, we select at least one vehicle. Afterwards, 

Fig. 1. k-Node Crossover algorithm.  

Algorithm 2 
Augmented Greedy Algorithm. 
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for each selected and engaged vehicle, the sequence of two nodes is 
exchanged randomly. The same process is used in the 3-node Crossover 
method with the exception that three nodes are randomly exchanged for 
each selected and engaged vehicle. Finally, the sum of weighted 
completion time of all vehicles is computed as the value of objective 
function (Z) for the first iteration. The Crossover heuristic is iterated for 
a predetermined number of iterations and the minimum value of total 
weighted completion time of all vehicles is reported as the output of this 
method (Algorithm 3). 

The k-Node Crossover algorithm (Algorithm 3) overcomes the 
shortcoming of the Greedy and the Augmented Greedy algorithms by 
minimising the possibilities of trapping in a local optimum. Conse-
quently, it can give better results than the previous two heuristics. 
Owing to the many iterations during the crossover, however, the 
running time can be much longer. 

4.4. Scheduling algorithm 

Up to this point, the processing time of the next visiting incident is 

not considered in the decision to identify the least weighted completion 
time choice as a local optimal. To incorporate the processing times of 
incidents for each type of non-expendable resource in the decision- 
making process, a Scheduling heuristic is developed. In this algorithm, 
three components constitute the total time which is the basis for making 
decisions on the next incident to be taken care of: (a) transportation time 
from the current node to the next incident (i), (b) current completion 
time of the vehicle at the current node, and (c) maximum processing 
time of non-expendable resources for incident i. The Scheduling heu-
ristics have been previously suggested by [15,79], however, no studies 
have taken the multi-resource scenarios into consideration. 

In this method, we introduce an improved decision rule to provide a 
superior optimal solution. In the Greedy algorithm, the priority of an 
incident is determined using its severity level (wi). Since processing time 
of the non-expendable resources has a direct impact on the completion 
time of a vehicle and subsequently on the objective function (total 
weighted completion time of all vehicles), engaging both severity level 
of an incident and the corresponding average processing time of non- 
expendable resources to define the priority of an incident seems to be 

Algorithm 3 
k-Node Crossover Algorithm. 
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effective. Therefore, in the Scheduling algorithm, each incident’s pri-
ority is determined by increasing the order of Pi

wi
, where Pi is the average 

processing time of non-expendable resources, and wi is the severity level 
of node i. This method addresses the trade-off between processing time 
and severity level for making decisions on the priority of incidents to 
cover. 

Similar to the Augmented Greedy approach, in the Scheduling al-
gorithm once a vehicle is allocated to cover an incident, processing time 
of non-expendable resources for all visited nodes by this vehicle is 
updated. In other words, for each non-expendable resource the 
maximum value of processing time that has been required for each 
visited incident is identified. Then, processing time of all visited nodes 
including the current incident is reduced by this term: a random 
reduction coefficient (cp) times the difference between maximum value 
of demand for all visited incidents by the current vehicle and demand of 
each incident for non-expendable resources. Details concerning the 
Scheduling heuristic are explained in Algorithm 4. 

The Scheduling algorithm has the merit of completing more tasks in a 
given amount of time by running tasks which take less time to complete. 
It thus can have a higher throughput rate than the previous algorithms. 
The downside is that tasks that take longer time to complete might have 
a lower opportunity to run. The search can also be trapped in a local 
optimum instead of finding the global optimum. 

4.5. Monte Carlo algorithm 

The proposed Scheduling heuristic algorithm provides significant 
benefits that can solve parallel vehicle disaster recovery operations. 

However, due to the complexity of the problem, this method might get 
stuck in a local optima. To further improve this method and to overcome 
the informational uncertainties, we have customised the Monte Carlo 
method to deal with this problem. The structure of this method is similar 
to the Scheduling heuristic algorithm except for the decision-making 
process to select which vehicle is going to cover the next incident (i). 
Once a list of capable nodes with capable vehicles is identified, the 
vehicle with the lowest total time is selected to undertake the recovery 
operations for location i in the Scheduling method. The difference here is 
that instead of selecting the vehicle with the least total time, a list of all 
capable vehicles are sorted based on their estimated total time, and then 
β% of vehicles with least total time are screened. Afterwards, one vehicle 
is randomly selected from the screened list. By introducing randomness 
into the process of identifying the local optimal choice and repeating this 
process for a predefined number of iterations, the schedule with mini-
mum total weighted completion time generally outperforms the 
Scheduling method, which seeks the near optimal solution in a single 
iteration. Algorithm 5 delineates the process of applying the Monte 
Carlo method. 

The Monte Carlo algorithm has all the merits of the Scheduling al-
gorithm but minimising the bias against tasks with long completion 
time. As such, it reduces the possibility of trapping in a local optimum 
and can produce a better solution. Nonetheless, it can be challenging to 
determine the appropriate level of randomness and number of iterations. 
The algorithm can also have a long running time due to many iterations. 

4.6. Meta-Heuristic algorithm (GA) 

Meta-heuristic approaches are widely used as an alternative 

Algorithm 4 
Scheduling Algorithm. 
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approach for heuristics in disaster relief operations [77]. In particular, a 
Genetic Algorithm (GA) can be designed as an alternative for proposed 
heuristics and compare the performance of heuristics against GA. An 
evolutionary optimisation algorithm, such as GA, conducts a search 
through the possible solutions by exploiting a population of points in 
parallel rather than a single point [98]. In this study, a chromosome 
represents the sequence of incidents that is assigned to each vehicle and 
it is generated randomly. As an iterative process, the evolution starts 
from a population of a randomly generated sequence of vehicles where 
the population in each iteration is referred to as a generation. In each 
generation, the fitness of every chromosome is evaluated based on: 
firstly, the total weighted completion time of all vehicles (value of 
objective function); and secondly, penalty values that are applied for 
exceeding the capacity of a corresponding RC or vehicle for both 
expendable and non-expendable resources. 

The better fitting chromosomes are stochastically selected from the 
current population, and each individual’s genome is modified to form a 
new generation. In other words, the chromosomes are sorted based on 
their fitness values and a proportion (i.e. survival rate) of chromosomes 
with the highest fitness are selected as the parents for the next genera-
tion. We have adopted the single-point crossover genetic operator in 
which genetic information of two parents is combined to generate new 
offspring. In this study, the crossover point is randomly selected from the 
range of incidents. To maintain genetic diversity from one generation of 
a population of chromosomes to the next, based on the defined mutation 

probability, sequences for visiting the incidents in a chromosome are 
altered from its initial state. This evolutionary process is iterated for a 
predefined period of time. 

Although the genetic algorithms do not guarantee optimality, they 
are likely to provide a solution that is closest to the global optimum. The 
search is not easily trapped in local optima because of the probabilistic 
nature of the solution [99]. As such, the solution obtained using genetic 
algorithm can be used a benchmark for the other heuristics. The 
downside of the algorithm is that the running time can be long due to 
many iterations especially for large complex problems. 

4.7. Clustering algorithm 

Finding the optimal solution using the optimisation model may not 
be practical in some large and highly complex cases [100]. Therefore, 
most heuristic approaches try to improve the initial solution based on 
the predefined rules and identifying the local optimal choice with the 
hope of achieving the global optimal solution. Alternatively, clustering 
approaches have been introduced to manage the complexity of a large 
sized problem by assigning the demand points to a fixed number of 
clusters and then applying the exact mathematical model for the 
reduced number of incidents in each cluster. However, it is still possible 
that the size of a cluster’s sub-problem would be large enough to make it 
NP-Hard and unable to be solved. To overcome this issue, Özdamar and 
Demir [90] proposed a hierarchical clustering and routing procedure for 

Algorithm 5 
Monte Carlo Algorithm. 
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large-scale disaster relief logistics planning through an iterative process. 
Firstly, an attempt is made to solve the main problem within a pre-
defined period of time. If no solution is identified, then the problem is 
divided into two sub-problems and another run is performed. If a solu-
tion is obtained for each cluster, solutions are aggregated to constitute 
the overall solution to the problem. In the case where a feasible solution 
is lacking for both sub-problems, clusters are further broken down into 
smaller sub-problems until the exact model can be solved for all 
sub-problems. This iterative clustering approach is adopted in this study. 
However, there is a major issue to address: how can the incidents be 
clustered to achieve the maximum precision for the aggregated solution? 

We have developed a novel methodology to hierarchically cluster the 
recovery operations where the processing time of non-expendable re-
sources is accounted for. First, for each pair of the nodes in the sequence 
of (i − 1) in the main problem (including RCs and incidents), a related-
ness function (r(i− 1)i) is defined by computing the ratio of the normalised 
severity level (wi) over the normalised total completion time (TC) of 
covering incident i. Total completion time includes the transportation 
time from node i − 1 to i and maximum processing time of non- 
expendable resources for incident i (i.e. tr(i− 1)i + Max

t∈R
(Pt

i)). This func-

tion addresses the trade-off between the processing time of an incident 
and its severity level when deciding to select an appropriate vehicle that 
covers the next incident. Given that the starting point of all vehicles is a 
RC, and a RC might have more than a single vehicle, the relatedness 
value rv

ki is computed for each vehicle v that is available in a RC and an 
incident i. To obtain the relatedness value for two incidents (e.g. i− 1 
and i), since a single vehicle is available in the current incident (i − 1), 
there would be no need to consider the multi-vehicle scenario and r(i− 1)i 

can be computed from the ratio of 
(

wi
TC(i− 1)i

)

. 

Once the relatedness for each pair of nodes is obtained, incidents are 
tentatively allocated to a vehicle using a heuristic method. After 
ensuring that a RC (k) and its available vehicle(s) have sufficient ca-
pacity to supply expendable and non-expendable resources for an inci-
dent, one would be nominated to cover incident i which has the 
maximum relatedness rki to it. This process is repeated for all available 
vehicles. For covering the next set of incidents, similarly, an incident i is 
allocated to the vehicle that is located in node i − 1 where r(i− 1)i is the 
highest. By using this method, total n number of incidents (n ∈ I) are 
broken down to v number of collections (Iv) which will be potentially 
covered by the corresponding vehicle (v). Finally, the completion time 
(Cv) of each vehicle visiting the related nodes Iv is computed and the 
weighted completion time of each node (Zi) is obtained. The total 
weighted completion time of each vehicle Zv

i would be the sum of Zi for 
all incidents that are visited by vehicle v. Aggregating the total weighted 
completion time of all vehicles gives the value of objective function (Z∗). 

Similar to the Augmented Greedy method, completion time of each 
vehicle and the weighted completion time of each incident (Zi) should be 
updated to reflect the fact that where extra non-expendable resources 
are available in a vehicle, they definitely assist in processing the incident 
faster and the completion time of incidents decreases accordingly. 
Updating the processing time for all nodes is performed prior to creating 
sub-problems and their corresponding clusters. 

Considering the fact that scheduling of EROs should be carried out in 
a fairly short time span, and since attempting to identify a solution for a 
cluster is a lengthy process, we limit the maximum number of trials to 
the number of vehicles in a problem. Therefore, for v number of vehicles, 
there are p = v number of sub-problems in the most broken down sub- 
problem. Each sub-problem includes Up number of clusters. In each 
cluster, there are Kp

u, Vp
u, Ip

u number of RCs, vehicles, and incident sets, 
respectively. 

To form a larger problem which includes v − 1 number of clusters, 
two clusters should be merged. We combine the two clusters with the 
lowest value of total weighted completion times (Zv

i ) following the logic 
that an exact model can identify a better solution when more incidents 

are available in a pool. This process is repeated to form sub-problems 
with (v − 1, v − 2, …, 1) number of clusters. It is obvious that a prob-
lem with ‘1’ cluster is the same as the original problem. 

The process of identifying a solution starts with the problem which 
has a single cluster including all vehicles, in other words, the original 
problem. We attempt to solve this problem using the exact mathematical 
model for a predefined period of time to meet a target gap. If a solution is 
identified, the process is terminated; otherwise, the algorithm attempts 
to solve the sub-problem with two clusters. This process continues until 
either a solution is identified for all clusters of a sub-problem, or the last 
sub-problem including v number of clusters delivers no feasible solution. 
Algorithm 6 displays the detailed steps that are involved in the Clus-
tering algorithm. 

The Clustering algorithm has the advantage of finding a solution for a 
large complex vehicle routing and scheduling problem by splitting the 
problem into sub-problems of smaller clusters to solve, which is rela-
tively easier, and combining the outcomes to form a total solution. It can 
provide a good balance between effort and quality of solution [101]. The 
shortcoming is that it can be challenging in splitting the original prob-
lem into an appropriate number of clusters to obtain optimality. Also, 
because of the spilt, running time can be long due to many iterations. 

5. Numerical experiment 

In this section, numerical experiments are developed to evaluate and 
compare the proposed algorithms. To reflect the impact and diversity of 
real-world natural disasters, ten scenarios have been generated. In the 
next section, settings of each experiment are explained. Next, the val-
idity of the developed heuristics, meta-heuristic, clustering, and exact 
models are investigated. Finally, results of solving the developed sce-
narios using the proposed methods are presented. 

5.1. Settings 

Random variables and their distribution are presented in Table 4. 
Since generating random numbers that follow a Normal distribution 
may result in negative values, a sub-routine has been developed to 
regenerate the random numbers when a negative value exists in a set. 
With regard to the capacity of RCs and vehicles for expendable and non- 
expendable resources, Normal distribution is adopted. However, the 
parameters (μ,σ) of this distribution for the aforementioned four random 
variables are selected in way that they suit the problem size. Without 
loss of generality, two expendable and two non-expendable resources 
have been considered in this study. 

The special settings of individual algorithms are presented below: 

5.2. Validation 

The developed exact mathematical model, heuristics, meta-heuristic, 
and Clustering algorithms should be validated prior to putting them into 

k-Node Crossover А 10% 
Number of iterations (rep) 10,000 

Monte Carlo В 30% 
Number of iterations (rep) 10,000 

GA Run time 30 min 
Population size 1000 
Number of generations 500 
Number of chromosomes 100 
Survival rate 70% 
Mutation probability 50% 
k-penalty cost 100,000 

Clustering Run time 2 h 
Target Gap (gapt)  1% 
BigM 1,000,000   

B. Bodaghi et al.                                                                                                                                                                                                                                



International Journal of Disaster Risk Reduction 50 (2020) 101780

13

Algorithm 6 
Clustering Algorithm. 
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practice. Four small sized scenarios are considered for the validation 
process (Table 5): (1,2,1), (1,4,2), (2,5,3), and (2,8,4) in the format of 
(number of RCs, number of incidents, and number of vehicles). Python 
3.6 is employed for evaluating the heuristics, meta-heuristic, and some 
parts of the Clustering algorithm. To program and solve the exact model, 
CPLEX 12.8 is used in conjunction with Python 3.6 API. 

Results of the validation process indicate a satisfactory outcome and 
show consistent solutions for the developed methods. Greedy algorithm 
is not comparable with others as the processing time of a node is not 
adjusted for the cases where extra non-expendable resources are avail-
able to expedite the processing of an incident. However, the smallest 
scenario shows that when processing time of nodes is updated based on 
available non-expendable resources in a vehicle (i.e. Augmented 
Greedy), the total weighted completion time would be the same for all 
methods. The exception here is the 3-node crossover algorithm which 
did not provide a result. It makes sense as there are only two incidents in 
this scenario and applying the 3-node crossover is not possible. We have 
also manually solved the first two scenarios to ensure that the results of 
algorithms are valid. The outcomes of the remaining experiments 
demonstrate that the developed models and methods are valid. 

5.3. Results 

To assess effectiveness and accuracy of the developed methods for 
responding to the EROs, ten scenarios have been developed. To ensure 
that variations of the model inputs are captured in the objective func-
tion, each scenario is analysed under all heuristics for thirty iterations. 
The mean and standard deviation of thirty runs for all heuristics are 
presented in Table 6. The only exception is the Clustering method which 
is evaluated once. Compared to other developed methods, computa-
tional time of Clustering method is so high that its usability for EROs is 
questionable. Results indicate that lack of updating the processing time 
(i.e. Greedy algorithm) where extra non-expendable resources are 
available, leads to ineffective planning of EROs. Furthermore, the k- 
Node Crossover algorithm generally makes some improvements to the 

Table 5 
Assessing the validity of the exact, heuristic, and meta-heuristic models. 

Table 4 
Random variables and their distribution.  

Random Variable Distribution Random Variable Distribution 

Processing time Nex1  ̃N (50, 15) Demand Ex1  ̃U (20,50)
Processing time Nex2  ̃N (50, 15) Demand Ex2  ̃U (20,50)
Travel time ̃N (5, 1) Demand Nex1  ̃U (1,10)
Severity Level (Weight) ̃U (1, 6) Demand Nex2  ̃U (1,10)
CP Nex1  ̃N (0.9,0.02) CP Nex2  ̃N (0.9,0.02)
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output of the Augmented Greedy method. It can be observed that 
incorporating the updated processing time when deciding to select the 
next incident (i.e. Scheduling algorithm) is definitely effective. This al-
gorithm is further improved by randomly selecting a capable vehicle 
among the candidates with the least total completion time (i.e. Monte 
Carlo method), in order to avoid trapping in a local optimum. Finally, 
neither GA nor Clustering demonstrates outstanding performance in 
planning of recovery operations. 

Considering the methods which have been used for developing the 
heuristics, the number of allocated incidents to each vehicle might affect 
the model’s effectiveness. To further investigate this proposition, per-
centage of improvement for each pair of related heuristics against the 
ratio of number of incidents to number of vehicles for various problems 
is presented in Fig. 2. When this ratio increases, it implies that vehicles 
visit a larger number of incidents in a given scenario. Results indicate 
that if more incidents are allocated to a vehicle, the Augmented Greedy 
algorithm can deliver a better solution. The logic behind this finding is 
that the process of adjusting the processing time for an incident in this 
method impacts on the completion time of all subsequent incidents 
which are visited by the same vehicle. Therefore, a vehicle visiting more 
incidents usually improves the total completion time so that all allocated 

incidents are in fact covered. 
The same pattern can be observed for both 2-Node and 3-Node 

Crossover methods. If more incidents are allocated to a vehicle, the k- 
Node Crossover algorithm has further opportunity to identify a better 
solution by exchanging the sequence of the higher number of visited 
incidents. It can also be observed that 3-Node method outperforms the 2- 
Node Crossover when more incidents are visited by a vehicle. Higher 
values of this ratio also lead to higher performance of the Scheduling 
algorithm compared to the Augmented Greedy. This is due to the fact 
that in the Scheduling algorithm, processing time of the next incident is 
involved in the decision making on identifying the next most suitable 
incident to cover. The improved decision making process has a positive 
impact on the total completion time as the required time to complete all 
incidents is reduced accordingly. The same logic applies when the 
magnitude of improvement regarding the Monte Carlo algorithm is 
assessed against the minimum improvement of k-Node Crossover algo-
rithms. Compared to the Scheduling algorithm, the Monte Carlo post- 
analysis algorithm also works relatively better in scenarios that num-
ber of incidents is higher and thus more incidents are allocated to ve-
hicles. However, this method is almost robust when changes in this ratio 
occur. 

Fig. 3. Comparison between the computational time of (a) heuristics, and (b) Procedure 1 (Greedy + Augmented Greedy + Min(K-Node Crossover) and Procedure 2 
(Scheduling + Monte Carlo). 

Fig. 2. Percentage of improvement for developed heuristics.  
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Given that this study investigates the decision support systems for 
ERO, probing the computational time for obtaining a near-optimal 
schedule is crucial. Fig. 3 presents the mean computational time of 
heuristic-based methods for thirty runs. Mean and 95% confidence in-
terval of all runs are presented in A. It is observed that all base methods 
including Greedy, Augmented Greedy, and Scheduling algorithms are 
able to solve the examined scenarios using two Intel Xeon processors 
(2.5 GHz) with 16 GB of RAM in less than a minute. However, the post- 
analysis algorithms including k-Node Crossover and Monte Carlo 
methods where the schedule is being revisited for 10,000 iterations 
trigger the significant increase in computational time (Fig. 3a). There-
fore, we have bundled the computational time of each base method with 
its post-analysis improvement algorithms in two procedures. 

The first procedure includes the sum of computational times of 
Greedy, Augmented Greedy, and minimum computational time of 2- 
Node and 3-Node Crossover methods. The second procedure includes 
the sum of computational times of Scheduling and Monte Carlo algo-
rithms. Although section 5.3 has shown that the second procedure is 
superior in terms of identifying the least total weighted completion time, 
Fig. 3b illustrates that the computational time of this procedure is more 
sensitive to the size of the problem (i.e. number of incidents × number of 
RCs × number of vehicles). Scheduling, however, can be performed 
without engaging the Monte Carlo as the post-optimal improvement 
algorithm, and thus Scheduling provides the best of two worlds in 
delivering a reasonable solution with a fair amount of computational 
time. It is worth noting that clustering has not been considered for this 
analysis as the computational time that is required for this method has a 
very wide range, starting from 30 min for smaller problems to more than 
two days for larger problems in the range of examined scenarios. 

5.4. Case study 

To enable the validation of the proposed model, a case study of multi- 
resource scheduling for emergency operations in the public hospital 

network in the Melbourne metropolitan area was brought forth for 
succinct analysis. The case study assumed a sudden outbreak scenario 
similar to the 2003 SARS coronavirus outbreak in Asia and other parts of 
the world Bodaghi et al. [4]. The Information regarding the hospitals in 
the Melbourne metropolitan area was obtained from the Department of 
Health, Victoria, Australia and the National Health Performance Au-
thority [102]. The validation exercise included 17 hospitals (demand 
points) as listed in Table A2 and portrayed in Fig. 4. Furthermore, the 
case study evaluation assumed two relief centres (RCs) for distributing 
resources. The stipulated RCs being Melbourne’s Tullamarine Airport 
and Moorabbin Airport while transportation was by road for both 
expendable resources (e.g., medical supplies) and non-expendable re-
sources (e.g., surgeons). The destinations were the emergency opera-
tions demand points i.e. hospitals. The simulated case study was deemed 
to be equivalent to emergency operations in a disaster relief scenario. 

In addition, it was assumed that four capable vehicles were available. 
Two vehicle types, namely heavy and light emergency vehicles with 
specific capacities, were included in this validation, i.e. light vehicle 1 
and heavy vehicle 2 were available in Tullamarine Airport, and light 
vehicle 3 and heavy vehicle 4 were available in Moorabbin Airport. The 
release times of vehicles from Tullamarine Airport and Moorabbin 
Airport were randomly generated using a uniform distribution U(0,2). 
The shortest travel time between nodes with an average speed of 40 km/ 
h, was the basis for calculating resource transportation for emergency 
operations at the demand points. 

In this case study, two types of non-expendable resources were 
considered: (a) health professionals (excluding surgeons) for non- 
surgery emergencies, and (b) surgeons for emergency surgery. The 
numbers of health professionals and surgeons available at the Tulla-
marine and Moorabbin Airports were considered (60, 35) and (40, 20), 
respectively. Alternatively, the modelling process made assumptions 
regarding the treatments undertaken by each health professional teams. 
In this sense, each team was stipulated to offer treatment to 40 emer-
gency patients and three resuscitation patients. The two types of 

Table 7 
Results of the comparison of the algorithms on the real case study.  

Algorithms Greedy Updated Greedy 2-N Crossover 3-N Crossover Scheduling Monte Carlo GA Clustering 

Objectives 935 775 775 775 772 757 757 838 
CPU times(s) 0.10 0.08 11.64 10.69 0.10 187.92 1800 7651  

Table 6 
Results of solving ten scenarios using the developed heuristics, GA, and Clustering algorithms. 
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expendable resources considered for emergency operations were (a) 
medical supplies, and (b) surgical supplies. Also, the availability of these 
expendable resources at the Tullamarine and Moorabbin Airports were 
assumed as (6500, 300) and (3500, 200) units respectively. The 
assumption incorporated to the study concerning the demands (in units) 
for each type of resources at each hospital was based on the corre-
sponding area’s population and the average number of emergencies and 
resuscitation patients per month that visited the emergency department 
at each hospital. The processing time (in hours) for the relief operations 
at each hospital have been considered according to the demand, e.g. 10 
min per emergency patient as per the National Health Performance 
Authority. Huber-Wagner et al. [103] studied the duration’s necessary 
for emergency operations during mass casualty scenarios and revealed 
that a mean operation requires an average time of 130 min. 

For the purpose of model validation, it was assumed that resuscita-
tion patients require 130 min for treatment. Any extra volunteer or 
surgeon team member can reduce the processing time of an emergency 
operation to 10 and 15 min, respectively. The severity levels (impor-
tance levels of operations at each hospital) were generated randomly 
using discrete uniform distribution U(1,6). The details of the case study 
are tabulated in Table A3. 

Table 7 shows the results of applying the proposed algorithms on the 
area of interest. The results of the analysis indicates that both Monte 
Carlo and GA algorithm could outperform other algorithms to calculate 
the total completion time of the emergency operations weighted by the 

severity level. Computational time-wise, however, the results indicates 
that the Monte Carlo algorithm could outperform GA algorithm by 90% 
reduction in the CPU time. The Completion time of the case study is 
reported as 757 by Monte Carlo algorithm pertained in 187.92 s. The 
clustering algorithm could pertain objective value function of 838 
within 7651 s which indicates that this algorithm is the less efficient 
method in the emergency response operations. 

The detailed results of the case study is tabulated in Table 8. For 
instance, V1 picks up 25 health professionals and 20 surgeons with 
enough supply of the emergency expendable items from Melbourne 
airport to visit 5 hospitals including Western, Northern, St Vincent, Box 
hill, and Alfred hospitals, respectively. The generated visiting plan for 
the rest of points is shown in Table 8. 

Table 8 
Case study resource allocation.  

Vehicle RC Sequence Expandable 
Items 

Non-expandable 
Items 

T1  T2  R1  R2  

V1  RC1  H16→H15→H12→H3→H14  3045 176 25 20 
V2  RC1  H9→H6→H13→H7  2978 102 31 14 
V3  RC2  H1→H5→H17→H4  1644 70 17 9 
V4  RC2  H11→H10→H2→H8  1692 100 20 10  

Fig. 4. Case study area- Greater Melbourne metropolitan area.  
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6. Discussion and concluding remarks 

At strategic level, during an emergency or disaster response, a relief 
centre is a central command and control facility that is responsible for 
preparing, planning, coordinating, and controlling the EROs. Strategic 
and operational decisions should be, however, made in a short time span 
to protect lives and properties. For this reason, it is crucial to employ 
effective tools and methods to facilitate swift and accurate planning for 
covering all incidents. In the majority of recovery operations, engaging 
non-expendable resources is inevitable. In bushfire emergency response, 
for example, both firefighters and medical crews should be dispatched to 
suppress the fire and assist injured people, simultaneously. A similar 
situation exists as part of the Flexible Home Aged Care package (hospital 
in home plan) where the operations team is required to attend a number 
of calls for assistance when several seniors require immediate attention. 

In the vehicle routing problems that non-expendable resources are 
also involved in emergency response operations, the role of resource 
planning becomes utterly crucial. Based on collected data from incidents 
or direct communication with people who are urgently requiring help, 
the severity of incidents is assessed and the number of non-expendable 
resources are determined for each vehicle in a way that out of all allo-
cated incidents, the one with the maximum demand is also covered. The 
implication of this arrangement is that for other incidents, extra non- 
expendable resources become available. It is obvious that extra avail-
able resources will not stay put and they will help provide assistance to 
process the incidents faster. This is where the main contribution of this 
study stands out: the estimated processing time of incidents should be 
updated in the planning process given that the objective function of 
scheduling models for this type of problem is generally formulated as the 
total weighted completion time of all vehicles. If this key factor is not 
taken into account, incompetent or poor planning will result in either 
over-supplying resources or delays in processing the incidents. 

Adjusting processing time of recovery operations for each incident 
can be undertaken in different planning stages using various methods: 
(1) Solving the problem without adjusting the processing time (Greedy 
method) and then making the adjustments for all incidents and the total 
weighted completion times of all vehicles (Augmented Greedy method); 
(2) As a post-analysis technique and through an iterative method, the 
output of Augmented Greedy algorithm can be further improved (k- 
Node Crossover); (3) Incorporating the adjusted processing time in the 
decision-making process when selecting a vehicle to cover the next 
incident (Scheduling method); (4) Improving the decisions on incident 
selection in a post-analysis process via introducing a random process for 
choosing the best next incident to cover (Monte Carlo method); and (5) 
Breaking down the main problem into sub-problems (clusters) and using 
the exact method to solve the smaller sized problems. This is followed by 
aggregating the optimal values of objective function for all sub- 
problems, in order to obtain the optimal value for the main problem 
(Clustering algorithm). 

Comparing the results of the Augmented Greedy method with the 
original Greedy algorithm clearly indicates that ignoring to update the 
processing time for non-expendable resources results in higher total 
weighted completion time. Therefore, this gap should be filled in plan-
ning and scheduling processes of recovery operations. The question here 
is whether updating the final schedule (Augmented Greedy method) and 
applying an improved methods such as k-Node Crossover is the most 
effective way to tackle this issue. Our results stipulate that although both 
k-Node Crossover methods demonstrate a superior performance 
compared to the Augmented Greedy algorithm, fine-tuning the decision- 

making process of identifying the local optimal choice by considering 
the updated processing time of the next incident (i.e. Scheduling 
method) wields a significant and positive impact on the schedule. We 
have also noticed that since the Scheduling algorithm inherits the 
negative properties of the Greedy method with the possibility of losing a 
better optimal solution as a result of stage-based decision-making, a 
post-analysis method in more effective to address this shortcoming. That 
is the reason Monte Carlo has outperformed all heuristics and delivered 
the most effective solution. Furthermore, the comparison between the 
percentage of improvement among each pair of heuristics reveals that 
heuristics with post optimal improvements provide superior perfor-
mance compared to the original models. Moreover, introducing the 
randomness into the decision model results in an improved solution, 
especially for scenarios that the number of allocated incidents to vehi-
cles is higher. 

In addition to the aforementioned findings, we benchmarked the 
solutions against the meta-heuristic (GA) and clustering algorithms 
which have been cited many times for planning of EROs. It is, however, 
crucial to note that the planning process should be undertaken within a 
reasonable time span to address the requirements of managing recovery 
operations. From the computational time perspective, all scenarios have 
been successfully analysed by the six developed heuristics in less than 
30 min, which is in the acceptable range. The only exception is the 
largest scenarios which took almost 48 min to analyse by the Monte 
Carlo method. That explains why we limit the GA to provide the solution 
in 30 min. As indicated in section 5.3, GA was not successful in providing 
a better solution compared to the heuristics within the specified time 
limit. Therefore, although GA provides a reasonable solution for plan-
ning of various operations across supply chains, for a limited planning 
time span, some reservations should be taken into consideration. 

It is also recommended by several studies to use the Clustering al-
gorithm for planning the recovery operations. The logic behind this 
recommendation is that although breaking down the main problem into 
sub-problems introduces sub-optimal routing solutions, using the exact 
method for solving each cluster might make up the sub-optimality of 
solutions for each portion of problem. Although we have developed a 
novel heuristic method to effectively cluster the problems into more 
relevant sub-problems using the relatedness function between incidents, 
results show no significant advantage of the Clustering algorithm to 
heuristics. In addition, it is worth mentioning that solving the problem 
using the iterative Clustering algorithm could take up more than two 
days to deliver the final solution. As a result, we recommend avoiding 
Clustering algorithms for scheduling of recovery operations where the 
planning period should be sufficiently short. 

Probing the computational time of the defined bundle of base and 
post-analysis improving methods reveals that the first group including 
the combination of Greedy, Augmented Greedy, and k-Node Crossover 
methods is less affected by the size of the problem. Basically, the first 
procedure is recommended for the situations that time is pressing and 
the second procedure would be more appropriate when a superior so-
lution is preferred at the cost of spending a little bit more time on the 
planning process. Scheduling, however, could be considered as a con-
servative approach whereby a reasonable solution is delivered within a 
short time span. 

To summarise the findings of this study into a guideline, managers of 
emergency recovery operations are recommended to (i) apply the rec-
ommended adjustment on operating time. Availability of extra non- 
expendable resources for less severe incidents makes these incidents to 
be covered faster. In other word, one of the proposed algorithms of this 
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study should be employed in the planning process; (ii) avoid using the 
clustering method to plan the recovery operations; (iii) employ the 
procedure 2 for planning when precision of solution is more important 
that the urgency of delivering the solution. If 30 min of computational 
time for planning process is within the acceptable range, managers of 
ERO are recommended to use the procedure 2 when the problem size is 
less than 1200; (iv) use procedure 1 for larger problem size or very short 
time frames of planning process. Following these recommendations 
provides significant benefits to managers of ERO such as optimal 
deployment of resources, obtaining more accurate processing time, 
decreasing the likelihood of over-supplying non-expendable resources 
and thus reducing the cost of operations, and effective selection of a 
solution approach based on the trade-off between the computational 
time and optimality of the solution. 

To further improve the developed methods, future studies can extend 

the proposed algorithms by incorporating the stochastic variables and 
conducting stochastic optimisation to address the uncertainties involved 
in scheduling of recovery operations. Another promising pathway is to 
develop multi-objective models in which the trade-off between the 
processing time and severity level of incidents for selecting the next 
incident to cover is investigated. Furthermore, employing the decom-
position methods to solve the exact model of this problem for large sized 
emergency scenarios might be of great value. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix A. Computational time of Heuristics 

Table A.1 
Computation time and 95% confidence interval of heuristics (in seconds)  

Scenario Parameter Greedy Updated Greedy 2-N Crossover 3-N Crossover Scheduling Monte Carlo 

1 μ 0.06 0.05 10.50 10.34 0.07 165.09 
95% CI - LB 0.05 0.04 10.45 10.24 0.07 164.16 
95% CI - UB 0.07 0.07 10.55 10.43 0.07 166.02 

2 μ 0.05 0.03 10.54 10.50 0.07 171.14 
95% CI - LB 0.05 0.03 10.49 10.43 0.07 170.30 
95% CI - UB 0.05 0.03 10.58 10.56 0.07 171.98 

3 μ 0.08 0.06 23.37 23.20 0.12 347.76 
95% CI - LB 0.08 0.06 23.27 23.09 0.12 345.66 
95% CI - UB 0.09 0.06 23.46 23.30 0.13 349.86 

4 μ 0.09 0.06 23.92 23.78 0.12 370.28 
95% CI - LB 0.09 0.06 23.85 23.69 0.12 368.13 
95% CI - UB 0.09 0.06 23.98 23.87 0.13 372.44 

5 μ 0.14 0.09 42.28 41.99 0.18 615.43 
95% CI - LB 0.13 0.08 42.19 41.84 0.18 609.81 
95% CI - UB 0.14 0.09 42.37 42.13 0.19 621.05 

6 μ 0.15 0.10 43.72 43.32 0.20 697.27 
95% CI - LB 0.15 0.09 43.61 43.17 0.20 693.75 
95% CI - UB 0.16 0.10 43.82 43.47 0.21 700.79 

7 μ 0.30 0.18 99.10 99.28 0.39 1572.03 
95% CI - LB 0.29 0.17 98.76 98.99 0.38 1561.42 
95% CI - UB 0.30 0.19 99.43 99.58 0.40 1582.63 

8 μ 0.32 0.18 102.08 101.91 0.40 1670.65 
95% CI - LB 0.31 0.18 101.79 101.68 0.40 1661.59 
95% CI - UB 0.33 0.19 102.37 102.14 0.41 1679.71 

9 μ 1.85 0.28 175.93 175.89 2.13 1847.72 
95% CI - LB 1.80 0.27 175.44 175.22 2.10 1827.60 
95% CI - UB 1.90 0.29 176.42 176.56 2.17 1867.84 

10 μ 2.99 0.36 207.51 207.92 3.22 2833.32 
95% CI - LB 2.91 0.33 206.68 207.01 3.17 2812.78 
95% CI - UB 3.07 0.39 208.35 208.82 3.27 2853.87   

Table A.2 
Summary of 17 public hospitals considered in the case study simulation.  

No. Hospital name No. of beds Address Location Post Code 

1 Angliss Hospital 100–199 Albert Street Upper Ferntree Gully 3156 
2 Austin Hospital > 500  145 Studley Road Heidelberg 3084 
3 Box Hill Hospital 200–500 51 Nelson Road Box Hill 3128 
4 Casey Hospital 200–500 52 Kangan Drive Berwick 3806 
5 Dandenong Hospital 200–500 105-135 David Street Dandenong 3175 
6 Frankston Hospital 200–500 Hastings Rd Frankston 3199 
7 Maroondah Hospital 200–500 1 Mt Dandenong Rd East Ringwood 3135 
8 Mercy Hospital 100–199 300 Princes Highway Werribee 3030 
9 Monash M.C. >500  246 Clayton Road Clayton 3168 
10 Royal Melbourne >500  300 Grattan Street Parkville 3050 
11 Sandringham Hospital 100–150 193 Bluff Road Sandringham 3191 
12 St Vincent’s Hospital >500  41 Victoria Parade Fitzroy 3065 

(continued on next page) 
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(continued ) 

No. Hospital name No. of beds Address Location Post Code 

13 Sunshine Hospital 200–500 176 Furlong Road St. Albans 3021 
14 Alfred Hospital > 500  55 Commercial Road Melbourne 3004 
15 The Northern Hospital 200–500 185 Cooper Street Epping 3076 
16 Western Hospital 200–500 160 Gordon Street Footscray 3011 
17 Williamstown Hospital 50–99 77b Railway Crescent Williamstown 3016   

Table A.3 
Details of the case study.  

H. No. Expendable resources Non-expendable resources Processing times Severity 

Medical supplies Surgical supplies Health professionals Surgeons Non-surgery emergencies Surgery resuscitation 

T = 1  T = 2  R = 1  R = 2  P1
i  P2

i  Wi  

1 337 12 8 4 7.02 6.51 6 
2 790 29 20 10 6.58 6.29 3 
3 664 25 17 8 6.51 6.78 2 
4 467 9 12 3 6.49 6.51 1 
5 690 28 17 9 6.76 6.75 5 
6 1238 33 31 11 6.66 6.51 6 
7 464 19 12 6 6.44 6.87 2 
8 176 3 4 1 7.33 6.51 1 
9 920 41 23 14 6.67 6.36 6 
10 572 62 14 21 6.81 6.41 4 
11 154 4 4 1 6.42 8.68 6 
12 311 25 8 8 6.48 6.78 3 
13 356 9 9 3 6.59 6.51 2 
14 657 60 16 20 6.84 6.51 1 
15 997 40 25 13 6.65 6.68 5 
16 416 26 10 9 6.93 6.27 6 
17 150 21 4 7 6.25 6.51 2  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2020.101780. 
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