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We evaluated the effect of systemic antibiotics (azithromycin, 
amoxicillin, cotrimoxazole, or placebo) on the gut resistome 
in children aged 6 to 59 months. Azithromycin and cotrimox-
azole led to an increase in macrolide and sulfonamide resist-
ance determinants. Resistome expansion can be induced with a 
single course of antibiotics.

Keywords.  resistome; antimicrobial resistance; randomized 
controlled trial.

Antibiotic use selects for antibiotic resistance in individuals 
and populations [1, 2]. Pediatric infection is treated based on 
clinical symptoms in many rural sub-Saharan African settings, 
potentially resulting in inappropriate antibiotic use [3]. Lack of 
laboratory facilities and symptom-based treatment results in a 
high false-positive rate for use of antibiotics [4, 5]. Although 
the World Health Organization recommends tailoring empiric 
treatment to local resistance patterns, such a strategy is difficult 
with limited availability of resistance data [4]. In rural Burkina 
Faso, children receive nearly 2 antibiotic courses per year, most 
commonly including amoxicillin, cotrimoxazole, and erythro-
mycin [6], which may have important implications for resist-
ance selection. We used data from a randomized, controlled trial 
that evaluated the effect of 3 pediatric antibiotics compared to 
placebo on the gut microbiome [7] to assess the relationship be-
tween antibiotic use and the gut resistome, defined as the collec-
tion of resistance gene determinants in a given environment [8].

METHODS

Complete methods for the trial have been previously described 
(clinicaltrials.gov NCT03187834) [7]. Children were enrolled 
in 2 rural communities of the Health and Demographic 
Surveillance Site in Nouna District, Burkina Faso [9]. The 
study occurred in July 2017. The institutional review boards 
at the University of California, San Francisco, and the Centre 
de Recherche en Sante de Nouna provided ethical approval. 
Written informed consent was obtained from each child’s 
caregiver.

Households with at least 2 children aged 6 to 59 months were 
eligible for inclusion and randomized in a 1:1:1:1 fashion to 
amoxicillin (25 mg/kg/day in twice-daily doses), azithromycin 
(10 mg/kg on day 1 and then 5 mg/kg once daily for 4 days), 
cotrimoxazole (240 mg once daily), or placebo (powdered milk 
and sugar in bottled water). All study arms received 5 days of 
treatment. Within each household, children were randomly 
assigned to either the household’s treatment arm or placebo. In 
the placebo households, children assigned to “treatment” and 
“placebo” received the same drug (placebo). Sample processing 
for resistome analysis was restricted to children who were 
randomized to treatment to assess the direct effect of antibiotic 
use on selection for resistance determinants. Medications were 
prepared as pediatric oral suspension, prepared fresh each day 
and packaged in opaque syringes that were prelabeled with the 
child’s name and study identification number. Treatments were 
administered at a central point in the community and were di-
rectly observed.

Rectal samples were collected 5 days after the last antibiotic 
treatment. Swabs were immediately placed into Stool Nucleic 
Acid Collection and Transport Tubes with Norgen Stool 
Preservative (Norgen, Ontario, Canada). Samples were col-
lected at ambient temperature in the field, then stored at –80°C 
in Nouna until they were shipped to San Francisco. Samples 
were deidentified in the field and placed in a random order for 
processing. All laboratory personnel were masked.

DNA was extracted from the fecal samples using the 
Norgen Stool DNA Isolation Kit (Norgen, Ontario, Canada) 
per manufacturer’s instructions. Double-stranded DNA was 
fragmented, size selected, and converted to Illumina libraries 
using the NEBNext Ultra II DNA Library Prep Kit (E7645) 
according to the manufacturer’s recommendation and then 
amplified with 11 polymerase chain reaction (PCR) cycles. 
Samples were sequenced on the Illumina Novaseq using 150-nu-
cleotide paired-end sequencing. An initial human-sequence 
removal step was accomplished as previously described [10]. 
Another round of human reads removal was performed using 
the very-sensitive-local mode of Bowtie2 (v2.2.4) with the 
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same hg38 and panTro4 reference genomes. The remaining 
nonhost read pairs were then aligned to the MEGARes refer-
ence antimicrobial database using Burrows-Wheeler alignment 
(BWA) with default settings [11]. In order to decrease false-
positive antimicrobial resistant determinant (ARD) identifica-
tion, only ARDs with a gene fraction of >80% were identified 
as present in the sample and included for further analyses. Each 
identified ARD was classified at the class and gene level. For 
each ARD in each sample, the total number of aligned reads 
was summed to create a count matrix with samples in rows and 
classes or gene in columns. A sample was determined to be re-
sistant even if 1 ARD was detected.

We analyzed the effect of antibiotics on selection for genetic 
resistance determinants at the class and gene level. At the class 
level, we used modified Poisson models to estimate risk ratios 
for the presence of genetic resistance determinants by antibi-
otic arm. At the gene level, we calculated Chao1 total resist-
ance gene determinant richness and compared posttreatment 
richness across arms using an analysis of variance (ANOVA) 
and pairwise comparisons for each antibiotic compared to pla-
cebo with a t test. We used permutational multivariate analysis 
of variance (PERMANOVA) to assess differences in genetic 
resistance determinant composition across study arms using 
Euclidean distance to avoid overweighting of rare determinants, 
with principal coordinates analysis used to graphically depict 
the centroids for each group. All analyses were conducted in R 
version 3.4.3 (R Foundation for Statistical Computing).

RESULTS

Of 124 children randomized, 120 had a rectal swab collected 
posttreatment (Supplementary Figure 1). Baseline characteris-
tics have been previously reported [7] and were broadly similar 
across study arms (Supplementary Table 1). Antibiotic com-
pletion was high in all study arms [12]. Supplementary Table 
1 displays the posttreatment prevalence of genetic resistance 
determinants to each antibiotic class by study arm. In the pla-
cebo arm, the most common genetic resistance determinants 
were to beta-lactams (73.3%), whereas sulfonamide resistance 
was the least common (3.3%).

Beta-lactam resistance was not significantly different in any 
antibiotic arm compared to placebo (Supplementary Tables 
2 and 3). Azithromycin samples were more than twice as 
likely to have genetic resistance determinants to macrolides 
(risk ratio [RR], 2.61; 95% confidence interval [CI], 1.55 to 
4.42; P = .0003) compared to placebo. Sulfonamide resistance 
was higher in samples from children in all antibiotic arms 
compared to placebo. Samples from children randomized to 
cotrimoxazole were more than 3 times as likely to have ge-
netic resistance determinants to trimethoprim (RR, 3.29; 95% 
CI, 1.08 to 9.95; P = .04) compared to placebo. Trimethoprim 

resistance did not differ in samples from children randomized 
to azithromycin or amoxicillin.

Chao1 richness at the gene level was not significantly 
different across study arms (P  =  .10). Mean richness was 
higher in amoxicillin-treated (42.6 vs 23.9, P  =  .02) and 
cotrimoxazole-treated (40.1 vs 23.9, P  =  .049) children 
compared to placebo-treated children (Figure 1). Richness 
was not significantly different between azithromycin-treated 
children and placebo-treated children (P = .15). The compo-
sition of genetic resistance determinants did not significantly 
differ by PERMANOVA in children randomized to amox-
icillin (P  =  .26), azithromycin (P  =  .47), or cotrimoxazole 
(P = .053; Supplementary Figure 2).

DISCUSSION

We observed a rapid and dramatic increase in the prevalence 
of macrolide resistance determinants following a 5-day course 
of azithromycin. The preferential effects of antibiotics on sus-
ceptible strains compared to resistant strains leads to the en-
richment of resistant organisms. In these same children treated 
with azithromycin, the composition of the gut microbiome 
was significantly altered with a reduction in bacterial diversity 
compared to children treated with placebo [7]. We were unable 
to detect a significant increase in resistance determinants of 
other classes of antibiotics with a single course of either amoxi-
cillin or cotrimoxazole in the studied pediatric population. The 
prevalence of beta-lactam resistance was high, which could be 
explained by high levels of background amoxicillin use outside 
of the study [6]. Taken together, these results demonstrate that 
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Figure 1.  Box plot of Chao1 richness of resistance genes by antibiotic arm. 
Individual points represent individual samples.
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azithromycin may lead to more prominent microbiological 
changes in the gut than other antibiotic classes.

Selection pressure on antibiotic-sensitive organisms with 
antibiotic use predicts a reduction in the richness of antibiotic 
resistance gene determinants. However, none of the antibiotics 
evaluated in this study led to a decrease in resistome richness. 
Instead, the administration of both amoxicillin and cotrimoxa-
zole led to an expansion of the number of antibiotic resistance 
gene determinants. Such observation can be explained if some 
or most of the bacteria being affected by these antibiotics harbor 
multiple resistance genes. This is a mechanism that can give rise 
to cross-resistance. Azithromycin administration did not lead 
to an expansion of the resistome. This finding is consistent 
with the results seen in prior antibiotic resistance studies where 
cross-resistance has not been observed despite multiple mass 
distributions of azithromycin to children for either trachoma or 
childhood mortality [1].

Several limitations of this study must be considered. The 
presence of genetic resistance determinants does not neces-
sarily correlate with functional resistance. We could not assess if 
resistance genes occur in potentially pathogenic organisms and 
if they confer functional resistance to antibiotics. The sample 
size included in the study was relatively small, and CIs were 
wide. CIs for sulfonamides were particularly wide, due to the 
low prevalence of sulfonamide resistance genes in the placebo 
arm. The prevalence of beta-lactam resistance genes was high, 
limiting statistical power to evaluate differences across arms. 
The follow-up duration of this study was short and suggests that 
antibiotic use selects for resistance in the short term but does 
not provide data on longer-term effects on the resistome. The 
prevalence of genetic resistance determinants may return to 
normal over time.

Systemic antibiotic use may rapidly select for class-specific 
resistance genes after treatment. Resistome expansion can be 
induced with a single course of antibiotics. These results high-
light the importance of regional antimicrobial resistance sur-
veillance programs to inform antibiotic use policy.
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