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Abstract

Purpose—To explore whether targeted next generation sequencing (NGS) of liquid biopsy in 

advanced non-small cell lung cancer (NSCLC) could potentially overcome the innate problems 

that arise with standard tissue biopsy, like intratumoral heterogeneity and the inability to obtain 

adequate samples for analysis.

Methods—The Scopus, Cochrane Library, and MEDLINE (via PubMed) databases were 

searched for studies with matched tissue and liquid biopsies from advanced NSCLC patients, 

analyzed with targeted NGS. The number of mutations detected in tissue biopsy only, liquid 

biopsy only, or both was assessed and the positive percent agreement (PPA) of the two methods 

was calculated for every clinically relevant gene.
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Results—A total of 644 unique relevant articles were retrieved and data were extracted from 38 

studies fulfilling the inclusion criteria. The sample size was composed of 2000 mutations tested in 

matched tissue and liquid biopsies derived from 1141 patients. No studies analyzed circulating 

tumor cells. The calculated PPA rates were 53.6% (45/84) for ALK, 53.9% (14/26) for BRAF, 

56.5% (13/23) for ERBB2, 67.8% (428/631) for EGFR, 64.2% (122/190) for KRAS, 58.6% 

(17/29) for MET, 54.6% (12/22) for RET, and 53.3% (8/15) for ROS1. We additionally recorded 

data for 65 genes that are not recommended by current guidelines for mutational testing. An extra 

category containing results of unspecified genes was added, with a PPA rate of 55.7% (122/219).

Conclusion—Despite many advantages, liquid biopsy might be unable to fully substitute its 

tissue counterpart in detecting clinically relevant mutations in advanced NSCLC patients. 

However, it may serve as a helpful tool when making therapeutic decisions. More studies are 

needed to evaluate its role in everyday clinical practice.
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Introduction

The advent of tyrosine kinase inhibitors (TKIs) has been a milestone in the treatment of 

advanced non-small cell compared to previous standard therapy (Vestergaard et al. 2018). 

Current guidelines have already adopted their use as first- and second-line treatment options 

(Hanna et al. 2017; Ettinger et al. 2018; Planchard et al. 2018). TKIs are designed to 

interrupt specific molecular pathways that promote tumor survival and growth (Levy et al. 

2012). Genetic tumor profiling is, therefore, necessary to reveal mutations that enhance 

those pathways, allowing oncologists to effectively match TKI agents to every patient’s 

individual tumor molecular landscape. This rapid shift towards personalized medicine is 

reflected by the most recent diagnostic recommendations. Mutational testing of genes 

including EGFR, ALK, ROS1, and BRAF is currently considered standard for all patients 

with advanced NSCLC, regardless of their individual characteristics (Kerr et al. 2014; 

Kalemkerian et al. 2018; Lindeman et al. 2018). In addition, further testing for genes 

including ERBB2, RET, MET, and KRAS is also encouraged as part of a more extensive 

laboratory workup, when available, due to their implications in tumor prognosis and 

treatment response against newer promising targeted agents (Kerr et al. 2014; Kalemkerian 

et al. 2018; Lindeman et al. 2018).

The current gold standard method for genetic tumor profiling is tissue biopsy. However, its 

use remains problematic for numerous reasons. Lung biopsy is an invasive procedure with a 

notoriously high incidence of both major and minor complications (Overman et al. 2013; 

Heerink et al. 2017). In addition, tissue biopsy yields inadequate DNA material for genetic 

analysis at a significant rate (VanderLaan et al. 2014). Intratumoral heterogeneity is also a 

well-established phenomenon (Vogelstein et al. 2013) that inherently limits its accuracy in 

capturing a complete snapshot of the tumor’s mutational status, with potentially different 

results from different biopsy sites. Apart from the initial tumor genetic profiling, frequent 

monitoring for the emergence of new mutations or genetic modifications is also vital in 

detecting treatment resistance and managing it accordingly, as in the case of the EGFR 
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T790M mutation and the use of third-line TKIs such as osimertinib (Mok et al. 2016). The 

aforementioned characteristics among others, make serial tissue biopsies contextual and 

potentially functionally nonrepresentative of the overall mutational burden. As a 

consequence, using tissue biopsy as a guiding tool for targeted therapy may limit its full 

efficacy.

Liquid biopsy is a promising complement/alternative to the classic tissue biopsy. By 

assessing blood samples for the presence of either circulating tumor cells (CTCs) or 

circulating tumor DNA (ctDNA), it provides the necessary genetic material to perform 

tumor mutational analysis (Mayo-de-Las-Casas et al. 2018). Unlike many tissue biopsies, 

liquid biopsies are far less cumbersome with greatly reduced risk for complications. 

Performing repeated biopsies over time is, therefore, more feasible and may represent the 

overall tumor mutational burden accurately (Santarpia et al. 2016). However, liquid biopsy is 

not yet widely adopted as a standard diagnostic method because of inadequate data 

supporting its use (Kalemkerian et al. 2018; Lindeman et al. 2018). As a result, guidelines 

suggest it as an alternative to tissue biopsy only in settings where tissue availability becomes 

the limiting factor for molecular testing (Kalemkerian et al. 2018; Lindeman et al. 2018).

While current recommendations support mutational testing only for a few key cancer-driver 

genes, it is already evident that obtaining a more complete mutational profile is most likely 

the future direction of targeted therapy. NSCLC displays a heterogeneous mutational profile 

across different patients (Tan et al. 2014). Overall, current NSCLC clinical trials assess the 

mutational status of over 190 different genes, according to the My Cancer Genome online 

database (https://www.mycancergenome.org). Next generation sequencing (NGS) is a 

method of DNA analysis that allows parallel sequencing of numerous small DNA fragments, 

thus making concurrent testing for a very wide mutational gene panel possible (Sabour et al. 

2017). It is currently deemed as an acceptable sequencing method for various instances 

during NSCLC mutational testing (Lindeman et al. 2018). Therefore, combining liquid 

biopsy with NGS offers the potential to obtain a comprehensive tumor genetic profile 

through minimally invasive means. Generally, NGS can either be directed towards specific 

genes through a predetermined gene panel (targeted NGS) or towards the whole genome or 

exome of the patient. The former represents a more appealing choice for daily clinical 

practice, through lower cost, faster results and higher sensitivity with lower detection 

thresholds (El Achi et al. 2019).

The objective of this systematic review is to examine whether liquid biopsy is a suitable 

alternative to tissue biopsy mutational testing, by reviewing studies that compare matched 

targeted NGS-analyzed tissue and liquid biopsy samples of advanced NSCLC patients.

Methods

Search and study selection

We accessed relevant articles by searching through the MEDLINE (via PubMed), Scopus, 

and Cochrane Library databases. The following search algorithm was applied to the 

MEDLINE and Scopus electronic databases: “(next generation sequencing) AND (liquid 

biopsy OR circulating OR cfDNA OR ctDNA OR CTC) AND lung”. Cochrane Library was 
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searched by combining the search terms “next-generation sequencing” and “lung”. No 

publication date or any other type of filters were used. In addition, we manually searched 

through the references of eligible articles for any relevant articles not already included in the 

original search. The last search was performed on April 24th, 2020. Two researchers (S.E. 

and G.G.) performed the initial screening independently and assessed studies for eligibility. 

Any disagreements were resolved by reaching a consensus. We initially screened the 

abstracts of all studies and accepted those that included NSCLC in their objective and 

contained liquid biopsy and NGS as part of their methodology. Review articles were 

excluded during the screening process.

In the process of assessing the eligibility of studies that passed screening, we first excluded: 

(1) case reports, (2) articles written in any language other than English and (3) studies that 

employed whole-genome NGS instead of targeted NGS. We subsequently included studies 

that: (1) involved human subjects (and not cell lines or artificial samples), (2) included 

patients with advanced stage NSCLC (stage IIIb, stage IV according to the AJCC Staging 

System), (3) included both tissue and liquid biopsies in their methodologies, (4) had 

matched tissue and liquid biopsies and (5) had NGS performed in both tissue and liquid 

biopsy samples. Finally, eligible studies were excluded from the final analysis if they 

presented data in a way that did not allow us to properly extract it. For example, we omitted 

articles with mixed data from different types of cancers other than the subtypes of NSCLC, 

different NSCLC stages or results that didn’t take matched samples into account.

Data collection

To collect data from studies included in the final analysis, we created specialized 

spreadsheets via Microsoft Excel®. Two researchers (S.E. and G.G.) extracted all data 

independently. Their results were compared for all relative parameters and disagreements 

were resolved by reaching a consensus. We examined all papers included in the final 

analysis for the following parameters: (1) number of mutations detected in both tissue and 

liquid biopsy via targeted NGS, (2) number of mutations detected in tissue but not liquid 

biopsy via targeted NGS, and (3) number of mutations detected in liquid but not tissue 

biopsy via targeted NGS and (4) total number of patients that we extracted data from (not 

necessarily equal to the total of number patients in the study). We also recorded identifying 

study characteristics, such as (5) the country where each study was conducted and (6) the 

year of publication, in addition to the technical specifications of the NGS assays employed 

for the analysis of both liquid and tissue biopsies, including (7) the sequencing platform, (8) 

the gene panel, (9) the average coverage and (10) any allele frequency or copy number 

alteration threshold for mutation calling as set by the authors.

The mycancergenome.org database was used as a reference point to determine the clinical 

relevance of each individual gene. Only genes whose mutational status has been an 

eligibility criterion for clinical trials, regarding either NSCLC or one of its subtypes (e.g. 

lung adenocar-cinoma, squamous cell lung carcinoma), were selected. In those cases where 

mutations were clearly indicated as driver or non-driver, we recorded data from the former 

category only. In studies where the authors did not compile the results from matched tissue 

and liquid biopsy samples themselves, we extracted data by matching results from the 
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available supplementary data tables. We applied any individual allele frequency confidence 

thresholds for variant calling set by the authors in cases where it was clearly stated. All 

available data were grouped by gene only, rather than by each individual mutation and 

different mutations of the same gene were categorized together.

During our analysis, we only included data derived from advanced NSCLC patients that 

were the result of targeted NGS. We did not consider data from patients with other 

malignancies, early stage NSCLC or data derived from any method other than targeted NGS 

in cases where they were co-presented with relevant results. Moreover, if patients were 

characterized as stage III instead of IIIa or IIIb, they were not included during data 

extraction. To avoid introducing bias by recording duplicate data, we skipped data collection 

from identical patient populations already included in the analysis through a different study. 

Between studies with identical patient populations, we favored those that presented the 

greatest amount of extractable data. We also omitted any data where cytologic analysis of 

pleural fluid was used in lieu of primary tumor biopsy, but accepted tumor biopsies from 

either primary or metastatic sites. It should be noted that we did not apply any limit to the 

time difference between tissue and plasma sampling. Finally, studies with extractable data of 

interest for less than two patients were excluded from the final qualitative synthesis.

Statistical analysis

We compared the performance of tissue biopsy and liquid biopsy, by calculating the positive 

percent agreement (PPA) between the two. Since tissue NGS analysis was not validated in 

every study included in the final analysis, it could not be considered as a reference method 

but rather as a best alternative to liquid biopsy NGS. Therefore, sensitivity, specificity, 

positive predictive value, and negative predictive value were inappropriate comparison 

measures in this instance and were not calculated. In addition, data where no mutation was 

found in both tissue and liquid biopsy NGS were often omitted by the authors or could not 

be reliably extracted based on the information provided. Thus, negative percent agreement, 

despite being an appropriate statistical measure, could not be calculated.

Results

Study selection

A total of 780 relevant articles were retrieved by searching the literature. The last search was 

performed on April 24th, 2020. After removing 136 duplicate studies, we screened the titles 

and abstracts of 644 articles. Of them, 420 were deemed irrelevant, while 224 were 

determined to be relevant and their full-text articles were assessed for eligibility. After 

assessment against the preset inclusion and exclusion criteria, 155 articles were excluded: 4 

were written in a non-English language, 21 were case reports, 7 employed whole genome 

instead of targeted NGS, 6 did not involve human subjects, 16 enrolled only early stage 

NSCLC patients, 31 lacked either tissue or liquid biopsies, 4 had non-matched tissue and 

liquid biopsy samples, and 40 utilized a method other than NGS for either of the two biopsy 

types. An additional 26 studies did not provide enough information to unequivocally 

determine their eligibility and thus had to be excluded as well. The remaining 69 studies 

fulfilled all eligibility criteria and were selected for the data extraction process. Twenty-one 
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of them presented their data in a manner that did not allow selective extraction of relevant 

data only. Data were extracted from 48 studies. Five of them were found to enroll 

populations that had already been included in the analysis through a different study and their 

results were not counted. Another five studies had extractable data for only n = 1 patient and 

were also excluded from the data synthesis. The final analysis was performed on the 

remaining 38 studies. The complete process is summarized in Fig. 1.

Individual data and data synthesis

A total of 38 non-case report studies that compared matched tissue and liquid biopsy 

samples of advanced NSCLC patients were individually analyzed and their data were 

subsequently synthesized (Couraud et al. 2014; Thress et al. 2015; Vanni et al. 2015; Kaisaki 

et al. 2016; Pécuchet et al. 2016; Paweletz et al. 2016; Rachiglio et al. 2016; Villaflor et al. 

2016; Schwaederlé et al. 2017; Xu et al. 2017; Yao et al. 2017; Iwama et al. 2017; Dagogo-

Jack et al. 2018; Veldore et al. 2018; Yang et al. 2018; Li et al. 2018; Liu et al. 2018; 

Vollbrecht et al. 2018; Garcia et al. 2018; Toor et al. 2018; McCoach et al. 2018; Guo et al. 

2018; Hu et al. 2018; Jin et al. 2018; Sabari et al. 2018; Papadopoulou et al. 2019; Tong et 

al. 2019; Lam et al. 2019; Aggarwal et al. 2019; Ge et al. 2019; Wu et al. 2019; Chen et al. 

2019; Supplee et al. 2019; Tang et al. 2019; Streubel et al. 2019; Horn et al. 2019; Pritchett 

et al. 2019; Tran et al. 2019). The technical aspects and characteristics of every study 

included in the final analysis are presented in Table 1. The sample size was composed of 

2000 mutations tested in matched biopsies derived from 1141 patients. Data were collected 

for 74 different gene categories of interest. It should be noted that all 38 eligible studies 

employed cfDNA/ctDNA analysis as their liquid biopsy method. No studies utilized analysis 

of CTCs instead, despite being included during the initial screening, as they were deemed 

ineligible for other reasons.

Genes recommended for mutational testing by current guidelines

As previously mentioned, the most recent guidelines recommend mutational testing in 

advanced NSCLC for the genes ALK, BRAF, ERBB2 (HER2), EGFR, KRAS, MET, RET 

and ROS1(Kerr et al. 2014; Kalemkerian et al. 2018; Lindeman et al. 2018). The sample 

sizes were 84 samples for ALK, 26 for BRAF, 23 for ERBB2, 631 for EGFR, 190 for 

KRAS, 29 for MET, 22 for RET, and 15 for ROS1. Cumulative PPA rates were calculated to 

be as follows: 53.6% (45/84) for ALK, 53.9% (14/26) for BRAF, 56.5% (13/23) for ERBB2, 

67.8% (428/631) for EGFR, 64.2% (122/190) for KRAS, 58.6% (17/29) for MET, 54.6% 

(12/22) for RET, and 53.3% (8/15) for ROS1. The results of every individual study are 

comprehensively presented in Fig. 2.

Genes not recommended for mutational testing by current guidelines

Data were also recorded for 65 genes of clinical interest that are not yet recommended by 

current guidelines for mutational testing. Total sample sizes for all these genes in addition to 

the eight genes recommended for testing by the current guidelines are presented in Fig. 3, 

while cumulative PPA rates are calculated and displayed in Fig. 4. Additional data regarding 

the PPA results from every individual study can be found in Supplemental Fig. 1.
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Unspecified genes

An extra category was added for cases where the authors did not provide a detailed 

breakdown of their results for every gene but their data were otherwise eligible for inclusion 

and data extraction. This category contained 219 samples, with 132 samples coming from 

Pritchett et al. (Pritchett et al. 2019), 86 samples coming from Aggarwal et al. (Aggarwal et 

al. 2019) and 1 sample from Couraud et al. (Couraud et al. 2014). The cumulative PPA for 

this category was calculated at 55.7% (122/219).

Discussion

To our knowledge, this is the first systematic review in the literature comparing targeted 

NGS analysis of plasma and tissue biopsies in advanced NSCLC. Our findings support the 

notion that targeted NGS in liquid biopsy falls short in detecting mutations compared to 

NGS in tissue biopsy in these patients. Most genes provided inadequate sample sizes to draw 

any reliable conclusions. Exceptions were EGFR and TP53, constituting together more than 

half of the overall sample size (n = 2000) used in the analysis, with 631 and 432 individual-

tested mutations respectively. Both displayed similar PPA rates of 67.8% (428/631) for 

EGFR and 63.2% (273/432) for TP53. On the other hand, genes like ALK, BRAF, ERBB2, 

KRAS, MET and ROS1 that are currently included in the mutational testing guidelines all 

had significantly smaller sample sizes and, with the exception of KRAS, all provided 

unsatisfactory PPA rates of less than 60%. These data seem to be in accordance with the 

previously reported suboptimal performance of targeted NGS detecting gene translocations 

in ctDNA, as the breaking point each time might not be included in the limited NGS panels 

applied for liquid biopsies (Schram et al. 2017). Given the current data, NGS liquid biopsy 

seems unable to completely substitute its tissue biopsy counterpart, regardless of the gene 

being tested. Despite this, moderately satisfactory results as in the case of EGFR may 

solidify its position as a useful tool to complement tissue biopsy in certain clinical scenarios.

As NGS analysis in plasma is generally less sensitive than in tissue biopsy (Rolfo et al. 

2018; Li et al. 2019), there was no surprise that a significant number of cases in our review 

revealed specific mutations during tissue biopsy molecular genotyping and failed to do so in 

their associated liquid biopsy. Mutation analysis on tissues is a well-standardized procedure 

where, in contrast to ctDNA, morphologic correlation to enrich tumor DNA is feasible; 

enrichment is achieved with macro-microdissection of areas containing a high percentage of 

tumor cells to reach the high initial DNA load necessary for optimal tumor genotyping 

(Shiau et al. 2014). On the other hand, ctDNA is only a tiny fraction of the total cell-free 

DNA and negative mutation testing might mean anything from true absence or low release of 

tumor DNA into the blood (e.g. due to response to therapy), a technical error of the NGS 

assay itself or a mutation not covered by the selected plasma assay (NGS panels for plasma 

can be less comprehensive than for tissue molecular analysis) (Weber et al. 2014; Merker et 

al. 2018; Rolfo et al. 2018; Aggarwal et al. 2019).

In contrast, this review also reported cases that showed rare specific mutations in the blood 

but not in the associated tissue biopsy, although this finding was less common. Although 

considered the current standard of care, tissues may fail to provide adequate DNA load for 

tumor genotyping in a significant number of cases. This may be due to insufficient sampling 
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or sufficient sampling of low tumor cellularity or poor quality caused by chemical 

degradation (VanderLaan et al. 2014; Hagemann et al. 2015). Such failures are more 

common when CT-guided transthoracic core biopsies or bone biopsies are performed 

(VanderLaan et al. 2014). In addition, ctDNA may reflect intratumoral heterogeneity better 

than tissue-derived DNA, as the former may contain circulating apoptotic/necrotic DNA 

derived from tumor clones residing in both primary and distant sites, thus could reveal 

mutation(s) undetected from a tumor biopsy that lacks the relevant clones (spatial 

heterogeneity). In cases that plasma was collected after tumor biopsy, discordance could also 

be due to tumor evolution in time reflected in ctDNA but not in the tissue (temporal 

heterogeneity) (Weber et al. 2014; Siravegna et al. 2017). Of interest, mutations detected 

during ctDNA analysis might be irrelevant to lung cancer (e.g. clonal hemopoiesis; other 

benign/premalignant/malignant processes) (Chae and Oh 2019). Similar to false negative, 

NGS ctDNA assays can also result in false positive results (Rolfo et al. 2018).

When looking at the technical specifications of the NGS assays used for tissue and liquid 

biopsy analysis, it becomes evident that there was significant heterogeneity, not only across 

different studies but also within the studies themselves. This finding strongly reflects the 

lack of standardization in NGS assays (Jennings et al. 2017), which might be hindering its 

widespread implementation into daily practice. Molecular coverage can be a significant 

factor affecting the sensitivity of NGS assays (Petrackova et al. 2019). Many studies in our 

analysis employed coverage of less than 1,000x, especially in the analysis of tissue samples, 

and while no standard parameters have been established, it may be considered inadequate 

(Jennings et al. 2017; Petrackova et al. 2019), and could thus explain some of the false-

negative results in tissue biopsies. On the other hand, there is a trade-off between the amount 

of genes that can be covered and the analytical sensitivity achieved by high molecular 

coverage, which is especially important in liquid biopsy analysis (Karachaliou et al. 2015). 

Consequently, studies that utilized very wide gene panels may had to compromise depth and 

sensitivity, while others may have had to limit their gene selection, resulting in liquid biopsy 

samples with false negative findings in both cases.

In an era where advanced NSCLC patients are mostly diagnosed with small biopsies or 

cytology rather than surgery or do not undergo biopsy at all for causing discomfort or 

potential minor/major complications, liquid biopsy incorporation into clinical practice may 

be exceptionally helpful for patient management (VanderLaan et al. 2014; Travis et al. 2015; 

Heerink et al. 2017; Siravegna et al. 2017; Mayo-de-Las-Casas et al. 2018). CtDNA tumor 

genotyping could be a vital supplement or alternative due to its minimally invasive nature, 

allowing for routine genetic follow-up (Santarpia et al. 2016). In treatment-naive advanced 

NSCLC patients, ctDNA status has been associated with both survival and response to first- 

or second-line TKIs (Ai et al. 2016; Pécuchet et al. 2016; Phallen et al. 2019). In advanced 

NSCLC patients on TKIs that present with disease progression, ctDNA mutational analysis 

can identify the mechanisms of resistance and predict patient benefit from specific targeted 

treatments, such as third-line TKIs in the case of T790M mutation (Thress et al. 2015; 

Vollbrecht et al. 2018; Iwama et al. 2018). In advanced NSCLC patients on immunotherapy, 

liquid biopsy has also been reported to predict response to treatment (Giroux Leprieur et al. 

2018; Rizvi et al. 2018). Besides ctDNA, CTCs could also be of value for monitoring 
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disease, assessing prognosis and predict response to TKIs, chemotherapy or immunotherapy 

in NSCLC patients (Chinniah et al. 2019; Gallo et al. 2019; Tamminga et al. 2019).

Of interest, several studies have used diverse polymerase chain reaction (PCR) methods (e.g. 

droplet digital PCR; allele-specific PCR), rather than NGS, on liquid biopsy to assess 

prognosis, response to treatment and resistance in advanced NSCLC patients and compared 

plasma-based results with the ones on tissue biopsy (Weber et al. 2014; Karachaliou et al. 

2015; Zhu et al. 2015; Lee et al. 2016; Sundaresan et al. 2016). PCR is cheaper, requires less 

technical expertise (e.g. no bioinformatics support), and has more rapid turnaround time than 

NGS; it is thus ideal when a selected treatment is urgent, e.g. osimertinib in cases of T790M 

mutation (Sacher et al. 2016; Postel et al. 2018; Rolfo et al. 2018). However, it is much less 

comprehensive than NGS, being able to detect only one or just a few mutations; in contrast, 

NGS can provide a more complete tumor profile detecting single-nucleotide variants, 

insertions/deletions, translocations, and amplifications (Hagemann et al. 2015; Postel et al. 

2018; Rolfo et al. 2018). Although NGS has traditionally been considered less sensitive than 

PCR, authors in recent reports, which reflect improvement in the NGS technology and 

standardization, describe similar sensitivity for the detection of driver and resistance 

mutations (Li et al. 2019) or an even better performance of NGS in the case of T790M 

(Dono et al. 2019).

This review has several limitations. Most of the studies included were retrospective or 

heterogeneous in their design. Studies used variable NGS panels which could differ between 

plasma analyses across different studies, but also between plasma and tissue analysis within 

the same study. Meanwhile, many of them focused on a limited gene spectrum. As a result, 

not all genes are covered uniformly in our cumulative results and data for a significant 

number of genes are extremely limited. Both older and recent studies were included, 

although the latter reported higher sensitivity/specificity, possibly because of the 

improvements in NGS technology and standardization. The authors also applied diverse cut-

offs to report variants in their NGS experiments. In many studies, plasma and tissue were not 

collected at the same time (time difference between them ranged from 0 days to many 

months). Lastly, our total patient population included both treatment-naive and patients 

under TKI treatment, ranging from adequate responders to first-line treatment to patients 

progressing after multiple TKI trials. Thus, the results from different studies are not directly 

comparable to one another.

The latest guidelines support the use of ctDNA mutation analysis in cases when tissue 

biopsy is not performed or provides inadequate DNA for analysis (Kalemkerian et al. 2018; 

Lindeman et al. 2018). More evidence is needed to support its use in treatment-naive 

patients or patients under TKI that undergo progression, e.g. due to EGFR T790M or C797S 

mutations, and there is the recommendation to follow-up a negative result with reflex tissue-

based testing whenever possible (Kalemkerian et al. 2018; Lindeman et al. 2018; Rolfo et al. 

2018; Li et al. 2019). In this direction, recent studies have attempted to provide more clinical 

validity/utility of testing the ctDNA of advanced NSCLC patients with NGS (Laufer-Geva et 

al. 2018; Sabari et al. 2018; Leighl et al. 2019; Aggarwal et al. 2019; Li et al. 2019). Dual 

plasma and tissue-based targeted NGS testing detects more mutations than each one 
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separately, thus more patients can be treated with targeted therapies (Leighl et al. 2019; 

Aggarwal et al. 2019).

An inherent weakness of NGS is the failure to detect epigenetic modifications affecting gene 

expression without altering the base sequence (Fernandez-Marmiesse et al. 2017). The 

techniques used to reveal these modifications may significantly degrade the already limited 

genetic material available for sequencing (Gai and Sun 2019). As a result, choosing 

sequencing over other applications of the isolated tumor genetic material may still provide 

an incomplete picture of the mechanisms involved in treatment response and tumor behavior, 

even if both tissue and liquid biopsy are utilized.

Conclusion

In conclusion, most advanced NSCLC patients are unresectable and are diagnosed with 

small biopsies or cytology, both of which may have insufficient DNA for molecular analysis. 

This systematic review showed that targeted NGS in plasma shows inferior performance in 

detecting mutations compared to tissue biopsy in advanced NSCLC patients. However, given 

the fact that technology around ctDNA mutation analysis with NGS will most likely 

continue to be improving the years to come, accumulating evidence in the form of 

prospective studies, randomized clinical trials and systematic reviews/meta-analyses will 

soon result in re-evaluation of ctDNA clinical validity and utility in advanced NSCLC. 

Targeted NGS testing on ctDNA has the potential to become a highly accurate diagnostic 

modality for the presence of actionable mutations in treatment-naïve and resistant to TKIs 

patients or for the selection for clinical trials, as shown in the most recent publications on the 

field. The field is rapidly evolving, but current retrospective data show a synergistic and 

clinical utility to both methodologies when clinically feasible.
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Fig. 1. 
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow 

diagram of study selection
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Fig. 2. 
Positive percent agreement (PPA) rates of genes recommended for mutational testing. A 

table representation combining a bubble chart of the sample sizes with a heat-map 

representation of the PPA rates of every individual study included in the analysis, in 

chronological order, according to the date of first online publication. Only genes 

recommended for mutational testing by the most recent guidelines are displayed
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Fig. 3. 
Gene sample sizes. A bar chart representation of the total sample sizes of every gene 

included in the final analysis
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Fig. 4. 
Gene cumulative positive percent agreement (PPA) rates. A bar chart representation of the 

cumulative PPA rates for every gene, when taking into account all studies included in the 

final analysis
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