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A B S T R A C T

The analysis of county-level COVID-19 pandemic data faces computational and analytic challenges, particularly
when considering the heterogeneity of data sources with variation in geographic, demographic, and socioeco-
nomic factors between counties. This study presents a method to join relevant data from different sources to
investigate underlying typological effects and disparities across typologies. Both consistencies within and varia-
tions between urban and non-urban counties are demonstrated. When different county types were stratified by
age group distribution, this method identifies significant community mobility differences occurring before, dur-
ing, and after the shutdown. Counties with a larger proportion of young adults (age 20–24) have higher baseline
mobility and had the least mobility reduction during the lockdown.
Introduction challenges: for instance, counties have fundamental differences in
The COVID-19 pandemic has showcased the need for a multidisci-
plinary exploration, interpretation, and presentation of data. In com-
parison with the SARS-CoV-1 outbreak from 2002 to 2004, advances in
cloud storage, analytic infrastructure, and platforms for dissemination of
information have dramatically expanded the data resources available for
studying virus transmission in communities, as well as the interplay be-
tween individual and geographical factors, including the socio-political
landscape. Policy experts increasingly seek to leverage data, machine
learning, and cloud computing in their response strategies. Unfortu-
nately, data heterogeneity, a dearth of data standards, and poorly
interoperable data-sharing platforms complicate the quality and avail-
ability of analyzable data, marring both data value and methodological
reproducibility.

These challenges notwithdtanding, the New York Times (TNYT)
developed a live data repository with daily county-level coronavirus
cases and deaths [1]. County-level data has emerged as the primary
geographical level of analysis, self-contained for reporting purposes
while additionally responsible for the execution of epidemic policy
response. Moreover, disaster funding is allocated at the county-level.
Analyzing data at the county-level has significant benchmarking
dies and Planning, Massachusetts
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geographic, demographic, political, and socioeconomic characteristics,
which lead to differing and unique epidemiological trajectories that go
uncaptured in a static pooled analysis. In response to this, the U.S Centers
for Disease Control and Prevention (CDC) in 2011 created a Social
Vulnerability Index (SVI) aimed at quantifying the resilience of com-
munities to disasters and disease outbreaks [2], an index that has been
expanded throughout this pandemic. Based on these indicators, the CDC
has identified 220 “most vulnerable” counties and other jurisdictions that
are at highest risk for outbreaks, with consequent impact on federal
resource distribution, aid, and policy.

However, without a deep understanding of the underlying variation
across the counties and the states, modeling leads to error, bias, and
flawed interpretations, leading to downstream deleterious impacts on the
ability for a community – and the nation – to respond to this crisis. A
recent paper from Bosancianu and colleagues [3] found that a county’s
political leaning, social structures, and local government effectiveness
also explain, in part, COVID-19mortality. These findings cannot solely be
explained by the urban/rural divide, nor racial and ethnic disparities,
between counties [4,5]. County-level analysis has similarly demonstrated
a link between political beliefs and compliance with social distancing [6],
as well as connections between COVID-19 transmission to air pollution
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and other factors [7]. A robust analytical system capable of identifying
granular patterns and trends, track county-level case incidence, mortal-
ity, and excess mortality, and thereby disentangle causal, mitigative, and
correlative effects [8], is critical for healthcare resource allocation during
this and future pandemics.

This project introduces a methodology to specifically address the
computational and analytical challenges of aggregating county-level
heterogeneous data sources for COVID-19 research. This captures the
first steps necessary to reliably frame and analyze county-level data,
including incorporation of higher resolution, individual-level data in
analysis. The purpose of this study is to summarize publicly available and
relevant COVID-19 data sources, to address the benchmarking challenge
from the data heterogeneity through clustering, and to classify counties
based on their underlying variations. Through these methodologies,
greater understanding of the spread of COVID-19 and future pandemics
may be attained, leading to better data-driven policies.

Data & methods

We represent socioeconomic characteristics by integrating multiple
county-level data sources (Table S1). These include baseline measures
from population census data, geographical information systems data,
business pattern censuses, and other sources that report relatively time-
invariant variables. Spatial data was collected by quantifying geograph-
ical attributes per county and integrating this with other datasets. County
land area is enumerated through evaluation of county geometry from
TIGER/Line Shapefiles, with subsequent estimation of county-level
population density (1000 people per square km). The CDC publishes
spatial data representing the top 500 cities’ boundaries ranked by pop-
ulation. Using spatial geometry, the intersection of county and city bor-
ders are evaluated to approximate the total urban area. Based on the total
county-level urban area, areas that were greater than 25%were classified
as “urban” while the rest were classified as “non-urban”.

We calculated county-level total population, gender-, race-, and age
group distribution using 2018 population estimates. Using data reported
from the Small-Area Life Expectancy Estimates Project (USALEEP),
county-level average life expectancy was estimated as a proxy for local
quality-of-life differences [9]. Further, education was represented as the
percentage of adults with a bachelor’s degree or higher (2014–2018) as
reported by the U.S. Census Bureau. We further aggregated the age
groups1 and computed underlying typologies using clustering tech-
niques. K-means clustering is an unsupervised machine learning method
that partitions observations into k groups (as clusters) based on their
distance to the group means (as clusters’ centroids) [10]. It is one of the
most common non-hierarchical clustering methods [11]. We first iden-
tified the optimal number of clusters, denoted by k, by computing the
silhouette score in line with Lloyd et al. and then generated categorical
variables as typology indicating different age distributions across
counties.

Recent studies identify the importance of the timing of COVID-19
spread in different counties [12]. Another analytical challenge is how
to take these varying timelines into account when comparing virus
transmission across different counties. Recent studies identify the
importance of the timing of COVID-19 spread in different counties [12].
TNYT live data repository reports the county-level cumulative COVID-19
case and death counts daily. Multiple measures were then quantified at
the county-level, including: [a] cumulative cases; [b] cumulative deaths;
[c] date of first case(s); [d] date of first death(s); [e] number of days since
the first case(s). Two additional indicators were calculated by combining
the above direct measures with other baseline measures: [f] case rate,
representing the cumulative number of confirmed cases per 100 k local
population; [g] death rate, reporting the cumulative number of deaths
1 Age group 1 ¼ Age 0–9, group 2 ¼ Age 10–19, group 3 ¼ Age 20–29, group
4 ¼ Age 30–39, group 5 ¼ Age 40–49, group 6 ¼ Age 50–59, group 7 ¼ Age
60–69, group 8 ¼ Age 70–79, group 9 ¼ Age 80 and above.
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per 100 k local population. The death rate was selected given underlying
geographical disparities in case reporting and testing mentioned by
previous studies [13]. Finally, the slope of the growth in death rate over
time was estimated via a linear fit for each county.

Human mobility was evaluated as a dependent and independent
variable during the pandemic, with particular emphasis on how mobility
changed responding to local policy and affected outbreak trajectory.
County-level mobility change was quantified using exposure indices
derived from PlaceIQ Movement Data based on mobile phone data [14].
The county-level device exposure index (DEX) is a proxy for local human
mobility, which reports the county-level average spatial-temporal
co-existence of unique mobile devices. This index measures daily
average exposure to other people and/or crowds, reflecting local social
distancing policy and compliance. DEX measures the absolute change of
mobility density, demonstrating both weekly patterns and county-level
variations. To generate a less-noisy and comparable measure across
counties, values were computed by normalizing the county-level DEX
time-series raw data to enable cross-county comparison.

Findings

County population characteristics and pandemic outcome
The mechanism with which urbanization impacts vulnerability to a

pandemic and the subsequent health outcomes is not fully elucidated.
Between the correlation matrices for urban and non-urban environments,
consistency is seen but with subtle variation (Fig. 1). Bothmatrices reveal
a correlation between some baseline measures: counties with higher
educational attainment have higher income levels and life expectancy.
Race and sex have a weaker correlation with income, unemployment,
and education in urban areas compared to non-urban areas. When
looking at the correlations between baseline measures and pandemic
outcome measures, counties with a comparatively larger population,
higher income and education attainment, and/or life expectancy had the
earliest cases. Consistent correlations were observed between case rate
and population, density, unemployment, income, and education.

Urban/non-urban disparities

Fig. 2 provides an overview of how the COVID-19 pandemic hit
different areas of the United States. Our study identifies the initial urban
outbreaks that occurred during the COVID-19 pandemic, including
metropolitan regions such as Pacific Northwest, Southern California,
Northeast (Tri-state and New England Area), Great Lakes, Texas Triangle,
Front Range (Colorado), Florida, and Gulf Coast. Evaluation of these
geographical patterns suggests that urban areas may not be the “epi-
centers” but rather the “vanguards” of pandemic spread [15]. Fig. 3a and
b reveal the disparities between urban and non-urban counties in terms
of variation in death rate over time, as well as in number of days from the
first local death. Notably, non-urban counties have steeper slopes than
urban counties, are hit later in the total pandemic timeline, and experi-
ence death rates higher than in urban areas. Fig. 3c bins the counties by
death rate slope, highlighting that most counties are classified as
non-urban areas, and that these had a long-tail distribution of death rate
growth slope as compared to urban counties. Fig. 3d compares the den-
sity curves of the two county types, demonstrating the more dispersed
death rate slope variations in non-urban counties.

Age typology and mobility changes reacting to the pandemic

The K-means clustering algorithm labels all counties into three groups
using age group distribution typology. As Fig. 4 indicated, Type A (in red)
represents counties with a predominantly young population, defined as
in their 20s. Type B (in blue) represents counties with more older adults
(age � 60). Type C (in green) represents most counties, which contain
relatively “typical” age patterns. This method highlights dynamic pat-
terns in county-level age distribution differences versus traditional
analytical methods.

We identify three phases for each county according to its normalized



Fig. 2. U.S. county-level geometry with urban counties (with bold boundary)
and colored by the sequence of its first case (the redness indicates how early the
first case occurred).

Fig. 1. Correlation heatmaps among county-level variables in urban and non-urban counties. Colors indicate correlation coefficients between variables (warm colors
indicate positive correlation and cold colors indicate negative correlation). (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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human mobility changes (Fig. 5). Phase one prior to March 2020, during
which most counties experienced increasing mobility density. Phase two
occurred in March, when most counties witnessed drastically reduced
local mobility density, reaching a nadir in early April. Finally, phase
three began in early April, marking a slow return to mobility pre-
pandemic. Counties with different age group distributions demonstrate
various mobility changes before, during, and after the U.S. Federal
Government announced the national emergency onMarch 13th. Counties
with a largely young population (Type A in red) saw less mobility
reduction (Fig. 6). During the “shelter-in-place” policy implementation
period in which most places experienced a drastic decline in mobility,
these counties had the largest drop in mobility compared to other
counties (in green and blue). Furthermore, in the third phase, as busi-
nesses have started reopening, these counties demonstrated a relatively
similar normalized mobility change as Type B and the largest return of
absolute mobility.

Discussion

This study contributes to both data integration and analytical
methods that are critical for pandemic research. Analyzing demographic,
geographical, and socioeconomic characteristics can inform the local
public health response and decision-making [16]. However, such
comprehensive insights require multi-disciplinary and long-term efforts
to collect, integrate, and analyze data from heterogeneous sources.
Limitations of data sources and quality bemire analysis and interpreta-
tion, since representativeness and quality depend on particular sources
and collection methods. Such data variations bring challenges for inte-
grating heterogeneous data relevant to this pandemic. For example,
3

county-level demographic and socioeconomic census provide long-term
baseline measures, but often lack high temporal frequency and spatial
granularity. Mobile phone data, as another example, provide nearly
real-time digital representation of human mobility at high spatiotem-
poral granularity, but suffer from noisy data and underlying sampling
bias. That said, our study extends the exploration of information sources
and integration methods considering there is no central source for all
available data.

This study demonstrates the clustering technique using health-related
data for pandemic research. Identifying the underlying county typology
provides critical value in comparing health outcomes across counties
[17]. Recent systematic review of K-means clustering in air pollution
epidemiology-related literature has demonstrated significant utility for
typology discovery and knowledge mining [18]. Further, K-means clus-
tering is widely used for population segmentation analysis, classifying
underlying subgroups with an eye toward evaluating specific healthcare
demands and policy interventions [19]. Particularly at the county-level,
previous studies have implemented clustering techniques to analyze
various data sources relating to demographic, geographic, environment,
and socioeconomic determinants of health and disease. Two use case
applications of clustering include discovery of underlying patterns based
on high-dimensional data [20,21] and prediction of counterfactuals for
population health policy intervention [22]. According to the Situation
Report& Public Health Guidance published by Johns Hopkins University
on March 19th, 2020, people over 60 and those with chronic health
conditions are at the highest risk for COVID-19 complications [19].
Though this simple measure evaluates the percentage of the population
aged 60 and above, it may fail to capture more dynamic county-level age
distribution differences. Clustering technique may identify underlying
county types defined by age group distributions. In the future, we plan to
scale up the clustering method by integrating more variables to identify
county typology at higher dimensions.

There is no singular source of human mobility data. Multiple digital
product vendors, data brokers, and research institutes have published
mobility data or processed metrics, including PlaceIQ, SafeGraph, Des-
cartes Labs, Apple Mobility Trends Report, and Google Community
Mobility Reports [14,23–26]. Product provider-generated mobility mea-
sures, such as data shared by Apple and Google, are limited to data
collected by their own digital product line (e.g., Google Maps or Apple
Maps), customer segments, and user-product interactions. The DEX index
from PlaceIQ data only represents a fraction of the actual population as
samples. Even though such data sampling processes are randomly con-
ducted for estimating human mobility, understanding sampling biases,
population representativeness, and the resulting accuracy requires amore



Fig. 4. U.S. counties colored by classified age group distribution typology based on clustering results.

Fig. 3. County-level population-adjusted cases and death rate slope distribution.
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Fig. 6. Box plot of local mobility change grouped by age pattern type and time
period (before, during, and after shutdown).

Fig. 5. Normalized county-level human mobility changes. The group average changes (defined by the age pattern typology) are in bold-dash lines colored accordingly.
Two vertical lines represent the median dates when counties experienced maximum and minimum human mobility.
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in-depth investigation, possibly with other human mobility-related data
from different sources as validation. Moreover, integration of data be-
tweenmultiple sources is complicatedby vendor-specificmethods for data
reporting, collecting, sharing, sampling, aggregation, and quantification.
Further opportunities exist with regard to integration of mobility data
with specific events, such as election or protests [27]. The humanmobility
data presented here may not fully reflect the compliance (or lack thereof)
to local stay-at-home orders and the effects of social distancing [28].

This study only evaluated data from January 22nd to May 15th. The
results and interpretations only represent this specific period and may
not necessarily translate to future resurgence of the pandemic. While data
is updated on TNYT and the PlaceIQ data portals daily, the descriptive
summary, clustering results, and death growth rates change with each
update. This raises questions on the trade-off between timeliness and
accuracy, which is a core challenge in real-time or near real-time data
analysis. We excluded New York City (NYC) from this analysis. We
believe it would be more appropriate to study NYC in a separate research
for several reasons. TNYT’s data reports NYC differently by treating it as
one entity without specific counties including New York County (Man-
hattan), Kings County (Brooklyn), Bronx County (The Bronx), Richmond
County (Staten Island), and Queens County (Queens). Besides, since NYC
was the epicenter during this study’s time frame, it has much greater
numbers of cases and deaths that will skew the overall distribution.
5

In this preliminary study, a simple outcome measure (death growth
rate since local first death) was used; the focus was primarily on
modeling the independent variables and county baseline characteristics.
Future iterations of this method will evaluate various outcome measures,
such as those integrating death growth curve modeling, for instance Refs.
[29]. Other future investigations include examining age-adjusted death
rate stratified by race, ethnicity, and sex, and estimating excess mortality
based on historical county-level non-COVID-19 deaths.

Conclusion

This study presents integration of various data sources to investigate
the drivers of the community spread of COVID-19 based on county ty-
pologies. Both similarities and variations between urban and non-urban
counties are demonstrated by the methodology. While previous findings
reveal possible geographical clusters of COVID-19 cases at the county-
level, our study indicates this is from the underlying typology based on
high-dimensional variables. Counties vary by geographic, demographic,
and socioeconomic characteristics, with associated collective behavior
during a pandemic.

COVID-19 has accelerated data sharing at scale to crowdsource
knowledge generation that can inform national and international policy.
We showcased a method for data integration to investigate the spread of
the pandemic in the United States. The dissonance in presentation be-
tween urban and non-urban areas was highlighted, as well as the impact
of population age and mobility during the lockdown. Just as policy oc-
curs at levels from local to (inter)national, so too must data analysis: this
study is a first step toward that end.
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Appendix

Table S1
Data Collection

Data Year Source
6

U.S. major cities boundary
 2019
 U.S. Centers for Disease Control and Prevention 500 Cities Program

U.S. COVID-19 data
 2020
 New York Times

Exposure indices
 2020
 PlaceIQ Movement Data

Population estimates by age, sex, race, and Hispanic origin
 2019
 U.S. Census Bureau

Life expectancy
 2015
 U.S. Small-area Life Expectancy Estimates Project

Unemployment rate
 2018
 U.S. Bureau of Labor Statistics, Local Area Unemployment Statistics (LAUS)

Median household income
 2018
 Census Bureau, Small Area Income and Poverty Estimates (SAIPE) Program

County business patterns
 2020
 U.S. Census Bureau

County boundary
 2017
 U.S. Census Bureau TIGER/Line Shapefile

Education attainment
 2018
 American Community Survey 5-year average county-level estimates
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