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ABSTRACT
Aim: The aim of this study was to investigate whether the compositionality of the lower airway microbiota
predicts later exacerbation risk in persons with COPD in a cohort study.
Materials and methods: We collected lower airways microbiota samples by bronchoalveolar lavage and
protected specimen brushes, and oral wash samples from 122 participants with COPD. Bacterial DNA was
extracted from all samples, before we sequenced the V3-V4 region of the 16S RNA gene. The frequency of
moderate and severe COPD exacerbations was surveyed in telephone interviews and in a follow-up visit.
Compositional taxonomy and α and β diversity were compared between participants with and without
later exacerbations.
Results: The four most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria and Fusobacteria in
both groups, and the four most abundant genera were Streptococcus, Veillonella, Prevotella and Gemella.
The relative abundances of different taxa showed a large variation between samples and individuals, and
no statistically significant difference of either compositional taxonomy, or α or β diversity could be found
between participants with and without COPD exacerbations within follow-up.
Conclusion: The findings from the current study indicate that individual differences in the lower airway
microbiota in persons with COPD far outweigh group differences between frequent and nonfrequent
COPD exacerbators, and that the compositionality of the microbiota is so complex as to present large
challenges for use as a biomarker of later exacerbations.
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Introduction
COPD exacerbations are often caused by bacterial and viral respiratory infections with common pathogens
such as Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis [1]. Before
next-generation sequencing was made available, these microbes were detected by growth in cultures and
later PCR. PCR studies suggested the aetiology could be multi-microbial, with frequent detection of
multiple bacteria and/or viruses [2–4]. However, not all COPD exacerbations show clinical or microbial
signs of infection. Exacerbation-associated bacteria have been cultured from sputum obtained in clinically
stable COPD, giving rise to a still unresolved debate on whether colonisation is a pathogenic factor for
later exacerbation [5]. The finding of a diverse lung microbiome has led to the hypothesis that
exacerbations are caused by a dysbiosis in the airway microbiome, and that differences in baseline
microbiota might help explain the difference between the frequent and infrequent exacerbator type [6].

Some previous studies comparing sputum microbiota between stable and exacerbated state in COPD
indicate there are differences between disease states, but the findings are inconsistent [7–12]. And, two
previous retrospective studies indicated that the sputum microbiota in the stable state was different in
patients prone to exacerbations compared to patients who do not exacerbate [13, 14]. However, sputum is
invariably fraught by contamination of microbes from the upper airways, which is both difficult to adjust
for and potentially interferes with our interpretations of the lower airway microbiota.

To address the question of whether the stable-state lower airway microbiota is predictive of later COPD
exacerbation, a study should include both COPD patients known to exacerbate and not, sample the lower
airways directly, and include a prospective longitudinal follow-up of exacerbation events. The current study
is to our knowledge the first such study with this methodology.

Methods
Study population
COPD participants in the Bergen COPD Microbiome (MicroCOPD) study were recruited among previous
participants in the Bergen COPD Cohort Study [15] and the GenKOLS Study [16], in addition to
volunteers from the outpatient clinic at the Department of Thoracic Medicine, Haukeland University
Hospital. The protocol for the MicroCOPD study is previously published [17].

To be included, all participants had to be >40 years of age. In the current study sample the youngest
participant was 49.5 years upon inclusion. The COPD diagnosis was verified by experienced
pulmonologists based on spirometry, respiratory symptoms and disease history. Participation was
postponed in individuals that had been treated for a respiratory exacerbation within the last 2 weeks or if
they had ongoing symptoms of exacerbation according to modified Anthonisen criteria [18]. We excluded
individuals deemed not fit for bronchoscopy, namely those who had an O2 saturation <90% despite
oxygen supplementation, CO2 tension >6.65 kPa in arterial blood gas analyses, increased risk of bleeding,
known allergy towards the premedication or cardiac risk factors as specified in the protocol [17].
Participants were asked about their current medication, smoking history, number of exacerbations treated
with systemic steroids or antibiotics and exacerbation-related hospital admissions in the preceding year. All
participants underwent spirometry after inhalation of 0.4 mg salbutamol, followed by bronchoscopy. In the
MicroCOPD study, a total of 130 participants with COPD were included. For the current analyses, only
the 122 participants from the post-pilot phase of the MicroCOPD study were included.

The MicroCOPD study was approved by the regional ethical committee (REK Vest case number 2011/
1307). All participants provided oral and written consent.

Microbial sampling
Prior to bronchoscopy, all participants were asked to gargle 10 mL of PBS for oral wash (OW) sampling.
Bronchoscopy was performed through oral access. Topical anaesthesia (lidocaine) was delivered by oral
spray formulation prior to the procedure and per-operatively through a catheter within the bronchoscope’s
working channel. Three protective specimen brushes were collected in the right lower lobe (rPSB). The
three brushes were cut off using sterile scissors and placed in an Eppendorf tube with 1 mL of PBS.
Protected bronchoalveolar lavage (BAL) was performed in all participants with FEV1>30% of predicted:
two fractions each containing 50 mL of PBS were installed through a Combicath sterile catheter with a
sealed tip, in the right middle lobe and aspirated through the same sterile catheter. The median retrieval
was 33 mL in the group that had no exacerbations and 26 mL in the group that had exacerbations
(p=0.04, Mann–Whitney U-test). For the current study we used the second fraction of BAL (BAL2), which
usually had the highest yield. All samples from one participant (OW, BAL2, rPSB) used the same bottle of
PBS, and for each participant we analysed one negative control sample from this bottle. A more detailed
explanation of handling of negative control samples is presented in the supplementary text.
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DNA extraction and 16S sequencing
The detailed protocol for laboratory processing is published [19]. Briefly, bacterial DNA was extracted by
enzymatic lysis followed by processing though the FastDNA Spin Kit. Sequencing of the V3-V4 region of
the 16S rRNA gene was carried out according to the Illumina 16S Metagenomic Sequencing Library
Preparation guide. The V3-V4 region was PCR amplified using 45 cycles and prepared for a subsequent
8-cycle index PCR step using specific primers. The samples were pooled and diluted before 2×300 cycles
of paired-end sequencing was performed using reagents from the MiSeq reagent kit v3 (Illumina Inc., San
Diego, CA, USA).

Exacerbation follow-up
We collected information on health-seeking behaviour, use of antibiotics and oral steroids in structured,
quarterly telephone interviews for 12 months after the bronchoscopy. All participants were also offered a
follow-up examination 1–1.5 years after inclusion where we also collected exacerbation history.
Exacerbations were self-reported, but only counted if the exacerbation led to any administration of
antibiotics and/or oral corticosteroids or hospitalisations (moderate-to-severe exacerbations). Dates
reported in the telephone interviews and the physical follow-up examination were used to confirm that the
event had not already been recorded and to separate one exacerbation from another. When information
on hospitalisation was contradicting, the reason for admittance was unclear (for instance hospital
admittance without administration of antibiotics), or the time point for an exacerbation leading to
hospitalisation was unknown, the digital hospital records were consulted.

Bioinformatic analyses
Bioinformatic analyses were performed with QIIME 2 [20] (versions 2018.8, 2018.11, 2019.4, 2019.7,
2020.2) and R (versions 3.5.0 and 3.6.0). Sequencing data from the entire MicroCOPD study (including
samples not included in the current analyses) were imported batched by Illumina runs into QIIME 2
(version 2018.8) from Casava 1.8 paired-end demultiplexed fastq format. Denoising was performed using
the Divisive Amplicon Denoising Algorithm version 2 (DADA2) software package [21] (via q2-dada2),
and sequences were further processed with VSEARCH [22] (via q2-vsearch) for additional chimera
removal and then merged to one amplicon sequence variant (ASV) table (QIIME 2, version 2018.8).

All ASVs representing <0.005% of reads (fewer than 3000 reads) were removed, as they were deemed likely
to represent sequencing noise [23]. The ASV table was exported from QIIME 2 into R for bioinformatic
identification and removal of contaminants with the package Decontam [24], where we used the
prevalence-based method with a threshold of 0.3. A more detailed explanation of the data curation and
handling of contaminants are given in the supplementary text.

TABLE 1 Participant characteristics at baseline by exacerbation status during follow-up

Variable Exacerbation
group

No exacerbation
group

Exacerbation
unknown

Comparison

Subjects n 46 59 17 NS
Female 45.7% 47.5% 29.4% NS
Age years 67.2±7.2 68.5±7.3 64.3±7.4 NS
Smoking status NS
Daily 19.6% 27.1% 23.5%
Ex-smoker 78.3% 72.9% 76.5%
Never 2.2% 0% 0%

FEV1 % pred 46.1±17.0 60.4±17.3 68.3±22.6 p<0.01
FEV1/FVC 0.40±0.12 0.49±0.11 0.45±0.12 p<0.01
CAT-score# 19.4±8.1 15.5±7.5 12.5±6.4 p=0.01
PaO2

kPa¶ 9.4±1.2 9.8±1.2 9.6±1.2 NS
Exacerbation ⩾2 previous
year

32.6% 10.2% 5.9% p<0.01

Daily use of inhaled
corticosteroids

69.6% 39.0% 35.3% p⩽0.01

Daily use of oral steroids 6.5% 3.4% 5.9% NS

Data are presented as % or mean±SD, unless otherwise stated. The comparisons were between the
exacerbation and no exacerbation groups only, and were tested using t-tests and Chi-squared tests. NS:
not significant; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; CAT: COPD Assessment
Test; PaO2

: arterial oxygen tension. #: Two missing values; ¶: three missing values.
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The ASV table was then filtered to contain only samples included in the present study. Taxonomy was
assigned using a classifier trained on the Human Oral Microbiome Database [25]. All ASVs that were
unassigned to phylum level, were checked with the NCBI BLAST tool [26], and all nonbacterial ASVs
were removed. Remaining ASVs were aligned with mafft (via q2-phylogeny) and a phylogenetic tree was
constructed with fasttree2 [27] (via q2-phylogeny). Sequences were rarefied at a sampling depth of 1000
prior to α (within sample) and β (between samples) diversity analyses to ensure equal sampling depths
(via q2-diversity).

Statistics
Differentially abundant features (i.e. genera and ASVs) and differences in compositionality were analysed
using Analysis of Composition of Microbes (ANCOM) [28] (via q2-composition), balance trees [29] (via
q2-gneiss), ANOVA-like differential expression analysis 2 (ALDEx2) [30] (via q2-aldex2) and differential
distribution analysis [31] (with R package MicrobiomeDDA). The α diversity difference, measured with
the Shannon index and Faith phylogenetic diversity, was tested with the Kruskal–Wallis test. The β
diversity difference, measured with Bray–Curtis and weighted UniFrac distance, was tested with the
ADONIS permutation-based test using the vegan package in R [32].

Results
Of the 122 participants, 105 had complete follow-up of exacerbations for a full year after bronchoscopy.
Participants who experienced one or more exacerbations within follow-up had significantly lower lung
function, higher symptom score, more frequent exacerbations in the preceding year and more use of
inhaled corticosteroids (ICSs) (table 1). Median time to first exacerbation was 146 days. Exacerbations were
evenly distributed across seasons of the year.

For the current analyses, we selected the 327 samples of BAL2, OW and rPSB from the 122 participants,
of which three samples were judged as only containing nonbacterial taxa and filtered out. In addition, we
removed the samples from the 17 participants with unknown exacerbation status. For diversity analyses,
rarefied data included 235 samples. Figure 1 shows the flow chart for the sample processing.

Taxonomy and differential abundance testing
Taxonomy at the phylum and genus levels for the three sample types by exacerbation status are shown in
figures 2 and 3. Overall, the most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria and
Fusobacteria. The most abundant genera were Streptococcus, Veillonella, Prevotella and Gemella. However,
the relative abundances of different taxa showed a large variation between samples. Four participants with
one or more later exacerbations and one participant without later exacerbations presented with high
abundances of the Moraxella genus in rPSB samples, which was also reflected by detection of Moraxella in
BAL2 for those participants who had a lavage sample. When we sorted rPSB samples by relative
abundance of the most common taxon, the visual pattern differed from that in BAL2 and OW (figures 2
and 3).

The visual impression from both figure 2 (phylum level) and figure 3 (genus level) was that participants
without later exacerbations had more Firmicutes (figure 2), and more streptococci (figure 3), than
participants with later exacerbations. However, when testing for statistical significance in difference of
abundance between the two groups, few were found. ANCOM, balance trees (gneiss) and ALDEx2
performed on BAL2 and rPSB did not identify any differentially abundant ASVs or genera between the
group with and without exacerbations. Differential distribution analysis identified two ASVs as
differentially expressed between the groups in rPSB samples (supplementary table 1). These two ASVs
were classified as Capnocytophaga gingivitis (more abundant, less prevalent and less dispersed in group
with exacerbations (adjusted p=0.011)) and Prevotella pallens (less abundant, more prevalent and more
dispersed in group with exacerbations (adjusted p=0.041)).

To see whether patients who had two or more exacerbations during follow-up differed from those who
had zero or one, we repeated the above analyses on this outcome (supplementary table 2). Again,
ANCOM, balance trees (gneiss) and ALDEx2 performed on BAL2 and rPSB did not identify any
differentially abundant ASVs or genera between the groups. However, differential distribution analysis
identified two ASVs (Capnocytophaga leadbetteri, adjusted p=0.008, and Prevotella oris, adjusted p=0.045)
and one genus (Moraxella, adjusted p=0.026) as differentially expressed between the groups in BAL
samples.

Next, we checked whether the taxonomy by sample type and exacerbation status varied by use of ICSs.
The bacterial composition did not appear altered by ICS use, as illustrated in a heat map of genera in
BAL2 (figure 4). This impression was strengthened by differential abundance testing by the same four tests
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as above, revealing no significant differences in taxa between COPD patients who used ICSs and COPD
patients who did not (supplementary table 3).

Finally, we examined whether taxonomy differed by previous exacerbations the last year before
bronchoscopy (supplemental table 4). Again, only the differential distribution analysis yielded a potential
difference, with Actinomyces graevenitzii being less abundant and more prevalent in patients having
previous exacerbations (adjusted p=0.011).

Overall the main message from the differential abundance tests was that very few differences were found.

Diversity
The α diversity in BAL 2 and rPSB, measured by Faith phylogenetic diversity and Shannon diversity
index, did not significantly differ between the group with and without later exacerbations. Box plots of the
α diversity are presented in the supplementary material (supplementary figures 5 and 6).

Neither β diversity, measured by Bray–Curtis distance (nonphylogenetic) and weighted UniFrac distance
(phylogenetic), differed by exacerbation status (supplementary figures 7 and 8). The four rPSB samples
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and rPSB for COPD subjects
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
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FIGURE 1 Sample flow chart of data processing. DADA2: Divisive Amplicon Denoising Algorithm 2; ASV: amplicon sequence variant; BAL2: second
fraction of bronchoalveolar lavage; OW: oral wash; rPSB: protected specimen brushes from the right lung; HOMD: Human oral microbiome
database.
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and three BAL2 samples that clustered separately (based on weighted UniFrac distance, supplementary
figure 9) were the samples with high abundances of Moraxella (figure 3). Both unadjusted and adjusted
(age, sex, FEV1, ICS use) PERMANOVA analyses showed nonsignificant differences in weighted UniFrac
distances between patients with and without later exacerbations (supplementary tables 5 and 6 and
supplementary figure 9).

Discussion
This study did not show any statistically significant characteristics of the lung microbiota in stable COPD,
neither in differential abundance of taxonomy, nor α or β diversity, that could predict whether the
participants would experience moderate or severe exacerbations in the subsequent follow-up. These
findings challenge the few existing previous reports.

PRAGMAN et al. [14] reported lower α diversity in sputum from patients with frequent exacerbations, and a
significant difference in ASV counts between frequent (n=11) and infrequent (n=11) exacerbators, where
Actinomyces was found more abundant in patients with infrequent exacerbations. In another recent study,
there was an increased abundance of Pseudomonas, Selenomonas and Anaerococcus, in sputum from
patients with frequent exacerbations (n=31) compared with patients without exacerbations (n=23). There
was also a significant difference in β diversity between patients with frequent and infrequent exacerbations
[13]. A study of the microbiota in BAL from patients with stable COPD retrospectively recorded the
exacerbation history of 21 patients and suggested that Streptococcus and Rothia species might be protective
and that Pseudomonas might be predictive of exacerbations [33].

The current study has superior methodology with a 2–5 times larger sample size than previous studies,
prospective follow-up of exacerbations and protected sampling of the lower airways. However, other
potential causes of the differences in results between our study and previous studies are worthy of

FIGURE 2 Bacterial taxonomy at the
phylum level in participants with
COPD with and without
exacerbation during follow-up.
Taxonomic groups in the legend are
sorted in decreasing order based
on the average relative frequency of
that group in all samples. Each bar
represents one participant, ordered
in the same position horizontally
for all three sample types
according to relative abundance of
Firmicutes in rPSB samples. OW:
oral wash; BAL2: second fraction of
bronchoalveolar lavage; rPSB: right
protected specimen brushes.
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consideration. Two of the previous studies suggest that Pseudomonas is associated with more frequent
exacerbations, whereas we did not report Pseudomonas in any of our samples. Some Pseudomonas species
are known colonisers in patients with severe disease or impaired immunity, but Pseudomonas is ubiquitous
in the environment, and there is a high potential for Pseudomonas to be a contaminant. The differences
between our study and the two previous reports could reflect differences between study populations, but is
more likely caused by Pseudomonas being identified as a contaminant by the Decontam algorithm in our
study, and therefore removed. In the filtered data, Pseudomonas was completely removed. In unfiltered
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FIGURE 3 Bacterial taxonomy at the genus level in participants with COPD with and without exacerbation during follow-up. Taxonomic groups in
the legend are sorted in decreasing order based on the average relative frequency of that group in all samples. Each bar represents one
participant, ordered in the same position horizontally for all three sample types according to relative abundance of Streptococcus in rPSB
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data, Pseudomonas was identified in high abundances in samples from participants both with and without
later exacerbations.

The overall abundance of Streptococcus in our study appeared by visual inspection higher in those
participants without later exacerbation (figures 2 and 3), perhaps supporting the suggestion of this taxa
being protective as suggested by REN et al. [33]. However, none of the four differential abundance tests we
performed found Streptococcus to be differentially abundant. The compositionality of data, the lack of
quantitative measures, and the low taxonomic resolution of 16S sequencing for Streptococcus are
challenges that may explain why no association was detected, in addition to the obvious possibility that no
association actually exists. We also found that the differences in abundance within groups were bigger than
between groups. To date, there is no consensus on what is to be considered a true clinically significant
difference in compositionality. For instance, it may be that a select few pathogens have a large influence in
some individuals, but not in others. This may be undetected when examining differences on group levels.

An intriguing finding in our study was that Moraxella, a pathogen known to be involved in COPD
exacerbations, was present in high abundance in stable-state COPD in five participants. Four of these
participants were in the exacerbation group. This was also reflected by differences in β diversity (weighted
UniFrac distance) separating these samples from the remaining samples. The participant presenting with
Moraxella without exacerbation in the follow-up was not part of the diversity analyses due to low sampling
depth (below 1000). Although the presentation of Moraxella is not useful for predicting exacerbations in
the group as a whole, we might speculate that this alteration in the microbiota can have a clinical impact
on these individuals.

Overall, our results challenge previous findings of alterations in the stable microbiota in patients with
different exacerbation frequencies. However, results are difficult to compare across studies due to variations
in sampling technique (induced or spontaneous sputum or bronchoscopically sampled BAL or brushes),
DNA extraction, choice of primers and hypervariable region, number of PCR cycles, management of
negative controls, bioinformatic processing and statistical analysis. Each step of the microbiome analysis
workflow can introduce bias, for instance by over-identifying certain bacterial taxa. This limits comparison
of results from different protocols, and even misrepresents the true distribution within a study [34].

There are some methodological limitations in our study as well: 1) We have relied on self-reported
information regarding exacerbations and medication use. Even though participants were called four times
throughout the 1-year follow-up period, this can be prone to recall bias. 2) We do not present quantitative
results. Quantitative PCR was performed on a subset of samples in MicroCOPD as part of a method paper
on laboratory contamination [35], but the extent of this analysis was not sufficient to evaluate whether
bacterial load was different between groups in this analysis. PRAGMAN et al. [14] found no difference in
bacterial load in groups of different exacerbation frequencies. However, it is biologically plausible that
differences in bacterial load by itself impacts the immune response, and our study cannot assess this. 3)
Our analyses are based on one sampling of the microbiota, at one time point for each participant. Each
sample’s representativeness for an individual’s microbiota is uncertain, as we do not know how stable the
microbiota is. MAYHEW et al. [8] reported that stability of sputum microbiota over time was more likely to
be decreased in individuals with higher exacerbation frequencies. Due to the cross-sectional sampling, this
was not possible to assess in the current study. 4) The MicroCOPD study included many samples from a
large number of participants. Although handled by only three well-trained laboratory technicians at our
centre, samples had to be run in different batches. We looked for batch effects by examining
principal-component analysis plots of different β diversity metrics, which showed no clustering based on
run (see supplementary material). Samples from participants with exacerbations versus without were not
unevenly distributed across runs.

The mentioned shortcomings are widely shared with published studies in the field. However, we have also
applied some methods that strengthen the integrity of our results. First, MicroCOPD is the largest
bronchoscopy study on the COPD microbiota. Second, we performed prospective follow-up of
exacerbations. Third, we argue that protected sampling by bronchoscopy is superior to sputum collection
[36]. Sputum is likely contaminated as it passes through the mouth. In addition, we present OW samples
in this analysis. Fourth, we sequenced negative control samples from every examination and then used the
validated Decontam method [24] to identify contaminants. A paper describing the use and implications of
Decontam in the MicroCOPD study is recently published [35]. We consider this statistical approach an
improvement compared to other strategies in this field such as removal of all ASVs found (consistently) in
negative controls [37], removal based on lists of “known” contaminants [10, 38, 39], figure presentation of
negative control taxa [33], or ruling out contamination if negative samples yield no band on gel
electrophoresis [40]. Other publications do not address contamination [11, 12].
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Thus, in the largest study to date of the potential predictive value of the lower airway microbiota, a
significant prognostic factor for later exacerbations was not found. This study highlights the difficulties in
examining microbial dysbiosis of the low biomass airway microbiota in participants where the
between-individual variation is potentially much larger than the between-clinical group variation. New
statistical methods, or much larger sample sizes, are likely needed to overcome this problem.
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