Table 3.
Performance of the clinical, radiomics, and combined models in distinguishing HGPs of CRLMs.
| Models | Clinical model | Radiomicstumor model | RadiomicsTLI model | Combination model | |
|---|---|---|---|---|---|
| Training cohort | AUC | 0.659 (0.514–0.803) | 0.999 (0.997–1.000) | 0.974 (0.940–1.000) | 0.971 (0.927–1.000) |
| ACC | 0.623 | 0.983 | 0.934 | 0.967 | |
| SEN | 0.561 | 0.976 | 0.950 | 0.976 | |
| SPE | 0.750 | 1.000 | 0.927 | 0.950 | |
| Internal validation cohort | AUC | 0.676 (0.484–0.869) | 0.879 (0.741–1.000) | 0.912 (0.789–1.000) | 0.909 (0.785–1.000) |
| ACC | 0.613 | 0.774 | 0.903 | 0.871 | |
| SEN | 0.571 | 0.762 | 0.952 | 0.952 | |
| SPE | 0.700 | 0.800 | 0.800 | 0.700 | |
| External validation cohort | AUC | 0.685 (0.563–0.807) | — | 0.960 (0.919–1.000) | 0.905 (0.841–0.970) |
| ACC | 0.567 | — | 0.811 | 0.788 | |
| SEN | 0.475 | — | 1.000 | 1.000 | |
| SPE | 0.759 | — | 0.414 | 0.345 | |
AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.