Skip to main content
. 2020 Aug 14;8:867. doi: 10.3389/fbioe.2020.00867

Table 2.

The algorithm details of attentional matching.

Algorithm1: Attentional matching
For each H from Multi-CNN:
1. Calculate label representation vector D;
     D = (Wgyg+b)
2. The ai Measures how informative each n-gram is for the i-th label.;
     ai=SoftMax(HTDi),i=1,2,3,lg
3. Calculate the weighted average vi of the rows in H forming a vector representation of the clinic text for the i-th label;
     vi= aiH