
INTRODUCTION

Methamphetamine (METH) is a well-known psychostimu-
lant that can cause neurotoxicity and is one of the most widely 
abused drugs worldwide (Elkashef et al., 2008). The continu-
ous use of METH promotes neurodegeneration and cogni-
tive decline (Rusyniak, 2011; Dean et al., 2013). In addition, 
chronic METH abuse is reported to cause selective patterns 
of brain deterioration leading to memory impairment (Meredith 
et al., 2005). 

The abuse of METH is closely related to the release of neu-
rotransmitters such as dopamine (DA) (Saha et al., 2014; Lin 
et al., 2016). During the development of drug addiction, drug-
seeking behavior proceeds from seeking the reward effect of 
drugs to being triggered by drug-associated cues (Robbins et 
al., 2008). Therefore, greater decrease in dorsal striatal DA 
in METH abusers might promote habitual drug use (Wang et 
al., 2012). METH increases DA neurotransmission via regula-
tion of dopamine transporters (DATs) activity (Lin et al., 2016; 
Sambo et al., 2017). A recent study shows that a decrease 
of DATs in METH abusers increases the risk of developing 
Parkinson’s disease (Chen et al., 2013; Granado et al., 2013). 
Parkinson’s disease (PD) is caused by degeneration of DA 

neurons in the midbrain. Biochemical and neuroimaging stud-
ies of human METH users revealed that the levels of DA and 
DATs were decreased, and microglia activation in striatum 
and other areas of the brain was also detected, which appears 
to be similar to that observed in PD patients (Granado et al., 
2013). METH is also known to cause neuronal inflammation, 
which eventually leads to neural degeneration (Cadet and 
Krasnova, 2009). Directly or indirectly, METH-induced neuro-
inflammation makes the brain more susceptible to neuropa-
thology (Cadet and Krasnova, 2009). 

Neuronal cells are highly susceptible to pro-inflammatory 
cytokine-induced damage, and exposure to pro-inflammatory 
cytokines has been shown to cause neuronal cell apoptosis 
(Castino et al., 2007). Moreover, neuroinflammation can in-
crease the oxidative stress by excessive release of harmful 
reactive oxygen species (ROS), which further promote neuro-
nal damage and subsequent inflammation resulting in a feed-
forward loop of neurodegeneration (Fischer and Maier, 2015). 
There are a number of excellent reviews outlining the health 
and societal concerns stemming from METH abuse and over-
dose, yet there remains a paucity of information related to 
neuroinflammation and neurotoxicity in METH abusers (Mat-
sumoto et al., 2014). Therefore, to provide a guide for future 
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research, we want to review neuronal cell apoptosis through 
neurotoxic and neuroinflammatory mechanisms caused by 
METH.

METH-INDUCED NEUROTOXICITY

Dopaminergic pathway
Methamphetamine is a psychostimulant that primarily in-

duces the release of dopamine, serotonin and norepinephrine 
(Rothman et al., 2001). These neurotransmitters are involved 
in neuronal cell inflammation and necrosis in the mesolimbic 
region of the brain (Panenka et al., 2013). The process of in-
toxication of METH is closely related to the induction of DA 
release. Chronic METH intake regulates dopamine release by 
acting primarily on vesicle monoamine transporter-2 (VMAT-2) 
and plasma membrane DATs, two major molecules of the do-
paminergic neuronal terminal (Fig. 1) (Kahlig and Galli, 2003). 
DATs are responsible for dopamine reuptake into the presyn-

aptic dopaminergic neurons from the extracellular area, which 
is extremely important for regulating and maintaining dopa-
mine homeostasis (Fleckenstein et al., 2007). Under normal 
circumstances, neuronal activation promotes the release of 
DA into the synapse (Nickell et al., 2014). The DATs removes 
DA from the synapse, and the VMAT-2 transports cytoplas-
mic DA into vesicles for storage, release, and protection from 
oxidation and reactive consequences (Riddle et al., 2006). 
However, METH causes abnormal trafficking of DATs, which 
means that METH increases extracellular dopamine levels 
by inhibiting dopamine reuptake, stimulating dopamine efflux, 
and internalizing DATs from the plasma membrane (Riddle et 
al., 2006). Moreover, METH increases the excitability of do-
paminergic neurons in a DATs-dependent manner. The DAT 
is a member of Na+/Cl– dependent co-transporters (Sonders 
et al., 1997), and bidirectional transport of dopamine through 
DATs is achieved by the movements of Na+/Cl– ions. METH 
enhances DATs-mediated inward current and promotes the 
excitability of dopamine neurons (Chu et al., 2008; Schmitt 
and Reith, 2010; Saha et al., 2014).

VMAT-2 is an integral membrane protein that transports 
monoamines from the intracellular cytosol into synaptic ves-
icles (Fleckenstein et al., 2009). However, METH causes 
synaptic vesicles to leak monoamines into the cytosol by dis-
rupting the hydrogen pump-mediated proton gradient (Fleck-
enstein et al., 2007). Moreover, METH binds to VMAT-2 and 
competitively inhibits the uptake of monoamines leading to 
high concentrations of monoamines in the cytoplasm (Sulzer 
et al., 1992, 1993). Moreover, dysfunction of VMAT-2 due to 
METH interferes with physiological storage of DA, resulting in 
a significant increase in DA levels in endogenous cells (La-
zzeri et al., 2007; German et al., 2012). Thus, high concentra-
tions of DA, which can freely diffuse in cells, can easily cause 
large amounts of oxidative damage, which is associated with 
the neurotoxic effects of large amounts of METH (Hogan et al., 
2000; Volkow et al., 2001; Eyerman and Yamamoto, 2007).

METH-induced neurotoxicity
Upon METH stimulation, large amounts of DA from cytosol 

and synaptic clefts are oxidized to quinone or semi-quinone. 
And, increasing of DA oxidation further leads to significant pro-
duction of reactive oxygen species (ROS) such as hydroxyl 
radicals (OH–), hydrogen peroxide (H2O2) and superoxide 
anions (O2–) (Yang et al., 2018). These ROS can inhibit mi-
tochondrial adenosine triphosphate (ATP) production, which 
in turn results in a depolarized mitochondrial membrane po-
tential and mitochondrial dysfunction (Stokes et al., 1999; Zhu 
et al., 2006; Dawson and Dawson, 2017). Dysfunction of mi-
tochondrial metabolism has been reported to play a very im-
portant role in METH-induced neurotoxicity, because it inhibits 
the Krebs cycle and electron transport chain (ETC) and poten-
tiates oxidative stress (Ares-Santos et al., 2013). Therefore, 
defects in mitochondrial respiration can cause neuronal cell 
death and neurodegenerative diseases. 

The hypothesis about the involvement of glutamate (Glu) 
in METH toxicity is supported by the discovery that METH 
causes Glu release in the brain (Baldwin et al., 1993; Abekawa 
et al., 1994). Glu is a major excitatory neurotransmitter in the 
brain and has been reported to play an important role in the 
excitotoxicity induced by METH (Moratalla et al., 2017). Spe-
cifically, large amounts of Glu by METH activate the N-meth-
yl-D-aspartate receptor (NMDAR) and metabolic glutamate 
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Fig. 1. METH regulates dopamine release by acting on DAT and 
VMAT-2. Vesicles containing DA are transferred to the extracellular 
space (synapse) and DA is released. In normal conditions, DAT 
mediates the DA reuptake, however, METH causes DA accumula-
tion in the synapse by blocking DA uptake via interaction with DAT. 
METH also causes synaptic vesicles to leak monoamines into the 
cytosol and promotes the generation of dopamine-quinone (DAQ), 
which results in neurotoxicity.
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receptor (mGluR) (Ohno et al., 1994; Battaglia et al., 2002; 
Tseng et al., 2010). Glu accumulation overstimulates various 
downstream signal transduction pathways associated with 
Ca2+ influx, which leads to increased intracellular Ca2+ con-
centrations (Chamorro et al., 2016). The excessive produc-
tion of Ca2+ in cells activates protein kinases, phosphatase, 
and nitric oxide synthase (NOS) and promotes NO produc-
tion (Moratalla et al., 2017). Excessive NO production leads to 
endoplasmic reticulum (ER) stress, activation of the apoptotic 
pathway, and eventually causes neurotoxicity by METH (Mo-
ratalla et al., 2017). Previous report supported that glutamate-
mediated NO formation may also be involved in METH toxicity 
because knockout mice lacking neuronal nitric oxide synthase 
(nNOS or iNOS) are protected from METH-induced damage 
from monoaminergic axons (Itzhak et al., 1998). In addition, 
in many studies, various nNOS inhibitors are also known to 
protect against the depletion of monoaminergic axons caused 
by METH administration (Itzhak et al., 2000; Sanchez et al., 
2003). These evidences indicate a glutamate/NO pathway 
plays a major role in METH-induced neurotoxicity (Fig. 2).

METH-induced neuroinflammation 
METH is also known to contribute to neuronal inflammation 

through excessive release of DA and Glu (Kohno et al., 2019). 
The released DA is oxidized to form toxic quinones, leading 
to presynaptic membrane damage via oxidative stress, mito-
chondrial dysfunction and the subsequent production of perox-
ide radicals and hydrogen peroxide (Kohno et al., 2019). The 
impairment of mitochondrial energy metabolism as well as the 
release of inflammatory cytokines increases the response to 
synapses and neuroinflammation (Li et al., 2008; Tocharus et 
al., 2010; Panenka et al., 2013; Loftis and Janowsky, 2014). It 
has been reported that these METH-induced neuroinflamma-
tion is caused by targeting microglia, the innate immune cells 
of the central nervous system (Sekine et al., 2008).

Indeed, METH-mediated activation of microglia is as-
sociated with Toll-like receptor 4 (TLR4), which is involved 
in immune surveillance of pathogens and exogenous small 
molecules (Bachtell et al., 2015; Du et al., 2017). TLR4 is a 
receptor that can activate both the Myd88-dependent and 
Myd88-independent pathways (Billod et al., 2016). In the 
Myd88-dependent pathway, Myd88 activates tumor necrosis 
factor receptor-related factor 6 (TRAF6), interleukin-1 recep-
tor related kinase (IRAK) to induce nuclear factor-κB (NF-κB) 
activation (Shen et al., 2016). Consequently, the activation of 
TLR4 due to METH increases inflammatory mediators such 
as interleukin (IL)-1α, 1β, tumor necrosis factor (TNF)-α and 
IL-6 (Wan et al., 2017). In contrast, the MyD88-independent 
pathway leads to the induction of IFN-γ through the activation 
of TRIF-related adapter molecule (TRAM) and interferon regu-
latory factor 3 (IRF3) (Brempelis et al., 2017). The MyD88-
independent pathway also induces NF-κB activation, but it 
occurs later than activation through the MyD88-dependent 
pathway (Liu et al., 2012). NF-κB is a well-known transcrip-
tion factor involved in neurodegenerative progression, and it is 
considered to be a key target for prevention and treatment of 
neurodegenerative diseases (Majdi et al., 2019). 

Sig-1R is an ER chaperone protein that is widely expressed 
throughout the brain and has a high affinity for METH (Hayashi 
et al., 2010). Sig-1R is closely related to toxicity and inflam-
mation caused by METH (Hedges et al., 2018) via regulation 
of various mechanisms such as calcium homeostasis, gluta-

mate activity, ROS formation, ER and mitochondrial function 
(Nguyen et al., 2015; Ruscher and Wieloch, 2015). Another 
study reported that activation of microglia due to METH stimu-
lation can be mediated by Sig-1Rs via ROS generation and 
activation of mitogen-activated protein kinase (MAPK) and 
phosphoinositide 3-kinase (PI3K)/Akt pathways (Chao et al., 
2017). The MAPK signaling pathway is also closely related to 
the NF-κB signaling pathway (Zanassi et al., 2001; Lee et al., 
2006; Chen et al., 2009), with both playing key roles in the in-
duction of inflammatory cytokines by METH (Liu et al., 2012). 

ERK is a representative kinase that plays an important role 
in regulating neuronal and behavioral processes mediated by 
DA and Glu (Shiflett and Balleine, 2011). ERK is activated by 
neurotrophin or growth factor (Sun et al., 2016), and phosphor-
ylated ERK is translocated to the nucleus and subsequently 
phosphorylates Elk-1 (Besnard et al., 2011). Activated Elk-1 
promotes immediate early gene (IEG) transcription associ-
ated with neural adaptation (Davis et al., 2000). Another study 

Fig. 2. METH induces Glu-mediated neurotoxicity. METH causes 
Glu accumulation in the synapse, and high concentration of Glu 
stimulates downstream pathways associated with Ca2+ influx. The 
excessive Ca2+ mediated neurotoxicity by activation of various en-
zymes related to DNA damage and ER stress.
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demonstrated that the ERK signaling pathway is linked to the 
regulation of dopamine D1 receptor involved in rewarding ef-
fects induced by METH (Mizoguchi et al., 2004). It has also 
been reported that METH can increase the activation of ERK 
phosphorylation in certain brain regions (Son et al., 2015). 
Once activated, ERK causes cAMP response element binding 
protein (CREB) phosphorylation and enhances the expression 
of c-Fos (Valjent et al., 2005). CREB is a transcription factor 
that is phosphorylated by different kinases, including protein 
kinase A (PKA) and protein kinase C (PKC) (Johannessen 
and Moens, 2007; Shin et al., 2012). CREB phosphorylation 
sequentially promotes the recruitment of co-activators such as 
CREB-binding protein (CBP)/p300 to the basal transcriptional 
machinery, which is followed by increased expression of tar-
get genes such as Arc, c-Fos, Egr1, Fos-b, and brain-derived 
neurotrophic factor (BDNF) (Barco et al. 2005; Beaumont et 
al., 2012). A previous study supported that METH self-admin-
istration was accompanied by increased recruitment of phos-
phorylated CREB on the promoter of c-Fos (Krasnova et al., 
2016). These are important processes that promote neurologi-
cal inflammation by releasing various pro-inflammatory factors 
such as IL-6, IL-1β, TNF-α, monocyte chemical attractant pro-
tein 1 (MCP-1), and cell adhesion molecule (ICAM-1) (Fig. 3) 
(Snider et al., 2013; Yang et al., 2018).

APOPTOSIS DUE TO METH-INDUCED 
NEUROTOXICITY AND INFLAMMATION

Mitochondria-mediated death pathway
As mentioned above, cytotoxicity and inflammation caused 

by METH leads to neuronal cell death. Besides ROS and NO, 
B-cell lymphoma 2 (Bcl-2) family proteins are also involved 
in METH-induced neurotoxicity and inflammation (Jayanthi et 

al., 2001). Previous studies have reported that METH expo-
sure increases the expression of pro-apoptotic proteins such 
as Bax, Bad, Bid and decreases the expression of anti-apop-
totic proteins such as Bcl-2 and Bcl-xL (Jayanthi et al., 2001, 
2004; Beauvais et al., 2011). The increase of pro-apoptotic 
proteins by METH is due to the release of mitochondrial in-
termembrane space (IMS) proteins, including apoptosis in-
ducing factor (AIF) and cytochrome c (Galluzzi et al., 2009). 
AIF and second mitochondria-derived activator of caspases/
direct IAP-binding protein with low isoelectric point, PI (SMAC/
DIABLO), which are released from mitochondria, activate the 
caspase-9 and -3 to induce neuronal cell death (Cadet et al., 
2005). The release of cytochrome c is another key step in the 
caspase-dependent mitochondrial apoptotic pathway (Shin et 
al., 2018). Cytochrome c forms apoptosome, which is com-
posed of Apaf-1, dATP and procaspase-9, and then induces 
sequential activation of the executioner caspases-3, -6 and -7 
(Shin et al., 2018). Many studies regarding METH-mediated 
apoptosis show increased cytochrome c release from mito-
chondria and subsequent caspase activation after METH ex-
posure in vitro (Nam et al., 2015; Park et al., 2017) and in vivo 
(Deng et al., 2002; Jayanthi et al., 2004; Beauvais et al., 2011; 
Dang et al., 2016). Another study suggested that activation of 
caspase-3 and PARP in the brain was also associated with 
METH toxicity (Deng et al., 2002). Therefore, these findings 
suggest that METH also affects neuronal cell death via regula-
tion of mitochondrial pathway in the brain (Fig. 4).

ER-Dependent Death Pathway
In addition to the mitochondria-mediated apoptosis path-
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Fig. 3. METH contributes to neuroinflammation. METH activates 
TLR4 and Sig-1R, triggering downstream signal pathways includ-
ing NF-κB, MAPK and PI3K/Akt. Activation of CREB, c-Fos and 
BDNF promotes nerve inflammation through expression of various 
inflammatory cytokines.

Fig. 4. METH-induced neurotoxicity and neuroinflammation cause 
neuronal cell apoptosis. Neurotoxicity and neuroinflammation path-
ways are involved in METH-induced apoptosis. Increasing of DA 
and Glu by METH produce ROS and Ca2+ that act as secondary 
messengers for mitochondria- and ER-mediated apoptosis.
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way, METH is related to the ER-dependent cell death pathway 
(Koumenis et al., 2002; Shah and Kumar, 2016). Oxidative 
stress due to METH exposure can cause cellular damage 
by causing dysfunction of cellular organelles such as the ER 
(Choi et al., 2010; Wang et al., 2016). Moreover, METH-medi-
ated oxidative stress increases the expression of ER-resident 
chaperones such as BiP/GRP-78, P58IPK, and heat shock pro-
tein (HSP), which are important regulators of abnormal protein 
folding. ER stress can initiate an unfolded protein response 
(UPR) to restore proteolysis or to induce apoptosis (Shen et 
al., 2004). ER stress is also closely linked to three major sig-
naling molecules: (1) activating transcription factor 6 (ATF6), 
(2) inositol requiring protein‑1 (IRE-1), and (3) protein kinase 
RNA (PKR)-like ER kinase (PERK) (Shah and Kumar, 2016). 
The activity of these three molecules collectively constitutes 
an UPR (Tabas and Ron, 2011). ATF6 acts as a transcription 
factor for UPR induction, while phosphorylation of IRE-1 leads 
to the expression of ER-resident proteins such as BIP/GRP-
78, GRP94 and C/EBP homologous proteins (CHOP)/growth 
arrest, and DNA damage-inducing gene 153 (Gadd153) (Ta-
bas and Ron, 2011). In addition, PERK induces phosphoryla-
tion of eukaryotic initiation factor-2α (eIF2α), which results in 
the stimulation of activating transcription factor 4 (ATF-4), C/
EBP homologous protein (CHOP), and caspase-12 (Gorlach 
et al., 2006). Since the ER contains the majority of intracel-
lular Ca2+, the released Ca2+ from the ER is absorbed by the 
mitochondria which then promotes ATP production (Gorlach 
et al., 2006). 

As such, previous studies have shown that METH induces 
the expression of several ER stress genes, including 78kDa 
glucose regulated protein (GRP-78), CHOP, and ATF4, which 
leads to neurotoxicity in rat striatum (Bahar et al., 2016). An-
other study suggests that METH-induced apoptosis is medi-
ated by ER-dependent mechanisms including CHOP, spliced 
X-box binding protein 1 (XBP1), caspase-12, and caspase-3 
(Xiong et al., 2017). In addition, a relatively high dose of 
METH promotes dopaminergic neuronal apoptosis via nuclear 
protein 1 (Nupr1)/CHOP pathway (Xu et al., 2017). ER stress 
and dysregulation of calcium homeostasis appear to be in-
volved in neuronal cell death because METH can induce the 
activation of calpain (Suwanjang et al., 2010). The increased 
calpain in METH exposure is associated with the cytoskeleton 
protein spectra and microtubule tau activity in rat striatum and 
the hippocampus (Fig. 4) (Warren et al., 2005; Staszewski and 
Yamamoto, 2006).

CONCLUSIONS

METH is an addictive psychostimulant that acts on the cen-
tral nervous system through various physiological pathways. 
Chronic use of METH can lead to memory deficit, and the de-
terioration of attention and executive functioning, which can 
be attributed to the direct neurotoxic and inflammatory effects 
of the drug. Cumulative studies have revealed the neurologi-
cal effects of METH intake, however, specific mechanisms un-
derlying METH-mediated neuronal damages remain unclear.

In this review, we focused on the neurotoxicity and neuro-
inflammation caused by METH, which lead to neuronal cell 
death and impairment of brain function. We demonstrate that 
the process of neuronal damage by METH is closely related to 
oxidative stress, regulation of transcription factor, DNA dam-

age, and various apoptosis pathways.
We hope that this review will help understanding the molec-

ular mechanisms related to METH-induced brain damage and 
studies targeting the discovery of METH addiction therapy.
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