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Abstract

Background and Aims: CD39/ENTPD1 scavenges pro-inflammatory nucleotides, to ultimately 
generate immunosuppressive adenosine, which has a central role in immune homeostasis. 
Global deletion of Cd39 increases susceptibility to experimental colitis while single nucleotide 
polymorphisms within the human CD39 promoter, and aberrant patterns of expression during 
experimental hypoxia, predispose to Crohn’s disease. We aimed to define the impact of transgenic 
human CD39 [hTG] overexpression in experimental colitis and to model therapeutic effects using the 
recombinant apyrase APT102 in vivo. We also determined the in vitro effects of APT102 on phenotypic 
and functional properties of regulatory T-lymphocytes derived from patients with Crohn’s disease.
Methods: Colitis was induced by administration of dextran sulfate sodium in wild-type [WT] or hTG 
mice, and, in another model, by adoptive transfer of CD45RBhigh cells with or without WT or hTG 
regulatory T cells [Treg]. In additional experiments, mice were treated with APT102. The effects of 
APT102 on phenotype and function of Treg and type-1 regulatory T [Tr1] cells were also evaluated, 
after purification from peripheral blood and lamina propria of Crohn’s disease patients [n = 38].
Results: Overexpression of human CD39 attenuated experimental colitis and protected from 
the deleterious effects of systemic hypoxia, pharmacologically induced by deferoxamine. 
Administration of APT102 in vivo enhanced the beneficial effects of endogenous Cd39 boosted by 
the administration of the aryl hydrocarbon receptor [AhR] ligand unconjugated bilirubin [UCB]. 
Importantly, supplemental APT102 restored responsiveness to AhR stimulation by UCB in Treg and 
Tr1 cells, obtained from Crohn’s disease patients.
Conclusions: hCD39 overexpression ameliorated experimental colitis and prevented hypoxia-
related damage in vivo. Exogenous administration of APT102 boosted AhR-mediated regulatory 
effects in vivo while enhancing Treg functions in Crohn’s disease in vitro.
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1. Introduction

Defective regulatory cell functions1–3 contribute to disordered im-
mune homeostasis in inflammatory bowel disease [IBD]. Impaired 
regulatory cell function in IBD results, at least in part, from low 
levels of CD39, an ectonucleotidase with a pivotal role in immunity 
as it hydrolyses pro-inflammatory ATP and ADP into AMP, which is 
subsequently converted into immunosuppressive adenosine by the 
5′-ectoenzyme CD73.4,5 CD39 is mainly expressed by endothelial 
cells in the vasculature and by a variety of immune cells such as 
B lymphocytes, myeloid cells, T-cells including Th17, regulatory T 
cells [Treg] and type-1 regulatory T [Tr1] cells.5 Adoptive transfer 
of Treg, isolated from Entpd1−/− mice does not protect from devel-
opment of colitis.6 Furthermore, in humans, previous studies have 
shown impairment of CD39 expression in Treg obtained from the 
peripheral blood and lamina propria of Crohn’s disease patients. 
Low CD39 levels may result from polymorphisms in the ENTPD1/
CD39 promoter7 or from the associated impaired responses to aryl 
hydrocarbon receptor [AhR] activation by immunometabolites such 
as unconjugated bilirubin [UCB].8,9 AhR is a modulator of toxin re-
sponses10,11 and adaptive immunity and is, in turn, inhibited by hyp-
oxia, resulting from protracted inflammation.12,13

Transgenic expression of human CD39 [hCD39] in mice results 
in impaired platelet aggregation, resistance to thromboembolism14 
and in longer survival in a cardiac transplant model of vascular 
rejection.14 Such hCD39 transgenic overexpression confers protec-
tion in a model of warm ischaemia reperfusion injury resulting in 
reduced kidney damage and in preserved levels of serum creatinine 
and urea.15 Beneficial effects of CD39 in vivo have been further sup-
ported by pre-clinical evidence that administration of the human 
soluble domain of CD3916 or APT102, the extracellular domain 
with improved ADPase activity of human nucleoside triphosphate 
diphosphohydrolase-3 [CD39L3], a member of the CD39 family, 
confers protection in models of acute myocardial infarction,16 is-
chaemia reperfusion injury,17–19 vein graft bypass surgery20 and cor-
onary artery occlusion.17

Here we investigated the impact of hCD39 transgenic 
overexpression on experimental colitis models in mice; we also 
tested the therapeutic effects of APT102 administration in vivo and, 
in vitro, on the phenotypic and functional properties of Treg and 
Tr1-cells, derived from Crohn’s disease patients.

We show that hCD39 overexpression ameliorates experimental 
colitis while protecting from pharmacological systemic hypoxia-
associated injury. Furthermore, administration of APT102 has thera-
peutic effects in experimental colitis in vivo and corrects Crohn’s 
disease-derived regulatory cell functionality in vitro, by synergizing 
with AhR ligation/activation to boost endogenous purinergic 
cytoprotective pathways.

2. Methods

2.1. Mice
hCD39 transgenic [hTG] mice were originally generated on a 
C57BL/6-CBA background using a construct containing the murine 
H-2kb promoter to drive hCD39 expression.14 They were back-
crossed more than six times onto C57BL/6. The derivation and char-
acterization of Entpd1−/− mice on the C57BL/6 background has been 
previously described.21 C57BL/6 wild type [WT] mice, originally 
purchased from Taconic, were bred in our animal facility for four 
to six generations before being used and subjected to experimental 
colitis.

Rag2−/− immunodeficient mice were from Taconic. In each group, 
8- to 10-week-old male and female mice were studied in accord-
ance with the National Institutes of Health guide for the care and 
use of Laboratory animals. Protocols were approved by the Animal 
Care and Use Committee at Beth Israel Deaconess Medical Center 
[BIDMC], Boston, MA.

2.2. Subjects
Peripheral blood mononuclear cells [PBMCs] and lamina pro-
pria mononuclear cells [LPMCs] were isolated from 38 patients 
with Crohn’s disease [median Harvey–Bradshaw index 2, range 
0–8], recruited from the Gastroenterology Division, BIDMC. 
Sixteen patients were studied during active disease, while the re-
maining were on clinical remission. At the time of study, 17 patients 
were on infliximab, six were on steroids and five were receiving 
azathioprine/6-mercaptopurine. PBMCs were also obtained from 15 
healthy blood donors [Blood Donor Center at Children’s Hospital, 
Boston]. Human studies received IRB approval at BIDMC. Written 
consent was obtained from all study participants prior to inclusion 
in the study.

2.3. APT102
APT102 was produced and purified from a stably transfected 
Chinese hamster ovary cell line as described previously.22 The protein 
was stable for several years with purity of >99% and endotoxin level 
of <1 EU/mg. Pharmacokinetic/pharmacodynamic analysis revealed 
that the elimination-phase half-life of a single bolus intraperitoneal 
injection is ~35 h in mice [Supplementary Figure 1A,B].

2.4. Cell isolation, polarization and culture
2.4.1. Mouse
Mononuclear cells for in vitro experiments were obtained from 
the spleen of WT, hTG and Entpd1−/− mice and subjected to CD4 
T-cell isolation according to the manufacturer’s instructions 
[Miltenyi Biotec]. The purity of the sorted CD4 cell population 
exceeded 92%. CD4 cells were then cultured in RPMI 1640 me-
dium, supplemented with 2  mM l-glutamine, 100  IU/mL peni-
cillin, 100  mg/mL streptomycin, 1% non-essential amino acids 
and 10% FBS and exposed for 5  days to Treg or Tr1 cell po-
larizing conditions. Treg polarizing conditions consisted of inter-
leukin 2 [IL2; 100 ng/mL], transforming growth factor β [TGF 
β; 10 ng/mL] and Dynabeads Mouse T activator CD3/CD28 for 
T-cell expansion [bead/cell ratio: 1/2, ThermoFisher Scientific]; 
Tr1 polarizing conditions consisted of IL27 [30 ng/mL]. All cyto-
kines were from R&D Systems. In some of the cultures, cells were 
exposed to APT102 at 0.5 mg/mL for the last 12 h of culture and/
or UCB at 20  μM for the last 6  h of culture.8,13 Mononuclear 
cells were also isolated from the spleen, mesenteric lymph nodes 
[MLNs], intra-epithelial [IELs] and lamina propria [LPs] lympho-
cytes, obtained from dextran sulfate sodium [DSS] colitic mice 
at harvest.8,13 Mononuclear cell phenotype was then assessed by 
flow cytometry [see below].

2.4.2. Human
PBMCs were obtained by density gradient centrifugation on Ficoll-
Paque [GE Healthcare Life Sciences].23 LPMCs were obtained from 
freshly biopsied colonic tissue in 13 patients with Crohn’s disease. 
In these patients, tissue was biopsied from both inflamed and non-
inflamed areas [three or four samples per bioptic area]. LPMCs 
were isolated as previously described8,23 and results from the sites 
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compared. PBMC and LPMC viability always exceeded 98%. CD4 
cells were purified from both PBMC and LPMC preparations ac-
cording to the manufacturer’s recommendations [Miltenyi Biotec]. 
The purity of the sorted CD4+ cells exceeded 92%. Cells were resus-
pended in RPMI 1640 supplemented with 10% fetal bovine serum 
[FBS] and exposed to Treg and Tr1 polarizing conditions. Cells were 
polarized under the same culture conditions and upon exposure to 
the same cytokine concentrations as described above in the mouse 
section. All cytokines were from R&D Systems. In parallel cultures, 
cells were exposed to APT102 in the absence or presence of UCB, as 
indicated above.

2.5. Induction and assessment of colitis
2.5.1. DSS-induced colitis
C57BL/6 WT and hTG mice were treated with 3% DSS in standard 
drinking water, provided ad libitum for 6  days. In additional ex-
periments, mice were concomitantly injected with either: UCB 
[20  μmol/kg/day intraperitoneally, i.p.] alone or in combination 
with deferoxamine [100 mg/kg/day i.p.] to induce systemic hypoxia; 
or APT102 [1  mg/kg/day i.p.]. UCB resuspension was conducted 
as described previously.8 Deferoxamine and APT102 were both re-
suspended in 1×PBS. UCB, deferoxamine and/or APT102 admin-
istration was continued after day 7, when DSS was replaced with 
standard drinking water. In the experiments where the effects of 
deferoxamine were tested, mice were killed on day 10, after 4 days 
of recovery. When therapeutic effects of APT102 were evaluated in 
longer-term experiments, mice were exposed to 2% instead of 3% 
DSS and killed on day 30, after 24 days of recovery. In additional 
experiments, colitis was induced upon injection of CD4+CD45RBhigh 
cells, obtained by immunomagnetic isolation from WT splenocytes. 
CD45RBhigh cells were injected i.p. [4 × 105] into 8-week-old Rag2−/− 
mice, alone or in combination with CD4+CD25high Treg [1  ×  105] 
from WT or hTG mice.24

In both models, disease activity index [range 0–8] was calcu-
lated on the basis of body weight loss [‘0’: 0–1%; ‘1’: >1–5%; ‘2’: 
>5–10%; ‘3’: >10–15%; ‘4’: >15–20%], presence of gross blood [‘0’: 
absence of blood; ‘1’: presence of blood; ‘2’: overt bleeding] and 
stool consistency [‘0’: firm; ‘1’: loose; ‘2’: diarrhoea] and assessed 
on a weekly basis in the T-cell transfer model6,24 and on a daily basis 
in the DSS model.8 On the day of harvest, colons were dissected and 
colon length was measured from the ileocecal junction to the anal 
verge. Colitis histology score was calculated after haematoxylin and 
eosin staining.8

2.6. Flow cytometry staining
Flow cytometry was performed as previously described23 following 
mouse or human mononuclear cell staining with fluorochrome-
conjugated monoclonal antibodies [Supplementary Table 1]. Cells 
were acquired on a BD LSRII [BD Biosciences] and analysed 
using FlowJo 2 software [version 10, TreeStar]. Positively stained 
cell populations were gated based on unstained and single stained 
controls. The fluorescence-minus-one method was used to adjust 
compensation.

2.7. Cell proliferation assay
Proliferation of murine Treg and Tr1 cells was performed fol-
lowing exposure to Dynabeads Mouse T activator CD3/CD28 
for T-cell expansion [bead/cell: 1/2] and IL2 at 30  ng/mL for 
3  days. Proliferation was measured based on 3H-thymidine 
incorporation.25

2.8. Thin layer chromatography
Thin layer chromatography [TLC] was performed upon cell incuba-
tion with 2 mCi/mL [14C] ADP.23

2.9. Suppressive function
The suppressive function of murine and human Treg and Tr1 cells was 
assessed in co-culture experiments, in which polarized Treg and Tr1 
cells were initially sorted as CD25highCD127− and CD49b+LAG-3+ 
cells and then added at a ratio of 1/8 to CD4+CD25− target cells.8 
Cultures of CD4+CD25− targets without Treg or Tr1 cells were per-
formed in parallel, under identical conditions. Target cells were ini-
tially stained with Cell Trace Violet [1/4000, Invitrogen], activated 
using IL2 [30 ng/mL] and Dynabeads Mouse or Human T activator 
CD3/CD28 for T-cell expansion [bead/cell ratio: 1/2] and tested for 
IL17 and IFNγ production after 4 days of co-culture.

2.10. qPCR
Expression of A1, A2A, A2B and A3 adenosine receptors, Cd49b, 
Lag-3 and Foxp3 was determined by quantitative PCR [PCR], fol-
lowing total RNA extraction by TRIzol [Thermo Fisher Scientific] 
and mRNA reverse-transcription using iScript cDNA synthesis kit 
[Bio-Rad Laboratories]. Primers for adenosine receptors, Cd49b, 
Lag-3 and Foxp3 were as previously described.26–28 Relative gene ex-
pression was determined after normalization to mouse β-actin.

2.11. Immunohistochemistry
Frozen tissue sections [6 μm] of spleen and colon were incubated 
overnight at 4°C with rabbit anti-mouse CD39 [a gift from Dr Jean 
Sévigny, Quebec, Canada] or with biotin-labelled mouse anti-human 
CD39 antibody [clone # BU61, Ancell]. Immunohistochemistry was 
carried out as previously reported.29

2.12. Statistics
Results are expressed as mean ± SEM. Normality of variable distri-
bution was assessed by Kolmogorov–Smirnov goodness-of-fit tests. 
Comparisons were performed using parametric [paired or unpaired 
Student’s t test] or non-parametric [Wilcoxon signed-rank or Mann–
Whitney test] tests according to data distribution. One-way ANOVA 
or Kruskal–Wallis tests, followed by Tukey’s or Dunn’s multiple 
comparison tests, were used when comparing more than two sets 
of data. p < 0.05 was considered significant; p ≤ 0.1 was considered 
indicating a trend to significance. Statistical analysis was performed 
using SPSS version 22 and GraphPad Prism version 7.

3. Results

3.1. hCD39 overexpression enhances Treg function
We tested the effects of hCD39 overexpression on the phenotypic 
and functional properties of Treg and Tr1 cells obtained from mice 
that express human ENTPD1 under control of the H-2kb promoter. 
We noted elevated levels of hCD39 and high frequencies of hCD39+ 
cells in Treg and Tr1 subsets [of hTG mice], in contrast to WT and 
Entpd1−/− mice [Figure 1A,B]. Notably, Treg and Tr1 subsets from 
hTG mice also exhibited increases in cells positive for mouse CD39 
[mCD39], when compared with Entpd1−/− mice, although this was a 
trend in the WT mice [Figure 1C].

hCD39 expression did not impact the differentiation of CD4 
cells into Treg and Tr1 cells, as reflected by similar levels of CD25 
and FOXP3 in Treg, and of CD49b, LAG-3 and IL10 expression 
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in Tr1 cells [Supplementary Figure 2A]. hCD39 expression in hTG 
mice was noted both in the spleen white and red pulp as well as in 
colonic tissue sections where it was present in the lamina propria 
and muscularis mucosae [Figure 1D]. In hTG mice, hCD39 staining 
within the colon was comparable with that of mCD39 [Figure 1D].

Treg and Tr1 cells obtained from hTG mice displayed higher pro-
liferative ability [Figure 1E] and comparable frequencies of TIM-
3+ [Supplementary Figure 2B] and annexin V+ cells [Supplementary 
Figure 2C], in contrast to WT mice.

When tested for CD73, the ectoenzyme that works in tandem 
with CD39 and hydrolyses AMP to adenosine, hTG-derived Treg 
and Tr1 cells displayed heightened proportions of CD73+ lympho-
cytes [Figure 2A]. hTG Treg and Tr1 cells showed elevated ADPase 
activity, as manifested by a higher ADP/AMP ratio, and higher 
AMPase activity, as represented by the AMP/adenosine ratio, com-
pared to WT counterparts [Figure 2B,C]. This indicates that the in-
creased CD39 and CD73 expression was mirrored by heightened 
ectoenzymatic activity.

Treg and Tr1 cells differentiated from hTG mice expressed higher 
A2B and similar A1, A2A and A3 receptor levels when compared 
with WT mice [Supplementary Figure 3A–D].

As CD39 expression has been associated with Treg and Tr1 sup-
pressive function,4,12 we tested the ability of these cells to suppress 
IFNγ and IL17 production by CD4+CD25− responder cells. Treg 
from hTG mice displayed greater suppression over IFNγ and IL17 
production, as compared to WT Treg [Figure 2D,E]. No differences 
in the ability to suppress were noted between hTG and WT Tr1 cells 
[Figure 2D,E].

Collectively, these data show that overexpression of hCD39 is 
accompanied by increased ADPase and AMPase enzymatic activity 
by Treg and Tr1 cells and by heightened suppressive function in Treg.

3.2. APT102 increases WT Treg response to AhR 
ligation
Here we evaluated the response of WT and hTG Treg and Tr1 cells 
to AhR activation in the presence of UCB, an immunosuppressive 
metabolite with beneficial properties in boosting CD39 and other 
protective factors in experimental colitis and human IBD.8,9 Analysis 
of Foxp3, Lag-3, Cd49b and mCd39 mRNA levels was carried out 
using WT or hTG cells as an internal control to assess variations in 
the response to UCB as compared to baseline levels.

Exposure of hTG, but not WT Treg, to UCB resulted in signifi-
cant augmentation of Foxp3 mRNA levels [Figure 2F]. In WT Treg, 
addition of APT102, which provides exogenous ADPase activity, 
boosted Foxp3 in Treg concomitantly exposed to UCB [Figure 2G]. 
No changes in Lag-3, Cd49b and mCd39 mRNA levels were noted in 
hTG and WT Treg and Tr1 cells upon exposure to UCB, APT102, or 
a combination of UCB and APT102 [Supplementary Figure 4A–F]. 
mRNA data were confirmed by flow cytometry analysis, showing 
significant increases in FOXP3 mean fluorescence intensity  [MFI] 
following hTG Treg exposure to UCB and after WT Treg treatment 
with UCB and APT102 [Supplementary Figure 5A], and unchanged 
LAG-3, CD49b and CD39 MFI in WT and hTG Treg and Tr1 cells 
under the same culture conditions [Supplementary Figure 5B–D]. 
Overall, these data indicate that addition of APT102 to WT Treg 
enhances the response to UCB, as reflected by augmented Foxp3 
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mRNA expression and MFI, mimicking the effects noted in hTG 
Treg in the presence of UCB only.

3.3. Overexpression of hCD39 ameliorates 
experimental colitis
The effects of hCD39 overexpression were also tested in vivo in ex-
perimental models of colitis, induced either by DSS or by adoptive 
transfer of CD45RBhigh cells into Rag2−/− mice. In the DSS model, DSS 
was provided for six consecutive days [induction phase] and then 
replaced with normal drinking water for four additional days [re-
covery phase]. Compared to WT, hTG mice had a lower disease ac-
tivity index [DAI] during recovery [Figure 3A], greater colon length 
[Figure 3B] and lower histology score [Figure 3C]. Furthermore, 

hTG animals displayed higher proportions of FOXP3+ cells within 
MLNs [Figure 3D and Supplementary Figure 6A] and higher fre-
quencies of mCD39+ cells within spleen, MLNs and IELs [Figure 
3E and Supplementary Figure 6B]. Compared to WT, hTG mice 
had also lower frequencies of IFNγ + [Figure 3G and Supplementary 
Figure 6D] and higher proportions of IL10+ lymphocytes [Figure 3H 
and Supplementary Figure 6E] in the spleen and MLNs. No signifi-
cant differences between hTG and WT mice were noted in the pro-
portion of IL17-producing CD4 cells in all compartments studied 
[Figure 3F and Supplementary Figure 6C].

In the adoptive transfer model, injection of hTG Treg ameliorated 
the course of colitis induced by CD45RBhigh cells more effectively than 
in the setting with WT Treg [Figure 4A]. Recipients of hTG Treg had 
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also greater colon length and lower histology score than mice injected 
with CD45RBhigh alone or in association with WT Treg [Figure 4B,C].

Overall, these data show that overexpression of hCD39 has 
beneficial effects on T-cell transfer as well as the recovery phase of 
DSS colitis.

3.4. Overexpression of hCD39 protects from 
deleterious effects of hypoxia
In the context of protracted inflammation, hypoxia has deleterious 
effects by limiting UCB-induced AhR activation, with consequent 
impairment in the ability of T cells to upregulate CD39.13 Here 
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we tested whether overexpression of hCD39 could antagonize the 
inhibitory effects of hypoxia, systemically induced upon adminis-
tration of deferoxamine, an iron chelator. Deferoxamine was admin-
istered alone or in combination with UCB to hTG and WT mice 
during the induction and recovery phase of DSS colitis.

hTG mice treated with UCB had lower DAI compared to 
vehicle-treated mice on days 9 and 10, and this beneficial effect 
remained unchanged in the presence of deferoxamine [Figure 5A]. 
In contrast, deferoxamine- or deferoxamine plus UCB-treated WT 
animals displayed a worsened disease course [Figure 5A]. DAI in 
the presence of deferoxamine and UCB was lower in hTG than 
WT mice on days 8, 9 and 10 [p < 0.05 for all]. Similar deleterious 
effects of deferoxamine were noted in WT but not hTG mice, 

when analysing colon length and histology score [Figure 5B,C]. 
Compared to vehicle and/or UCB-treated animals, WT mice ad-
ministered deferoxamine alone displayed: a decreased frequency 
of CD4 cells positive for FOXP3 in the spleen, MLNs, IELs and 
LPs [Supplementary Figure 7A]; reduced proportions of CD4 cells 
positive for mCD39 in the spleen, MLNs and IELs [Supplementary 
Figure 7B]; decreased frequencies of CD4+IL17+ cells in the spleen 
and MLNs [Supplementary Figure 7C]; and reduced proportions 
of CD4+IL10+ cells in the MLNs and IELs [Supplementary Figure 
7E]. When deferoxamine was combined with UCB, some of these 
effects were reverted, as indicated by increased frequencies of 
CD4+mCD39+ cells in MLNs and LPs [Supplementary Figure 7B] 
and of CD4+IL10+ lymphocytes in the IEL and LP compartments; 
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while others were worsened as indicated by heightened proportions 
of CD4+IL17+ and CD4+IFNγ + lymphocytes in LPs [Supplementary 
Figure 7C,D].

In hTG mice, no substantial changes were noted when 
deferoxamine was administered alone, apart from an increase in 
the proportion of CD4+IL10+ cells in LPs [Supplementary Figure 
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7E]. In the same compartment, when deferoxamine was associated 
with UCB, we noted increased proportions of CD4+FOXP3+ and 
CD4+IL10+ cells [Supplementary Figure 7A,E] and decreased fre-
quencies of CD4+IFNγ + lymphocytes [Supplementary Figure 7D].

Collectively, these data show that hCD39 overexpression is pro-
tective in the setting of systemic hypoxia and this favours mainten-
ance of responses to AhR stimulation, as with UCB.

3.5. APT102 augments the benefit of UCB in 
experimental colitis
As we noted increased response to UCB in those WT Treg exposed to 
APT102 [Figure 2G], we then tested the effects of APT102 adminis-
tration, alone or in combination with UCB, in the DSS colitis model. 
APT102 was well tolerated and no toxicity was noted throughout 
the experiment. Combination treatments with APT102 and UCB re-
sulted in amelioration of DAI during the recovery phase of colitis, 
compared to animals treated with vehicle or APT102 [days 7–17] or 
UCB [days 5–7] alone [Figure 6A], and also in greater colon length 
and lower histology score, when compared to vehicle or APT102-
treated mice [Figure 6B,C]. Colon length was similar and histology 
score was lower compared with UCB-treated animals [Figure 6B,C]. 
Compared to vehicle, combinations of APT102 and UCB decreased 
the frequency of CD4+FOXP3+ cells in the spleen while increasing 
the frequency within LPs [Figure 6D]; this combination augmented 
the proportion of CD4+mCD39+ lymphocytes within MLNs and LPs 
[Figure 6D] and that of CD4+LAG-3+ cells within LPs. Compared to 
UCB only, combinations of APT102 and UCB decreased the propor-
tion of CD4+CD49b+ and CD4+LAG-3+ cells in the spleen [Figure 
6D]. Furthermore, exposure to UCB and APT102 resulted in lower 
frequencies of CD4+IL17+ cells in the spleen but a higher propor-
tion of these cells in MLNs [Supplementary Figure 8A]; no changes 
were noted in the frequency of CD4+IFNγ + and CD4+IL10+ cells 
[Supplementary Figure 8B,C].

3.6. Addition of APT102 enhances AhR stimulation 
in Crohn’s-derived Treg and Tr1 cells
APT102 boosted the response of WT Treg to UCB-induced AhR ac-
tivation in vitro [Figure 2G]. Hence, we tested the effects of APT102 
on the response to UCB of Treg and Tr1 cells, derived from the per-
ipheral blood and lamina propria of Crohn’s disease patients.

Regarding peripheral blood-derived cells, we noted that exposure 
of Treg to a combination of UCB and APT102 boosted FOXP3, 
LAG-3 and CD39 MFI compared to baseline levels in both healthy 
subjects and Crohn’s disease samples [Figure 7A and Supplementary 
Figure 9A]. Treg from healthy subjects upregulated FOXP3 levels 
also upon addition of UCB only [Figure 7A]. Similar to Treg, add-
ition of UCB and APT102 to Tr1 cells increased CD49b, LAG-3 
and CD39 levels in healthy subjects and in Crohn’s disease samples 
[Figure 7B and Supplementary Figure 9B]. The combination of UCB 
and APT102 boosted CD73 MFI in CD39+ Treg of healthy subjects 
and Crohn’s patients as well as in CD39+ Tr1-cells from Crohn’s dis-
ease patients [Figure 7C].

No differences were noted in CD39, FOXP3, CD49b and LAG-3 
in Treg and Tr1 cells exposed to APT102 only [data not shown]. 
APT102 treatment tended to increase CD73 MFI in CD39+ Tr1 cells 
from Crohn’s disease patients [299 ± 57 vs 444 ± 71, p = 0.07].

There was higher FOXP3 MFI in Treg from patients treated with 
azathioprine/6-mercaptopurine and higher CD49b MFI in Tr1 cells 
from anti-tumour necrosis factor α-treated patients compared to pa-
tients whose drug regimens did not include these two drugs [FOXP3 

MFI: 72.8 ± 9.8 vs 51.6 ± 5.4, p = 0.09; CD49b MFI: 30.1 ± 2.3 
vs 22.8 ± 3.7; p = 0.007]. Furthermore, CD39 and CD49b MFI in 
Tr1 cells tended to be positively correlated with the duration of 
infliximab therapy [p = 0.1 in both cases].

In healthy subjects, addition of APT102 improved the ability 
of UCB to enhance Treg and Tr1 cell suppression of  IL17 and, in 
Treg, also IFNγ production by CD4+CD25− responder cells [Figure 
7D,E]. In Crohn’s disease, treatment with APT102 and UCB boosted 
the ability of Tr1 cells to suppress IFNγ production by responders 
[Figure 7E]. In lamina propria-derived Treg and Tr1 cells obtained 
from ‘inflamed’ biopsied areas, no changes were noted in the ex-
pression of T-cell lineage-defining markers and CD39 after cell ex-
posure to UCB alone or in combination with APT102 [Figure 8A,B]. 
In contrast, when lamina propria-derived cells were obtained from 
‘non-inflamed’ biopsied areas [used as internal controls] we noted 
that addition of APT102 significantly increased the expression of 
CD49b, LAG-3 and CD39 in Tr1 cells concomitantly exposed to 
UCB [Figure 8B].

4. Discussion

We show here that overexpression of hCD39 boosts Treg function 
and bolsters responses to UCB in vitro, ameliorates the course of ex-
perimental colitis, while protecting against the deleterious effects of 
systemic hypoxia in vivo. These effects are mirrored by the ATPase/
ADPase APT102 that synergizes with UCB to improve colitis in vivo 
and confer augmented suppressive properties to Crohn’s-derived 
regulatory cell subsets in vitro.

Our findings support an important role of CD39 in conferring 
benefit in experimental colitis in mice, as reflected by ameliorated 
histopathological features and experimental outcomes in both DSS 
and adoptive transfer models. hCD39 overexpression also results 
in greater suppressive abilities of adoptively transferred Treg, as 
well as in increased percentages of CD4+mCD39+ cells preferen-
tially in the systemic compartment of DSS mice. This pattern was 
felt to be associated with heightened local levels of adenosine that 
might further induce native CD39 expression in a cAMP-dependent 
manner.23,30 These results mirror previous studies, in which hCD39 
overexpression resulted in improved survival after transplant and 
myocardial ischaemia reperfusion and after warm renal ischaemia 
reperfusion with preservation of kidney function in both murine and 
swine models.15,31

Beneficial effects of hCD39 overexpression were supported also 
by in vitro data showing enhanced ectoenzymatic properties of hTG 
Tr1 cells and Treg, when compared to the WT counterpart. These 
effects were further enhanced in Treg, where heightened suppressor 
ability was noted possibly as the result of increased A2B receptor 
levels that were previously associated with enhanced Treg differenti-
ation and expansion.4,32

hCD39 overexpression confers an advantage also in the response 
to UCB, a prototypic metabolite that serves as an AhR endogenous 
ligand.8,9 This effect is mimicked by APT102, an optimized form 
of human apyrase with preferential ADPase activity.17 Addition of 
APT102 boosted UCB immunoregulatory properties of WT Treg, 
mirroring the findings observed in hTG Treg. In Crohn’s-derived 
samples, treatment with APT102 enhanced the regulatory proper-
ties of UCB-AhR signalling in peripheral blood-derived Treg and Tr1 
cells and in Tr1 cells from the lamina propria. The predominant ef-
fect of APT102 on Tr1 cells in Crohn’s-derived samples might be 
beneficial given that Tr1 cells are the main regulatory subset during 
protracted inflammation and are involved in the healing process of 

826 R. J. Robles et al.



0

10

20

30

40

0

10

20

30

0

10

20

30

40

0

20

40

60

5

6

7

8

9

10

0

1

2

3

4

5

0

1

2

3

4

5

6

7

WT Vehicle
WT UCB
WT APT102
WT UCB + APT102

WT Vehicle

WT UCB

WT APT102

WT UCB + APT102

D
is

ea
se

 a
ct

iv
it

y
in

de
x

DSS Water

A

30252015105

*
*

*
Days

**
*

****
**

**
***

**** *

B

Vehicle UCB

APT102
UCB +

APT102

Vehicle UCB

APT102
UCB +

APT102
C

ol
on

 le
ng

th

*

*

H
is

to
lo

g 
ys

co
re

**

* *

***
**

*

C

D

%
 F

O
X

P3
+

*

*

%
 m

C
D

39
+ *

*

LPsIELsMLNsSpleen LPsIELsMLNsSpleen

%
 C

D
49

b+

0.06

*

%
 L

A
G

-3
+

*

*

Vehicle UCB

APT102
UCB +

APT102

Figure 6. APT102 boosts UCB immunoregulatory properties in DSS colitis in vivo. WT mice were treated with 2% DSS for 6 days. DSS treatment was then 
replaced with normal water for an additional 24 days. For the whole duration of the experiment, mice were exposed to vehicle [n = 4], UCB [n = 6], APT102 [n = 4] 
or UCB plus APT102 [n = 6]. [A] Mean+SEM disease activity index. Asterisks indicate statistical significance as determined by ANOVA. [B] Mean ± SEM colon 
length [cm]. [C] Haematoxylin and eosin staining of colon sections [original magnification, ×10]; mean ± SEM histology score at the time of harvesting is also 
shown. [D] Mean ± SEM frequency of CD4+FOXP3+, CD4+mCD39+, CD4+CD49b and CD4+LAG-3+ lymphocytes within spleen, MLN, IEL and LP mononuclear cells. 
*p ≤ 0.05;**p ≤ 0.01;***p ≤ 0.001.

CD39 and APT102 Correct Treg Dysfunction in IBD 827



0

20

40

60

80

100

0

20

40

60

80

100120

FO
X

P3
 M

FI
(T

re
g)

**
* **

0

200

400

600

800

L
A

G
-3

 M
FI

(T
re

g)

* *

0

200

400

600

C
D

39
 M

FI
(T

re
g)

** **

A

C
D

49
b 

M
FI

(T
r1

)

**

***
*

0

100

200

300

400

L
A

G
-3

 M
FI

(T
r1

)

**
***

*

0

50

100

150

200

***
***

**

C
D

39
 M

FI
(T

r1
)

B

C

0

500

1000

1500

C
D

73
 M

FI
(C

D
39

+  T
re

g)

**

**

*

*

0

500

1000

1500

2000

C
D

73
 M

FI
(C

D
39

+  T
r1

)

**
0.07

0.0

2.5

5.0

7.5

D

%
 I

L
17

+  c
el

ls

0.0

2.5

5.0

7.5

%
 I

L
17

+  c
el

ls

*

**

0.0

1.5

3.0

4.5

*

%
 I

FN
γ+  c

el
ls

0.0

1.5

3.0

4.5

%
 I

FN
γ+  c

el
ls

*

+
Treg

CD25– CD25– CD25– CD25–

+
Tr1

+
Treg

+
Tr1

+
Treg

+
Tr1

+
Treg

+
Tr1

E

Healthy Crohn’s Healthy Crohn’s

Healthy Crohn’s Healthy Crohn’s

Healthy Crohn’s Healthy Crohn’s

Untreated

UCB

UCB + APT102

Untreated

UCB

UCB + APT102

Untreated

UCB

UCB + APT102

Untreated

UCB

UCB + APT102

Untreated

UCB

UCB + APT102

Figure 7. APT102 promotes additional AhR activation in Treg and Tr1 cells from Crohn’s disease patients. Treg and Tr1 cells were obtained from peripheral blood-
derived CD4+ lymphocytes of healthy subjects and Crohn’s disease patients. Mean ± SEM [A] FOXP3, LAG-3 and CD39 MFI in untreated, UCB- or UCB plus 
APT102-treated Treg; [B] CD49b, LAG-3 and CD39 MFI in untreated, UCB- or UCB plus APT102-treated Tr1 cells [healthy subjects, n = 11 for Treg, n = 12 for Tr1 
cells; Crohn’s patients, n = 11]. [C] Mean ± SEM CD73 MFI of untreated, UCB- and UCB plus APT102-treated CD39+ Treg and CD39+ Tr1 cells [healthy subjects, n = 6 
for Treg and n = 5 for Tr1 cells; Crohn’s patients, n = 6]. Mean ± SEM frequency of [D] IL17 and [E] IFNγ-producing cells within CD4+CD25− cells in the absence 
or presence of untreated, UCB- or UCB plus APT102-treated Treg and Tr1 cells [healthy subjects n = 5; Crohn’s patients n = 5]. *p ≤ 0.05;**p ≤ 0.01;***p ≤ 0.001.

828 R. J. Robles et al.



tissue injury. As we previously reported for Th17 cells,8 treatment 
with UCB alone did not result in major changes in the phenotypes 
of regulatory cell subsets obtained from the inflamed biopsied 
areas. These data indicate the need for initial core immunosuppres-
sion to contain the effects of pro-inflammatory mediators and to 
enable immunomodulatory strategies such as APT102 to succeed. 
This is supported by the evidence of higher Treg FOXP3 MFI and 
increased Tr1 CD49b MFI in patients treated with azathioprine/6-
mercaptopurine and infliximab respectively, and by a trend towards 
positive correlation between the duration of infliximab therapy and 
Tr1 CD39 and CD49b MFI. Whether the inability to upregulate 
CD39 by Treg or Tr1 cells obtained from inflamed biopsied areas 
results from aberrant upregulation of gut homing receptors cannot 
be ruled out and awaits further investigation; in this regard we have 
previously reported that a genetic deficiency of CD39 is associated 
with an aberrant increase in α4β7 in murine hepatic CD8 cells.33 
Should future data indicate heightened expression of gut homing 
receptors in lamina propria-derived regulatory cell subsets from 
Crohn’s disease patients, combinatorial treatment with antibodies 
targeting these molecules would be adequate.

In vivo, treatment with APT102 augmented the benefits of UCB, 
resulting in significant amelioration of histopathological scores and 
boosting of immunoregulatory markers in the LP compartments of 
WT colitic mice, further supporting the salutary immunoregulatory 
effects of this exogenous ADPase.

Another important finding of this study derives from the ob-
servation that hCD39 overexpression protects animals from hyp-
oxic exacerbation of colitis triggered by deferoxamine, without 
abrogating the salutary effects of UCB. In contrast, exposure of WT 

mice to deferoxamine worsens colitis, also in the presence of UCB, 
and results in downregulation of FOXP3, mCD39 and IL10 in CD4 
cells of both systemic and local colonic compartments. The effects of 
deferoxamine, alone or in combination with UCB, on the phenotype 
of CD4 cells from hTG mice appear to mainly impact the colonic 
compartment, as reflected by the paradoxical decrease in IFNγ and 
increases in FOXP3 and IL10 levels. Enhancement of FOXP3+ Treg 
under hypoxic conditions is known to occur,34 suggesting differential 
effects of hypoxia on select cell subtypes.13,35,36

In conclusion, we provide evidence for protective roles of hCD39 
overexpression during intestinal inflammation by abrogating the 
deleterious effects of hypoxia while preserving beneficial responses 
to AhR ligation, resulting in further expression of native CD39. 
We also note that increased ATPase/ADPase activity administered 
in the form of APT102 boosts Treg and Tr1 cells in Crohn’s dis-
ease. These data support the use of APT102 and related compounds 
together with modulated AhR-signalling to both preserve and en-
able T-lymphocyte regulatory properties in IBD. Such combined ap-
proaches might thereby maintain immune-tolerance and quiescence 
of disease activity in this important chronic inflammatory condition.
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