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Abstract

Few cell signals match the impact of the TGF-β family in metazoan biology. TGF-β cytokines 

regulate cell fate decisions during development, tissue homeostasis and regeneration, and are 

major players in tumorigenesis, fibrotic disorders, immune malfunctions, and various congenital 

diseases. The effects of the TGF-β family are mediated by a combinatorial set of ligands and 

receptors, and a common set of receptor-activated SMAD transcription factors. Yet, the effects can 

dramatically differ depending on the cell type and the conditions. Recent progress has illuminated 

a model of TGF-β action in which SMADs bind genome-wide in partnership with lineage-

determining transcription factors and additionally integrate inputs from other pathways and the 

chromatin to trigger specific cellular responses. The new insights clarify the operating logic of the 

TGF-β pathway in physiology and disease.

Even the simplest multicellular organisms require a high level of intercellular coordination. 

Cells communicate in part via small, secreted proteins variously known as cytokines, growth 

factors, or polypeptide hormones depending on the nature of their effects and the distance 

between their source and physiologic targets. There is no cytokine family in metazoans with 

more widespread and diverse effects than the transforming growth factor (TGF)-β family. 

Essentially all cells in the developing embryo and the adult can perceive TGF-β family 

signals, and respond with effects on cell proliferation, differentiation, communication, 

adhesion, movement, metabolism, and death that are as varied as the target cell types1. 

Collectively these cytokines have long captured the interest of the biomedical field because 

of their numerous roles in development and adult physiology, as well as the many 

developmental, immune and fibrotic diseases that result from their malfunctions2-8, not the 

least of which is cancer9-12.

The molecular basis for the contextual nature of TGF-β action, an open question for 

decades13, has recently gained unprecedented clarity. At the transcriptional level, recent 

progress illuminates a unifying theme –the collaboration between SMADs, which are signal-

driven transcription factors [G] (SDTFs) directly activated by TGF-β receptors, and lineage-

determining transcription factors that specify cell identity and determine the binding of 
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SMADs to loci genome wide. By additionally sensing the chromatin status at these loci and 

the cooperating with other SDTFs, SMADs integrate these multiple determinants to yield 

strikingly contextual responses to TGF-β family inputs.

Here we cover this progress by focusing on three contexts that best reveal the operating logic 

of the TGF-β pathway. These three contexts are early embryogenesis14-16, immune 

regulation17,18, and tumor progression9-12. The biological effects of the TGF-β family in 

these settings have been extensively discussed (op. cit.). Our purpose here is to discuss the 

current model for how the TGF-β cytokines trigger specific responses in these biological 

contexts.

Basics of TGF-β signaling

The TGF-β pathway is a paradigm of membrane-to-nucleus signaling by receptor-mediated 

activation of transcription factors19. As ligands the cytokines bind to two pairs of 

transmembrane serine/threonine protein kinases, triggering receptor activation and 

phosphorylation of SMAD transcription factors20,21 (Fig. 1). In the basal state, the SMAD 

proteins shuttle between the cytoplasm and the nucleus22,23. Upon being phosphorylated by 

the receptors, SMADs reenter the nucleus ready to bind throughout the genome and activate 

or repress hundreds of genes. The core components of the TGF-β–SMAD pathway are 

highly conserved throughout metazoan evolution24. X-ray crystal structures have been 

determined for most of these components and complexes, providing key insights into the 

structural basis for their function and specificity19,25-27.

Although TGF-β can also activate phosphatidylinositol 3-kinase (PI3K), mitogen-activated 

protein kinases (MAPK) and other pathways that have their own potent agonists13,28-30, the 

effects mediated by SMADs fully recapitulate the context-dependent nature of TGF-β 
action. The apparent simplicity of this two-step signal transduction process belies the 

diversity of cellular responses that it elicits in different cellular contexts. For example, TGF-

β-activated SMADs promote differentiation of embryonic stem (ES) cells16,31,32, 

proliferation of chondrocyte precursors33, growth inhibition in epithelial progenitors34,35, 

apoptosis in premalignant cells36-38, and metastatic invasion in carcinoma cells39,40.

Ligands

Structural and functional considerations separate the 32 members of the family into TGF-β 
and bone morphogenetic protein (BMP) subfamilies, with a few outliers (Table 1). The TGF-

β subfamily in mammals comprises TGF-β1, TGF-β2 and TGF-β3; Activins A and B; 

Nodal, Myostatin, and several members known as GDFs (growth and differentiation factors). 

Broadly speaking, Nodal14,16 and GDF3 41-43 are active during early embryo development, 

whereas TGF-β, Activin, GDF8 (also known as Myostatin) and other GDFs are critical for 

organogenesis, tissue homeostasis4,15 and immune regulation17,18. The BMP 

subfamily6,44,45 includes over a dozen factors, which function just as broadly as the TGF-β 
subfamily, frequently in contraposition to it. The most extensively studied members are 

BMPs 2, 4, 6, 7, 9, and 15, GDFs 5 and 9, and Anti-Muellerian Hormone [G] 2. The 

bioactive factors are disulfide-linked dimers cleaved from the C-terminal portion of a 

biosynthetic precursor by furin and other pro-protein convertases. The canonical ligands are 
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homodimeric, but heterodimers such as TGF-β1.2 46, Activin AB 47, BMP2.7 48,49 Nodal-

Vg1 (Nodal-GDF3)42 and others exist that further diversify the repertoire.

Receptors

Mammalian genomes encode seven type I and five type II receptors19 (Table 1). Among the 

type II receptors, ACVR2 (or ACTR2, Activin Receptor Type II) and ACVR2B are widely 

shared by ligands from both subfamilies (Activins, Nodal, BMPs and GDFs); BMPR2 (BMP 

Receptor Type II) is shared by ligands of the BMP subfamily, whereas TGFBR2 (or TβR-II, 

TGF-β Receptor Type II) and AMHR2 (AMH Receptor Type II) only bind TGF-β and 

AMH, respectively. Among the type I receptors for the TGF-β subfamily, TGFBR1 (or TβR-

I; also known as ALK5, Activin Receptor-Like Kinase 5) is restricted to TGF-β and 

GDF8/11, whereas ACVR1B (ActR1B/ALK4) and ACVR1C/ALK7 are shared by the other 

members of the TGF-β subfamily. In the BMP subfamily, BMP9 and BMP10 share ALK1, 

and the other BMP subfamily members share ACVR1A/ALK2, BMPR1A/ALK3 and 

BMPR1B/ALK6 (Table 1). In the ligand-induced receptor complex, the type II receptors 

phosphorylate the type I receptors, which then recognize and phosphorylate SMAD proteins. 

In addition to the type I receptors, TGFBR2 and BMPR2 directly regulate the cell polarity 

protein PAR6 50 and the cytoskeletal regulatory kinase LIMK1 (LIM domain kinase 1) 51,52, 

respectively.

Combinatorial ligand perception

The contextual nature of TGF-β signaling is not only determined by the intrinsic 

transcriptional responsiveness of the target cells, which the following sections cover, but also 

by the repertoires of ligands and membrane receptor that interact in the extracellular space, 

which we briefly highlight here. The large number of ligands in the TGF-β and BMP 

subfamily interact with a small set of receptors that signal through an even smaller set of 

messenger SMADs. The diversity of ligands provides opportunities for differential 

regulation of ligand access to receptors by ligand-binding proteins and membrane co-

receptors (Box 1). Filipodial extensions53 and endocytosis54 are involved in BMP delivery 

and diffusion, and participate in the formation of DMP morphogen gradients54.

Cells in vivo may be exposed to multiple members of the TGF-β and BMP subfamilies at 

once, resulting in additive, synergistic as well as antagonistic combinations of ligand 

inputs55-58. As shown in cell culture models exposed to combinations of different BMP 

ligands, cells can use their repertoire of BMP receptors to perceive mixed ligand milieus and 

turn them into specific signaling input patterns59. Moreover, heterodimeric ligands may 

assemble complexes including more than one kind of type I receptor. For example, BMP2.7 

heterodimers assemble complexes that include both ALK2 and ALK3 during dorsoventral 

patterning in zebrafish48.

SMAD transcription factors

SMAD proteins consist of globular N-terminal and C-terminal domains, known as the MH1 

and MH2 domains respectively, separated by a flexible linker region19,24. The MH1 domain 

binds DNA, and the MH2 domain interacts with other SMADs, different lineage-

determining transcription factors (see below), chromatin readers such as TRIM3360, co-
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activators such as p300 and CBP61-63 and co-repressors such as TGIF64. The linker region 

of R-SMADs contains sites for regulatory phosphorylation by mitogen-activated protein 

kinases (MAPKs)65-67, cyclin-dependent kinases (CDKs)68,69, and glycogen synthase 

kinase 3β (GSK3β)67.

Five SMAD proteins serve as receptor substrates (R-SMADs) in mammals. The type I 

receptors for the TGF-β subfamily (ALK4, ALK5 and ALK7) primarily phosphorylate 

SMAD2 and SMAD3, whereas the type I receptors for the BMP subfamily (ALK1, ALK2, 

ALK3 and ALK6) primarily phosphorylate SMADs 1, 5 and 8. SMAD8 (also known as 

SMAD9) has been reported to possess weak transcriptional activity and may act as a 

dominant negative regulator of SMAD1/5 in BMP signaling70. Receptor-mediated 

phosphorylation targets two serine residues at the C-terminus of R-SMADs, generating an 

acidic tail (pSer-X-pSer-COO−) that mediates MH2-MH2 oligomerization with R-SMADs 

and SMAD419.

SMAD4 is not a receptor substrate and is not required for movement of activated R-SMADs 

into the nucleus. However, SMAD4 is essential for the assembly of R-SMAD-SMAD4 

complexes that trigger most TGF-β family gene responses19 (Fig. 1). What specific function 

SMAD4 brings to these transcriptional complexes remains unknown. Certain TGF-β 
responses, such as the upregulation of the transcription factor SOX4 in pancreatic epithelial 

progenitors, require just SMAD2/3, not SMAD438 (Fig. 1), in line with the requirement for 

SMAD2/371 but not SMAD436 in pancreas development in mice. TGF-β induction of 

fibronectin, a major extracellular matrix component, also requires SMAD2/3 but not 

SMAD438. Two additional family members, SMAD6 and SMAD7, act as inhibitory SMADs 

that mediate negative feedback in the pathway (Box 1).

The SMAD transcriptional cycle.

Receptor-activated SMAD1/5 and SMAD2/3 that enter the nucleus undergo phosphorylation 

at Ser-Pro motifs in the linker region 68,72. These phosphorylations are mediated by CDK8 

and CDK9, which also phosphorylate the C-terminal domain (CTD) of RNA polymerase II 

(RNAPII) for transcriptional initiation and elongation. In R-SMADs, CDK8/9-mediated 

phosphorylation creates sites for binding of YAP and PIN1, which enhance the 

transcriptional activity of the SMAD complex. But this phosphorylation also primes the 

linker region for GSK3β-mediated phosphorylation, which creates binding sites for the E3 

ubiquitin ligases SMURF1/2 in SMAD1/5 and NEDD4L in SMAD2/3, for SMAD 

degradation68,72,73. This degradation fate can be averted by SCP1/2 (small CTD 

phosphatases), which dephosphorylate the linker region and spare SMADs for new rounds of 

signaling74. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in dissociating SMAD 

complexes from DNA by ADP-ribosylating SMAD3 and SMAD475. The involvement of 

related protein kinases and phosphatases in the regulation of SMADs and RNAPII suggests 

close coordination between these transcription factors and RNA polymerase.

Core pathway regulators

Much has been learned about the regulation of the core pathway components (Box 1). 

Regulators include factors that trap the ligands in a latent state, and factors that release the 
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active ligands from these latent complexes. Co-receptors for TGF-β, Nodal and BMP, and 

family members that competitively antagonize Nodal and Activin modulate ligand access to 

the receptors. Regulators of SMAD stability and nucleocytoplasmic shuttling, and 

transcriptional co-activators and co-repressors interact with SMADs to enable their function 

in the nucleus. Negative feedback regulators, mediators of receptor and SMAD turnover, and 

mediators of regulatory inputs from other pathways, have also been identified. Box 1 

provides a brief summary of 24 distinct classes of TGF-β-SMAD pathway regulators.

Context-dependent interpretation of TGF-β and BMP signals

The identification and structural characterization of the core components of the TGF-β 
pathway was important for understanding signal transduction process but insufficient to 

explain how TGF-β and BMP activate different genes in the same cell, or how the same 

SMADs activate different genes in different contexts. For example, the growth inhibitory 

effect of TGF-β in epithelial76,77 and hematopoietic progenitors78, and the role of TGF-β in 

promoting wound healing responses79, both a focus of this field since the early days, are 

mediated by transcriptional activation of such disparate components as CDK inhibitors and 

extracellular matrix proteins, respectively. Eventually, genome-wide transcriptomic analysis 

showed that different cell types respond to TGF-β-activated SMADs with largely non-

overlapping gene expression profiles, and the same holds true for BMP-activated SMADs. 

Thus, the contextual nature of TGF-β and BMP action has long been apparent but has defied 

a unifying explanation.

SMADs bind a common DNA motif

TGF-β and BMP trigger direct responses by activating different R-SMADs19. However, 

SMAD2/3 and SMAD1/5 do not regulate different genes by having different DNA binding 

specificities. Oligonucleotide binding assays80 showed that SMAD3 and SMAD4 bind the 

palindromic duplex 5′-GTCTAGAC-3′. The X-ray crystal structures of MH1 domains of 

SMADs 1, 3, and 4 bound to this sequence demonstrated that all three SMADs similarly 

recognize the GTCT motif or its complementary extended sequence CAGAC 81,82. SMAD2 

is an exception: its most abundant isoform contains an insert that is thought to inhibit 

binding to DNA19,80. SMAD1 and SMAD4 were also found to bind GC-rich motifs in BMP 

target gene promoters83-85, an observation that led to the proposal that GC-rich motifs 

function as BMP response elements (BRE) whereas the CAGAC motifs serves as SMAD 

binding elements (SBE) for the TGF-β subfamily. However, this dichotomy was puzzling, 

given the sequence identity of the MH1 domain β-hairpin, which is the structural element 

that binds DNA26. Moreover, analysis of SMAD4 binding to promoter sequences of the 

mesendoderm specification gene goosecoid (Gsc) 84, and of genome-wide SMAD3 and 

SMAD4 binding in ES cells86,87 showed that these SMADs also bind GC-rich regions.

Addressing these discrepancies, recent work showed that SMADs 1, 3, 4 and 5 recognize the 

common consensus sequence GGC(GC)∣(CG) 24. These 5-bp GC-rich sites are referred to as 

the 5GC SBE motif. X-ray crystal structures of the different SMAD MH1 domains bound to 

5GC motifs demonstrate a high degree of conformational flexibility of the β-hairpin. The 

SMAD-binding cis-regulatory elements of TGF-β and BMP target genes are significantly 
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enriched in clusters of 5GC SBEs, which are more prevalent than the CAGAC motif. In sum, 

TGF-β-activated SMAD3 and BMP-activated SMAD1/5 recognize common DNA motifs 

yet regulate different sets of target genes (Fig. 2a).

Cell-specific LDTFs dictate SMAD binding genome-wide

If the DNA binding activity of SMAD1/5 and SMAD2/3 proteins is not a major determinant 

of TGF-β versus BMP subfamily specificity in target gene recognition, then other factors 

must determine this specificity. Time and again the genetic dissection of developmental 

processes has led to the identification of transcription factors that determine lineage 

commitment and cell differentiation within this lineage. These master regulators are referred 

to as lineage-determining transcription factors, LDTFs 88. Early work on two LDTFs, 

FOXH1 and ZFP423, provided pioneering examples of the crucial role of these factors as 

contextual determinants of TGF-β and BMP responses. FOXH1 (previously known as 

Fast1), a member of the forkhead transcription factor family, directs nodal-activated 

SMAD2/3 to target promoters during mesendoderm formation87,89,90 (Fig. 2b). The zinc-

finger transcription factor ZFP423 (previously known as OAZ) directs BMP-activated 

SMAD1 to target promoters during Xenopus ventral mesoderm specification91. FOXH1 and 

ZFP423 discriminately bind SMAD2/3 and SMAD1/5, respectively. The resulting 

complexes target gene regulatory regions that contain FOXH1 or ZFP423 binding elements 

alongside SBE, thereby defining the specificity.

Another stride towards answering the question of how cells read TGF-β family signals came 

from analysis of genome-bound SMADs in various cell types. The binding pattern of signal-

activated SMAD2/3 was different in ES cells, myoblast precursors, and pro-B cells, and it 

closely aligned with the binding of highly expressed LDTFs in each lineage31. This 

paradigm was extended to BMP-regulated SMAD192. In sum, LDTFs determine the cell 

type- and pathway-specific activity of SMADs, a model further validated by more examples 

below.

Although LDTFs determine the genome binding patterns of SMADs, this does not mean that 

the SMADs are only passive participants in cellular transcriptional networks, merely 

following LDTFs around the genome to adjust gene expression as dictated by these master 

regulators. In ES cells and progenitor cells, LDTF-guided SMADs frequently regulate the 

transcription of other LDTFs, which in turn trigger differentiation along lineage fates (Fig. 

2b,c). Moreover, SMADs do not always form exclusive partnerships with a dominant 

transcription factor, and LDTFs are not obligatory partners of SMADs. SMADs can also 

form partnerships with other SDTFs (Table 2, and see below). Thus, SMAD signaling is 

both context dependent, guided by LDTFs, and context determining, through SMAD 

regulation of LDTF expression.

SMAD cooperation with other signal-driven transcription factors

SMADs integrate inputs from other pathways. These inputs can be broadly separated into 

two categories. One includes signal-dependent post-translational modification that regulate 

the strength and duration of SMAD signaling activity, as has been reviewed 

elsewhere13,93,94 (refer to Box 1). The other category involves SDTFs that respond to other 
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signals and cooperate with SMADs alongside LDTFs at target gene loci. In partnerships 

with other SDTFs SMADs control cell cycle progression, extracellular matrix production, 

and other effects (Table 2). Classical examples include partnerships of SMAD2/3 with AP1 

in the regulation of extracellular matrix proteolysis95, with FOXO1~4 in the induction of 

CDK inhibitors34, with RUNX3 in B-cell immunoglobulin class switching96, and with E2F4 

and ATF3 in the repression of MYC and ID1, which are transcriptional regulators of cell 

growth and differentiation35,97.

The convergence of signal-activated SMADs and other SDTFs on LDTF genes as targets ties 

to the recent emergence of the concept of “super-enhancers”, clusters of transcription factor-

binding elements that capture entire networks of SDTFs and are massively enriched with 

machinery for transcription activation98. Compared to regular enhancers, super-enhancers 

are small in number, and are strongly enriched at LDTF loci99. Examination of the DNA 

elements that comprise super-enhancers showed enrichment for binding sites for both, 

LDTFs and SDTFs of multiple pathways100. This suggests that the control of cell identity in 

general is a cooperative affair involving LDTFs and multiple SDTFs, with SMADs 

prominent among them.

TGFβ action in developmental contexts

The regulation of cell identity by the TGF-β pathway during development provides key 

examples of SMADs working in partnership with LDTFs and other SDTFs to generate 

specific responses that orchestrate phenotypic transitions of different stem and progenitor 

cells.

Stem cell differentiation control by SMADs and LDTFs

The dependence of activated SMAD on LDTFs was identified in studies of early vertebrate 

development. Treatment of early-stage Xenopus frog embryos comprising pluripotent ES 

cells with Activin (a mimic of endogenous Nodal) induced the formation of mesoderm-

endoderm progenitor cells (mesendoderm). SMAD2/3 in complex with SMAD4 required 

FOXH1 to activate transcription of the homeobox gene MIXL1 (also known as Mix.2 in 

mammals; Mixer in zebrafish) in this context89. SMADs and FOXH1 jointly bind to 

regulatory elements at key developmental loci90. Mix.2 was later found to be part of a larger 

network of SMAD-induced LDTFs that regulate mesendoderm formation101. In mouse and 

human ES cells Nodal signaling stimulates differentiation through extensive upregulation of 

mesendoderm LDTFs including Mixl1, Eomesodermin (Eomes), Brachyury (T), Goosecoid 
(Gsc) and Foxa2102 (Fig. 2c, and Table 2). FOXH1 occupies cis-regulatory elements of most 

of these genes from the start of zygotic gene expression, prior to SMAD activation by Nodal 

signals103, and Nodal-activated SMAD2/3 are recruited to FOXH1-occupied regions 

genome-wide104 (Fig. 1). FOXH1 therefore is an archetype of LDTF that dictates SMAD 

binding genome-wide, including loci that encode LDTFs for differentiation into the next 

developmental stage. This work also supports the concept that LDTFs controlling 

mesendoderm development form gene regulatory networks akin to those that control 

pluripotency105.
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Mesendoderm LDTFs are silenced in ES cells by the action of histone binding proteins that 

maintain a repressive chromatin state. To gain access to such sites, SMAD2/3 bind to 

TRIM33, a member of the “chromatin reader” [G] class of proteins60. The SMAD2/3-

TRIM33 complex is alternative to the SMAD2/3-SMAD4 complex, and the two complexes 

cooperate in binding to these obstructive chromatin territories (Fig. 3a). TRIM33 contains 

PHD domain [G] and Bromo domain [G]. These domains bind to histone marks H3K9me3 

and H3K18ac, respectively, to displace a repressor, heterochromatin protein 1 (HP1) 60. How 

the SMAD2/3-SMAD4 and SMAD2/3-TRIM33 complexes cooperate60, and how SMADs 

interact with chromatin in different contexts106 are open questions. Additionally, TRIM33 

can act as a SMAD4 ubiquitin ligase to limit SMAD transcriptional action107.

SMAD-LDTF interplay in committed progenitors

Instances of an LDTF dictating SMAD binding genome-wide, and in turn SMADs driving 

expression of other LDTFs, are also found in lineage-restricted progenitors (Table 2). 

Genome-wide analysis of SMAD2/3 binding in these cells helped establish the general 

principle that LDTFs determine the genome-wide binding landscape of SMADs. The LDTFs 

MYOD1 in myogenic progenitors and PU.1 in pre-B cells direct TGF-β-activated SMAD3 

to co-occupy the genome and trigger the differentiation of these cells31. Similarly, BMP-

activated SMAD1 co-occupies the genome with the myeloid LDTF C/EBPα and the 

erythroid LDTFs GATA1 and GATA2, to drive differentiation of hematopoietic progenitors 

along these two lineages, respectively92. In hair follicle progenitor cells, BMP-activated 

SMAD1/5 induce expression of GATA3 for differentiation along the hair-generating 

lineage108,109.

After partnering with one set of LDTFs in one developmental stage and inducing the 

expression of LDTFs for transition into the next, SMADs can partner with this second wave 

of LDTFs to further regulate lineage differentiation (Fig. 2b,c, and Table 2). SMAD-

mediated expression of a transcription factor that then serves as a SMAD co-regulator of 

other genes is called “self-enabling” regulation97. For example, Nodal-activated SMAD2/3 

and SMAD4 cooperate with FOXH1 to induce BRA and GSC for mesendodermal 

differentiation of ES cells. GSC then interacts with activated SMAD2/3 to further regulate 

mesoderm differentiation, and BRA interacts with BMP-activated SMAD1 to regulate 

endoderm differentiation110-112. Another FOXH1 target, MIXL1, functions in a similar 

manner in zebrafish113.

SMAD crosstalk with other stem cell differentiation pathways

In addition to interacting with LDTFs to set genome-wide transcriptional response 

programs, SMADs engage in extensive crosstalk with SDTFs regulated by different signals. 

A notable example is provided by the connection between the TGF-β and WNT signaling 

that occurs in development and regeneration13,15,114. Nodal and WNT signals critically 

cooperate in the induction of mesendoderm115. Effector transcription factor complexes for 

each pathway –Nodal-driven SMAD2/3:SMAD4:FOXH1, and WNT-driven β-

catenin:TCF3– bind to neighboring sites in mesendoderm LDTFs enhancers116 (Fig. 3b). 

Combinatorial WNT and BMP signaling, with co-occupancy of hundreds of cis-regulatory 

DNA elements by SMAD1 and β-catenin-TCF, guides gastrointestinal organogenesis in 

David and Massagué Page 8

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frogs117. Many other examples of cooperation between the TGF-β and WNT families are 

known13,15,114.

In mesendoderm development, the SMAD-TCF cooperation additionally integrates inputs 

from p53 (Fig. 3b). In the adult p53 functions as a tumor suppressor transcription factor that 

induces cell cycle arrest, senescence, and apoptosis in response to DNA damage. However, 

p53 is highly expressed during early embryogenesis in frogs and mice, and is required for 

mesendoderm differentiation of human and mouse ES cells118 and mesendoderm formation 

in frogs119,120. In ES cells, p53 does not co-bind the genome with SMAD2/3 but directly 

induces WNT3 expression, which activates TCF for cooperation with Nodal-activated 

SMADs86. p53 activity is essential for gastrulation in the mouse embryo86. Mammals have 

two additional family members, p63 and p73, which are functionally redundant with p53 in 

this context. This explains why p53-null mice develop normally whereas p53-depleted frog 

embryos do not119,120.

Crosstalk between SMADs and other SDTFs can also be antagonistic. Binding of 

transcription factor YAP to SMAD2/3 at promoters of mesendoderm specification genes in 

ES cells establishes both cooperative121,122 and competitive interactions123 (Fig. 3c). In this 

context, the Crumbs cell polarity complex relays cell density information via the Hippo 

pathway, inducing the kinase LATS to phosphorylate YAP and the related factor TAZ. 

Protein 14-3-3 binds to phosphorylated YAP/TAZ and retains these proteins in the 

cytoplasm. To the extent that YAP/TAZ are bound to SMADs, this process retains SMADs 

in the cytoplasm and inhibits their transcriptional function123.

Another antagonistic input is provided by the PI3K pathway, which in contrast to p53 

inhibits ES cell differentiation by suppressing WNT pathway activation124. Crosstalk 

between SMADs and other SDTFs occurs in adult stem cells as well. For example, TGF-β-

activated SMAD2/3 collaborates with RANK signaling (receptor activator of nuclear factor 

kB, NFkB) to induce expression of the LDTF NFATC1 (nuclear factor of activated T cells, 

cytoplasmic 1) for osteoclast differentiation125.

Determinants of TGFβ-induced EMT

Cells in developing embryos undergo multiple rounds of a phenotypic change known as the 

epithelial-to-mesenchymal transition (EMT) and its reverse, the mesenchymal-to-epithelial 

transition (MET)126. During EMT, cells lose apicobasal polarity and down-regulate key 

epithelial cell adhesion molecules such as E-cadherin, resulting in loss of cell contacts with 

neighboring cells. EMT is driven by a set of transcriptional repressors including SNAIL and 

ZEB, which are generally united in their ability to inhibit the expression of the cell adhesion 

molecule E-cadherin126. TGF-β has long been known to be an inducer of EMT in normal 

and oncogenically transformed cells127,128. TGF-β is among the most potent EMT inducers 

in epithelial cell cultures from mammary, lung, pancreatic and other tissues126,129,130. 

During the initiation of cardiac valve formation131, TGF-β2 and -β3 activate expression of 

SNAIL and the related SLUG to drive this process132. Transient EMT-like processes, 

including forms called “partial EMT”, are frequently observed in association with TGF-β at 

the interface between tumors and the surrounding stroma133,134. The biology of EMT and 

MET and the regulation of these transitions by TGF-β and BMP have been extensively 
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reviewed13,126,129,135. Of relevance here, the induction of EMT by TGF-β requires inputs 

from other pathways, most prominently the RAS–MAPK pathway136,137. This phenomenon 

is particularly manifest in the presence of oncogenic RAS signaling, which enables TGF-β–

SMAD to strongly induce SNAIL expression38,138,139. The mechanistic basis for the 

synergy between the TGF-β–SMAD and RAS–MAPK pathways remains unclear.

TGFβ action in immune regulation

Proper function of the immune system requires a balance between immunity and tolerance, 

which depends on the dynamic regulation of numerous cell fate transitions to produce 

various lymphocyte subtypes in adequate numbers. TGF-β plays many critical roles in 

setting this balance, perhaps more so than any other cytokine140. The regulation of 

phenotypic plasticity in this setting again is mediated in large part by SMAD cooperation 

with LDTFs.

Multiple functions in regulating lymphocyte pools and their effector functions

TGF-β plays a pleiotropic role in lymphocyte regulation, and this is particularly apparent in 

T cells18. This role goes beyond controlling cell differentiation into specific lineages (see 

below for details), and also includes effects on cell survival, proliferation, and effector 

functions. TGF-β supports the development of multiple T cell lineages in the thymus by 

promoting survival of progenitor cells141. It also promotes the maintenance of autoreactive 

CD4+ and CD8+ T cells, which are characterized by high T cell receptor (TCR) signaling 

and undergo negative selection in the thymus to build immune tolerance. TGF-β modulates 

this process by inhibiting TCR activity in autoreactive T cells that escape this negative 

selection18.

In contrast to its role in supporting the maintenance of naïve T cell pools, TGFβ markedly 

restrains the activity of effector T cells derived from these precursors. TGF-β limits CD4+ T 

cell proliferation by suppressing autocrine IL-2 production142. In CD8+ cytotoxic T cells 

(TC cells), TGF-β-activated SMADs cooperate with ATF1 to suppress the expression of 

interferon-γ and the cytolytic factors Perforin, Granzyme, and Fas ligand143, thus inhibit the 

anti-tumor activity of these cells. TGF-β carried by T regulatory (Treg) cells as a cell-surface 

latent complex can exert this effect in direct contacts between Treg cells and CD8+ T 

cells144. TGF-β also modulates B-cell immunoglobulin class switching96 (Fig. 4), and the 

proliferation and other effector functions of B cells, natural killer (NK) cells, monocytes, 

macrophages and granulocytes18.

SMAD-LDTF cooperation in the regulation of T cell subtype specification

TGF-β promotes the differentiation of naïve CD4+ T cells into Treg cells, a key mediator of 

immune tolerance145. Treg cells develop from naïve CD4+ T cells both in the thymus and the 

periphery. The LDTF FOXP3 is a major determinant of the Treg state146, and its induction by 

TGF-β in CD4+ T cells promotes Treg differentiation147. In Treg cells that develop in the 

periphery (pTreg) this regulation involves SMAD3 binding to a Foxp3 enhancer in 

cooperation with IL-2-activated STAT5 and calcineurin-activated NFAT148, providing 

evidence for the importance of cooperation with other SDTFs in TGF-β-family-mediated 
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regulation of cell fate (Fig. 4). A more recent examination of TGF-β control of Treg 

differentiation implicated an expanded repertoire of SMAD-regulated LDTFs, including 

BATF3, FOSL2 and Musculin (MSC), in this process149. In Treg cells that develop in the 

thymus, TGF-β may be dispensable for FOXP3 induction but contributes to Treg formation 

by preventing negative selection of these cells (see also above)150.

TGF-β can promote adoption of an alternative fate by naïve CD4+ cells, the T helper (TH) 

17 cell fate151 (Fig. 4). TH17 cells are a subtype of pro-inflammatory T helper cells that 

express IL-17 and function as mediators of mucosal immunity against pathogens. TH17 cells 

are specified by RORγ2 in mice (retinoic acid receptor-related receptor gamma 2; RORC in 

human)152. RORγ2 expression is induced by IL-21153, and TGF-β-activated SMAD2 

cooperates with RORγt to drive TH17 differentiation154.

TGF-β additionally favors Treg differentiation by restricting the specification of TH1 and 

TH2 cells (Fig. 4), which produce cytokines that support the growth and functions of TC 

cells, B cells, and macrophages. TH1 lineage specification occurs through T-bet transcription 

factor, and TGF-β represses T-bet expression155. In the TH2 lineage, TGF-β-activated 

SMAD3 induces expression of MSC and SOX4, which prevent the expression of TH2 

specific cytokines149,156. It remains to be seen whether SMADs directly contribute to these 

repression events by binding to loci of these LDTFs. In any case, these instances add to the 

examples of regulation of crucial cell identity transcription factors by TGF-β signaling, 

including cases in which TGF-β cooperates with, and others in which it inhibits LDTF 

functions.

Determinants of TGFβ action in cancer

If TGF-β drives cell lineage specification and differentiation, and cancer is a disease of 

failed cell differentiation, it should come as no surprise that TGF-β is important in tumor 

progression.

TGF-β is famously dual-natured, functioning as both a tumor suppressor in premalignant 

cells and a tumor promoter in overtly malignant ones9. The suppressive pressure that TGF-β 
exerts on premalignant cell populations selects for cancer cell clones with an inactivated or 

subverted SMAD pathway. By avoiding the tumor suppressive effects of TGF-β these clones 

can use other effects of the cytokine for invasiveness and immune evasion, thus turning 

TGF-β from inhibitory impediment into stimulus for metastasis.

Much is known about the incidence of TGF-β pathway mutations in human cancer, the 

tumorigenic effects of TGF-β pathway knockouts in mice, the effects of TGF-β on cancer 

cells lines, and other related aspects. However, this work has remained largely disconnected 

from the question of whether and how the roles of TGF-β as a tumor suppressor or a 

metastasis promoter are related to its normal role as a regulator of developmental fate. 

Recent insights into the interplay between SMADs, LDTFs and cell differentiation during 

tumorigenesis provided some answers to these questions. Though largely confined to 

gastrointestinal cancers, these insights have implications for the broader role of TGF-β in 

cancer.
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TGF-β tumor suppressive effects

The tumor suppressive capacity of TGF-β became apparent with the identification of 

inactivating mutations in TGFBR2 in colorectal cancer157 and SMAD4 in pancreatic ductal 

adenocarcinoma (PDA)158,159. These gastrointestinal tissues with the highest incidence of 

TGF-β pathway mutations are derived from endoderm160, suggesting that the shared 

sensitivity to TGF-β has a developmental underpinning. A loss of TGF-β signaling 

components is seldom sufficient for tumor initiation but allows cells harboring oncogenic 

mutations to progress to invasive carcinoma36,37,161. Thus, TGF-β plays its tumor 

suppressive role mostly by blocking the transition of premalignant cells to a more overtly 

malignant phenotype.

In principle, TGF-β could suppress tumor growth by inhibiting cancer cell proliferation. In 

normal epithelial and hematopoietic cells, TGF-β is an archetypical growth inhibitor that 

reversibly halts cell cycle progression through increased expression of the CDK inhibitors 

p15INK4, p21CIP1, p27KIP1 and/or p57KIP2 162-165. However, oncogenically transformed 

cells frequently harbor strong CDK activating signals, which diminishes the effectiveness of 

these CDK inhibitors.

If the cytostatic activity of TGF-β is not an effective tumor suppressive mechanism, the 

ability of TGF-β to induce apoptosis in premalignant cells certainly is. Oncogenic mutations 

increase the sensitivity of premalignant cells to TGF-β-induced apoptosis, as documented in 

several genetically engineered mouse models of cancer. TGF-β-SMAD signaling induces 

apoptosis In pancreatic premalignant progenitors that contain KRAS oncogenic mutations36. 

Mouse skin and mucosal epithelia with conditional deletion of TGFBR2 are mildly 

hyperplasic, whereas epithelia harboring HRAS mutations show hyperproliferation that is 

offset by TGF-β-dependent apoptosis; if TGFBR2 is deleted in this HRAS-mutant context, 

apoptosis is limited and tumors emerge37 (Fig. 5a). Mutant RAS [G] is not the only 

oncogenic driver that turns TGF-β into a tumor suppressive signal. In mouse prostate 

epithelium TGF-β–SMAD signaling inhibits tumor progression when the tumor suppressor 

PTEN [G] suffers inactivation166,167.

TGF-β tumor suppression through altered regulation of LDTFs

How does TGF-β become a potent inducer of apoptosis? TGF-β receptors are not directly 

coupled of apoptosis activating pathways. The induction of apoptosis by TGF-β in 

susceptible cell cultures is SMAD dependent and occurs days after TGF-β addition, arguing 

that it is a secondary response. Recent work on premalignant pancreatic progenitors 

harboring mutant KRAS revealed that TGFβ induces apoptosis as a result of an altered 

regulation of the LDTFs KLF5 and SOX4 38 (Fig. 5b). KLF5 (Krueppel-like factor 5) is 

essential for proliferation, survival and maintenance of progenitor cells in the intestinal 

mucosa168 prior to their differentiation into KLF5-negative progeny. KLF5 enforces the 

epithelial state in intestinal and pancreatic progenitors by up-regulating specific 

cytokeratins169, E-cadherin38, and the pro-epithelial microRNA miR-200 170. In pancreatic 

progenitors, KLF5 co-binds the genome with SOX4 to enforce epithelial progenitor identity, 

and TGF-β supports this function by increasing SOX4 expression38. The role of KLF5 as an 

enforcer of the epithelial progenitor state also applies to carcinoma cells. KLF5 is highly 
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expressed in gastrointestinal cancers and implicated in pancreatic 38,169 and gastric 

tumorigenesis171.

Strong MAPK signaling in RAS-mutant pancreatic, mammary and keratinocyte progenitors 

turns TGF-β into an inducer of EMT 38,128,137. in premalignant pancreatic cells, KRAS–

MAPK signaling enables TGF-β-activated SMADs to induce the transcriptional repressor 

SNAIL, which represses KLF5 expression38. While TGF-β–SMAD signaling down-

regulates KLF5 to impose a mesenchymal phenotype, it still enforces the expression of the 

pro-epithelial SOX4 (Fig. 5b). On being left without KLF5 as its genome-binding partner, 

SOX4 activates a different set of genes including the pro-apoptotic BIM and BMF, causing 

cell death. Thus, TGF-β–SMAD signaling in KRAS-mutant pancreatic progenitors delivers 

conflicting pro- and anti-EMT commands, which triggers apoptosis –a process termed lethal 

EMT38.

Given that KLF5 is an essential component of epithelial progenitor cells in the 

gastrointestinal tract, an EMT involving its repression would oppose the genesis of tumors 

that depend on KLF5. In line with this, using a bioinformatics scoring system for 

quantification of EMT-like characteristics in human tumors, colorectal, gastric and 

pancreatic cancers are consistently among the lowest EMT scores of all tumor types172. A 

role of TGFβ-induced EMT in eliminating neoplastic cells is also suggested by observations 

in other cell types. TGF-β-induced EMT precedes apoptosis in murine mammary epithelial 

cells173.

Pro-metastatic subversion of SMAD transcriptional programs

Much evidence shows that EMT can support tumor invasion and metastasis126,134,135,174. 

The selective pressure imposed by TGF-β results in the accumulation of clones that can 

undergo a TGF-β-induced EMT without its apoptotic effects137,175 (Figs. 5b, 6). Mutational 

inactivation of TGF-β pathway components allows KRAS-mutant pancreatic cells to avoid 

the lethal rearrangement of core transcriptional networks that occur with EMT. SMAD4 is 

mutationally inactivated in half of PDA cases in the clinic, preventing TGF-β from inducing 

SNAIL expression (a SMAD4 dependent effect) but still allowing TGF-β to induce SOX4 

expression (a SMAD4-independent effect) and supporting tumor progression via SOX4 with 

KLF538.

Even in a tumor type with this high propensity to accumulate TGF-β pathway mutations, 

one half of all PDA cases retain a functional TGF-β pathway, indicating that these tumors 

can successfully circumvent the lethality associated with a TGF-β-induced EMT (Fig. 5b). It 

is unclear what allows epithelial-mesenchymal plasticity to emerge in populations that are, 

in bulk, dependent on epithelial transcriptional programs. One candidate is PI3K/AKT 

signaling, which is activated by growth factors of the tumor stroma and can inhibits 

apoptosis by induction of the anti-apoptotic protein BCL-XL
38. The existence of a TGF-β-

imposed bottleneck from which resistant cell clones can eventually emerge has also been 

documented in a mouse mammary epithelial cells, in which TGF-β induced EMT-like 

changes followed by widespread cell death and, after prolonged exposure (>2 weeks), the 

emergence of mesenchymal cells resistant to TGF-β induced apoptosis173.
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Malignant cells that evade TGF-β tumor suppression and still keep a functional TGF-β 
pathway can use this pathway to advantage, not only to profit from EMT but also from other 

SMAD-mediated effects (Fig. 6). Examples of these effects include the production of the 

autocrine stem cell mitogens LIF and PDGF in glioblastoma176, expression of angiopoietin-

like 4 as a mediator of infiltration of circulating breast cancer cells into the lungs177, 

expression of osteoclast stimulating genes (PTHrP, CXCR4, IL-11, CTGF and JAGGED1) 

for bone colonization by breast cancer cells39,40,178, and other pro-metastatic effects179. 

Moreover, TGF-β contributes to the entry of disseminated cancer stem cells into anon-

proliferative state that evades surveillance and elimination of metastatic seeds by NK 

cells180.

Even those tumors that have a fully disabled TGF-β pathway can still benefit from TGF-β 
through its effects on the tumor microenvironment (Fig. 6). Colorectal carcinomas (CRC) 

frequently sustain mutational inactivation of the TGF-β pathway157 yet show high TGF-β 
levels and TGF-β signaling activity in mesenchymal and immune components of the tumor 

stroma, in association with a high risk of relapse181. In mouse models of CRC, tumor-

derived TGF-β stimulates the production of IL-11 in cancer-associated fibroblasts [G] 

(CAFs), which in turn supports the survival of CRC metastasis-initiating cells in the liver. 

Treatment of these mice with TGFBR1 inhibitory drugs suppressed metastasis182. 

Considering the strong capacity of TGF-β to suppress immune surveillance, TGF-β can 

likely support tumor progression by protecting malignant cells from immune-mediated 

clearance. The possibility of combining immunotherapy with TGF-β blockade is under 

active consideration144,183.

Conclusions and perspectives

The present analysis has focused on the partnership of ligand-activated SMADs with LDTFs 

and other SDTF for three reasons. First, these interactions are at the core of some of the 

most important functions of the TGF-β family in development, immunity and cancer. 

Second, the elucidation of these interactions illuminates the molecular basis for the context-

dependent nature of TGF-β action and provides a blueprint for the dissection of SMADs 

transcriptional mechanisms in other developmental and disease contexts. And third, 

knowledge on how cells read TGF-β signals will inform efforts to pharmacologically target 

these factors in diseases that involve malfunctions of the TGF-β pathway, such as fibrosis, 

inflammation, autoimmunity, and cancer.

Based on this blueprint, future work may solve long-standing questions such as: how the 

pleiotropic effects of TGF-β family members during embryo development or of TGF-β itself 

in immune homeostasis are kept in balance; how the persistent TGF-β signaling in fibrosis 

originates and how could be selectively blocked; how oncogenic signals turn TGF-β into an 

EMT inducer; how cancer cells avert the tumor suppressive lethality associated with this and 

other effects; and, what role TGF-β plays in immune evasion of cancer cells and in limiting 

the effectiveness of immunotherapy.

SMADs transcriptional mechanisms are at the core of many TGF-β family responses, and so 

the biochemical processes that regulate to SMAD activation are also of crucial importance. 
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The components of the pathway are identified and well characterized, but their 

combinatorial interplay is rather incompletely understood. There is a growing appreciation 

for the question of how a microenvironments that contains various TGF-β family members, 

cognate receptors, regulators, and coexisting signals is translated by the cell into SMAD 

activation pulses of defined intensity, duration, and shape. These variables are likely critical 

in cells that must choose between several SMAD-dependent fates during rapidly proceeding 

developmental processes. The interplay between ligands, receptors, SMAD partners, and the 

chromatin, analysed at a systems level, merits additional research.

This knowledge is also necessary for work at a more applied level. Advances on the 

structural basis for ligand activation and receptor binding of TGF-β family members are 

currently empowering the development of compounds that target ligand-receptor interactions 

in order to treat diseases that result from excessive or defective activity of a particular TGF-

β family member. Achieving selectivity in targeting modulators of such pleiotropic factors is 

key.
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Glossary terms

Signal-driven transcription factors.
Transcription factors that are often ubiquitously expressed, but are only switched on in 

response to activation of a given signaling pathway.

Anti-Muellerian Hormone.
A developmentally restricted TGFβ superfamily member expressed at high levels in male 

Sertoli cells to guide testicular development, and to a lesser extent in female granulosa cells 

where it regulates follicle development.

Chromatin reader.
A protein containing one or more domains that interact specifically with modified histones, 

providing readout of and often enforcing the transcriptional status (active vs. silent) of 

nearby genes.
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PHD domain.
A 50-80 amino acid, Cys4-His-Cys3-containing domain found in some chromatin readers, 

usually displaying a binding preference for lysine-methylated histone tails.

Bromo domain.
An approximately 100 amino acid domain frequently found in chromatin readers, displaying 

a preference for acetylated lysine residues.

Ras.
A family of small GTPases involved in signal transduction activated in response to a number 

of extracellular signals, often functioning as oncogenes upon constitutive activation by point 

mutations.

PTEN.
A tumor suppressor that restrains activity of the PI3K/AKT pathway through 

dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate.

Cancer-associated fibroblasts (CAFs).
Fibroblasts present in the tumor stroma that play an important role in promoting tumor 

growth, invasion, and metastasis.

Neddylation.
A process analogous to ubiquitylation in which the ubiquitin-like protein NEDD8 is 

conjugated to target proteins.
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Box 1:

Regulation of TGF-β–SMAD signaling.

Ligand regulators.

TGF-β, GDFs 7~11 and BMP9 remain tightly bound to their biosytnthetic prodomain 

portion as a latency associated protein (LAP), forming a complex in which the ligand 

cannot bind to receptors [1] (Numbers in brackets are as in Figure 1). The LAP:TGF-β 
complex binds to latent TGF-β binding proteins LTBP1~4 in the extracellular matrix, or 

the membrane protein GARP in T cells. Allosteric and enzymatic mechanisms release 

latent TGF-β [2]. Integrin αVβ6 binds LAP to allosterically release TGF-β from the 

latent complex. Thrombospondin-1 (TSP-1) also activates latent TGF-β by an allosteric 

mechanism, whereas matrix metalloprotease 9 activates by cleaving LAP.

Membrane co-receptors assist TGF-β family members in binding to signaling receptors 

[3]. Betaglycan (also known as type III receptor) is a co-receptor for TGF-β, Endoglin for 

BMP9/10, Cripto and Cryptic for Nodal, and RGMs (Repulsion Guidance Molecules) for 

BMP2, BMP6 and probably other BMPs. Noggin, Follistatin, Chordin, Gremlin, 

Cerberus and Coco, bind bioactive Activins and BMPs to bar their access to receptors [4]. 

Inhibin, Lefty and BMP3 interfere with signaling by Activin, Nodal, and BMP receptors, 

respectively (see Table 1) [5].

Receptor regulators.

FKBP12 locks the basal state TGF-β type I receptor in an inactive conformation [6]. 

BAMBI is a membrane-bound inhibitor of BMP and Activin receptors [7]. SMAD6 and 

SMAD7 bind to activated TGF-β and BMP receptors for inhibition [8]. SMAD7 recruits 

the E3 ligase SMURF2 for TGF-β receptor ubiquitylation and turnover [9]. SMAD7 

expression is upregulated by TGF-β and BMP, providing negative feedback. SMAD6 also 

inhibits SMAD4 binding to SMAD1. The deubiquitylating enzymes USP4, USP11 and 

USP15 remove ubiquitylation from type I receptors [10] and R-SMADs, and USP9X 

from SMAD4.

Regulators of SMAD activation.

Endosomal proteins SARA and Endofin serve as adaptors for SMAD phosphorylation by 

TGF-β and BMP receptors, respectively [11]. R-SMADs and SMAD4 interact with 

nuclear pore components NUP153 and NUP214, Importin β1 and nuclear export factor 

CRM1 for nucleo-cytoplasmic shuttling [12]. Phosphatases PPM1A and PP2A can 

dephosphorylate C-terminal sites of R-SMADs [13], though their relevance is not yet 

settled.

Transcriptional complex regulators.

LDTFs bound to DNA [14] and TRIM33 bound to H3K9me3:K18ac histone marks [15] 

regulate SMAD binding to DNA. Histone acetylases p300 and CBP [16] and 

deacetylatase complexes formed by TGIF and HDAC1/2 [17] act as SMAD co-activators 

and co-repressors, respectively. SKI and the related protein SKIL disrupt R-SMADs 

binding to SMAD4 [18].

David and Massagué Page 26

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nuclear kinases CDK8/9 phosphorylate Ser-Pro sites in the linker region [19] to recruit 

transcriptional cofactors YAP and PIN1 [20]. But these pSer-Pro marks prime the linker 

for GSK3β-mediated phosphorylation [21], which recruits SMURF1/2 and NEDD4L to 

SMAD1/5 and SMAD2/3, respectively, for SMAD poly-ubiquitylation and degradation 

[22]. SCP1~3 antagonize this fate by dephosphorylating the linker region [23]. These 

sites are also phosphorylated by ERK in response to RAS and by CDK2/4 during the cell 

cycle. PARP1 mediated ADP-ribosylation releases SMADs from DNA [24], to end 

SMAD signaling. Other regulatory inputs include TGF-β receptor neddylation [G] and 

SMAD sumoylation.

For more information on these regulators refer to specialized reviews 13,19,25,26,184-192
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Box 2.

TGF-β–MAD pathway deregulation in cancer

The central components of the TGF-β pathway display a high-degree of lineage 

specificity in the distribution of loss-of-function mutations (Suppl Fig. 1a). Overall, 

SMAD4 is the most frequently altered gene in the pathway193 across all tumor types and 

in the particular case of pancreatic cancer (Suppl. Fig. 1b). Missense mutations 

frequently affect residues in the SMAD2/3:SMAD4 trimer interface26,159. There are 

multiple possible explanations for why SMAD4 loss, rather than TGF-β receptor loss, is 

the preferred route to escape the tumor suppressive effects of the pathway. One 

possibility is that, because SMAD4 also functions downstream of Activin and BMP, its 

loss may simultaneously protect from tumor suppressive effects of multiple TGF-β 
superfamily cytokines. Alternatively, SMAD4 loss may preserve partial TGF-β receptor 

signaling, allowing SMAD4-independent responses such as SOX4 expression that 

increase cancer cell fitness38. In line with this possibility, high levels of TGF-β and its 

receptors in PDA cells are clinically associated with decreased survival194,195. The tumor 

suppressive action of TGF-β may be more widespread than the frequency of these 

mutations suggests, as it may be lost without mutational inactivation of the pathway. 

Indeed, even in human PDA, the tumor type with the highest proportion of TGF-β 
pathway mutations, half of cases in the clinic escape tumor suppression with the core 

pathway intact.
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Key points

• The TGFβ family of cytokines plays myriad roles throughout metazoan 

biology, and is characterized by highly cell type specific responses to pathway 

activation. One of the most prevalent roles of TGFβ signaling is the control 

cell identity in a variety of different contexts, which underlies some of the 

family’s most important biological effects.

• TGFβ signals through cell surface receptors that directly activate SMAD 

transcription factors. These factors then enter the nucleus and cooperate with 

additional transcription factors to control gene expression.

• Context-specific effects of TGFβ family members occur through the influence 

of highly expressed lineage-determining transcription factors (LDTFs) on 

SMAD genome-wide binding. In turn, the TGFβ family orchestrates cell 

identity changes by controlling the expression of key LDTFs.

• SMAD control of key identity transcription factors during cellular 

differentiation is highly cooperative, requiring critical crosstalk with 

additional signaling pathways and LDTFs.

• These themes play out in a wide variety of contexts. Well-studied examples 

from early embryonic development and in the control of the adult immune 

system are highlighted here.

• The powerful ability of SMAD signaling to affect cell identity change 

mediates the pathway’s tumor suppressive effects. This again hinges on 

regulation of key LDTFs, and its disruption turns TGFβ from a tumor 

suppressor to an instigator of metastasis.
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Figure 1. The TGF-β–SMAD pathway in the basal and activated states
a. In the basal state, TGF-β family ligands are either absent or present as latent factors, 

sequestered by binding components of the extracellular matrix (ECM) or the membrane of 

other cells [1]. Allosteric inhibitors may enforce the inactive state of the receptors, all of 

which are transmembrane serine/threonine protein kinases [6]. SMAD proteins that serve as 

receptor substrates (R-SMADs), and their shared partner SMAD4, continuously transit 

between cytoplasm and nucleus by direct interaction with nuclear pore components [12]. 

SMAD partners including lineage-determining transcription factors (LDTF), other signal-

driven transcription factors (SDTF), and the histone binding protein TRIM33, may already 

be pre-bound to the genome. Numbers in circles refer to these and other pathway regulators, 

as detailed in Box 1.

b. In the activated state, ligand from cells in the microenvironment or released from latent 

complexes allosterically by integrins or enzymatically by proteases [2], binds to pairs of type 

I and type II receptors. Ligands can access the receptors directly or, in the case of TGF-β, 

Nodal and BMP9/10, with assistance of accessory co-receptors [3]. Ligand traps [4] and 

antagonistic ligands [5] block access to the receptors. In the ligand-induced receptor 

complex, the type II receptor subunits primarily phosphorylate and activate the type I 

receptors, which phosphorylate R-SMADs, with the assistance of adaptor proteins [11]. 

Receptor-phosphorylated R-SMADs form heterotrimers with SMAD4. Pseudo-receptors [7], 

inhibitory SMADs [8], and SKI proteins [18] inhibit the formation of receptor and SMAD 

complexes and provide negative feedback in the pathway. Inhibitory SMADs recruit 

ubiquitin ligases that target the receptor [9], which are opposed by deubiquitylases [10]. In 

the nucleus, activated SMAD complexes bind to hundreds of genomic loci as dictated by 

context-defining LDTFs and SDTFs [14]. SMADs contact DNA using a highly conserved β-

hairpin structure located in the N-terminal domain (or MH1) domain. The SMAD C-
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terminal domain (or MH2 domain) binds not only LDTFs and SDTFs but also chromatin 

binding proteins [15], co-activators and co-repressors [16,17]. The nuclear kinases CDK8/9 

phosphorylate the SMAD interdomain linker region [19] for recruitment of additional 

cofactors [20]. Subsequent phosphorylation by GSK3 targets SMADs for ubiquitin- and 

proteasome-dependent degradation [21,22]. Alternatively, SMADs are dephosphorylated 

[13, 23] and dissociated from DNA [24] for recycling.

The signaling steps summarized here are reviewed in detail elsewhere13,19,25,26,28,30,93.
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Figure 2. LDTFs and SDTFs as contextual determinants of TGF-β–SMAD action
a. All R-SMADs recognize a common set of DNA elements including GGCGC and related 

5bp motifs (5GC motifs), as well as the CAGAC motif. TGF-β-activated SAMAD2/3 and 

BMP-activated SMAD1/5 recognize different partner LDTFs, thereby achieving specificity 

in target gene recognition.

b. Examples of interactions between SMAD complexes and DNA binding cofactors. In ES 

cells poised to undergo mesendodermal differentiation, the LDTF FOXH1 is pre-bound to 

loci throughout the genome and recruits Nodal-activated SMAD2/3:SMAD4 complexes to 

these loci. The target genes encode LDTFs like BRA/T and GSC. These and the related 
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LDTF EOMES, interact in turn with Nodal-activated or BMP-activated SMADs to mediate 

further specification of the mesoderm and endoderm lineages (refer also to Table 2). In 

keratinocyte precursors, TGF-β-activated SMAD2/3:SMAD4 complexes bind the genome in 

partnership with different SDTFs to regulate the expression of different subsets of target 

genes. Although SMADs target largely different gene sets in different cell types as a 

function of context-specific LDTFs and SDTFs, certain SMAD-mediated gene responses 

appear to be constitutive to the pathway and common to many cell types, as in the case of 

the negative feedback regulator SMAD7.

c. Schematic representation of successive waves of SMAD-LDTF driven gene expression 

programs. An LDTF that defines a particular phenotypic context (Context #1) within a given 

cell lineage recruits signal-driven SMADs to activate the expression of other LDTFs, which 

in turn interact with SMADs to mediate transitions into new differentiated states (Context 
#2, #3).
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Figure 3. SMAD cooperation with different DNA binding partners
a. Certain gene responses, including the induction of LDTF-encoding genes by Nodal-driven 

SMAD2/3:SMAD4 in ES cells, require the participation of TRIM33. Through its PHD and 

Bromo domains, TRIM33 binds to histone H3 N-terminal tails that have repressive 

chromatin marks (H3K4me0, H3K9me3 and H3K18ac), displacing heterochromatin protein 

1 (HP1) from these sites. Nodal-activated SMAD2/3 binds to TRIM33, an interaction that 

allows the recruitment of SMAD2/3:SMAD4 complexes by FOXH1 to induce gene 

expression and drive mesendodermal differentiation. TRIM33 can also act as a SMAD4 

ubiquitin ligase to limit SMAD transcriptional action (not shown).

b. Interactions of Nodal-activated SMAD2/3:SMAD4 with LDTFs and SDTFs on a target 

gene. In addition to SMAD2/3:SMAD4 recruitment by FOXH1 to the Gsc promoter, the 

activation of this gene requires WNT signals. A WNT-driven β-catenin:TCF3 complex and a 
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Nodal-driven SMAD2/3:SMAD4 cooperate in binding to a distal enhancer required for 

activation of Gsc transcription. The WNT input is delivered by WNT3, whose expression is 

induced by p53 and its family members p63 and p73. The p53 family, WNT and Nodal are 

all essential for gastrulation, providing evidence for their involvement in SMAD-driven 

mesendodermal specification.

c. Representation of YAP-mediated eviction of Nodal-activated SMADs from the nucleus. 

When YAP is phosphorylated by LATS1/2kinases in response to Hippo pathway activation. 

The phosphorylation sites act as binding site for 14-3-3 proteins, which drag SMADs into 

the nucleus and prevents TGF-β signaling.
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Figure 4. Transcriptional determinants of TGF-β regulation of immune cell fate
TGF-β-activated SMADs cooperate with RUNX3 to promote class switch recombination 

during B-cell maturations. TGF-β-activated SMAD2/3 also regulate the specification of 

different cell subtypes in naïve CD4+ T cells. In this context, TGF-β-activated SMADs in 

Treg cells cooperate with signal-activated STAT5 and NFAT to induce Foxp3 expression for 

Treg differentiation. Similarly, TGF-β-activated SMAD2/3 cooperate with RORγ2 to induce 

a TH17 phenotype. In contrast, TGF-β-activated SMAD2/3 inhibit the specification of TH1 

cell fate by repressing T-bet transcription factor, and the specification of TH2 cell fate by 

inducing the expression of SOX4 and MSC.
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Figure 5. Determinants of TGF-β tumor suppression and its subversion in cancer
a. In mouse skin and mucosal epithelia, loss of TGF-β receptor signaling leads to 

hyperplasia, whereas gain of oncogenic HRAS mutations leads to TGF-β-associated 

apoptosis. Loss of TGF-β signaling in a HRAS-mutant background leads to the emergence 

of tumors. Thus, TGF-β enforces homeostasis in the wild type background, and tumor 

suppression in a RAS-mutant background.

b. The switch of TGF-β from a signal for lineage maintenance and homeostasis to a signal 

for apoptosis that cancer cells must disable, as observed in pancreatic epithelial progenitors. 

In normal progenitors TGF-β signaling through SMAD2/3 with SMAD4 activates the 

expression of CDK inhibitors, SOX4, and other genes. CDK inhibitors tone down cell 

proliferation, whereas SOX4 associates with KLF5 to co-occupy the genome and enforce 

epithelial progenitor identity. Stimulation of SOX4 expression requires SMAD2/3 but not 

SMAD4. In premalignant pancreatic progenitors harboring oncogenic KRAS mutations, a 

hyperactive ERK MAPK pathway enables SMAD2/3:SMAD4 to strongly induce the 

expression of the EMT master regulator SNAIL. SNAIL represses KLF5 expression. In the 

absence of KLF5, SOX4 induces pro-apoptotic genes BIM and BMF for elimination of the 
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cell. Nearly one half of human pancreatic ductal adenocarcinomas (PDA) progress through 

this bottleneck by selecting for clones that harbor SMAD4 inactivating mutations. Loss of 

SMAD4 does still allows TGF-β to support SOX4 expression and the SOX4:KLF5 mediated 

pancreatic progenitor state. The other half of PDA tumors progress with a functionally intact 

TGF-β signaling system but accumulate unknown alterations that prevent the pathway from 

triggering apoptosis.

David and Massagué Page 38

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Cancer cells can traverse the tumor suppressive TGF-β bottleneck by accumulating 

mutations (“X”) that disable the signal transduction pathway. In many gastrointestinal 

cancers, TGF-β receptor and SMAD mutations deeply disable the pathway, and this now 

allows stromal TGF-β to exert pro-tumorigenic effects including immune suppressive action 

on T and NK cells and activation of stromal paracrine loops such as the production of 

tumorigenic cytokines (e.g. IL-11) by cancer-associated fibroblasts (CAF). In many other 

types of cancer, the TGF-β receptors and SMADs remain intact but downstream alterations 

prevent the pathway from triggering tumor suppressive effects. Thus corrupted, the TGF-β–

SMAD pathway can drive a non-lethal EMT as well the production of factors that promote 

metastatic extravasation, immune evasion, and colonization of target tissues.
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Table 1.

Mammalian TGF-β family members and their receptors

Family member Type I Receptor Type II Receptor Co-receptor SMAD

TGFβ-1 ALK5 * TGFBR2 Betaglycan SMAD2/3

TGFβ-2 ALK5 TGFBR2 Betaglycan SMAD2/3

TGFβ-3 ALK5 TGFBR2 Betaglycan SMAD2/3

Activin-A ALK4, ALK7 ACVR2, ACVR2B SMAD2/3

Activin-B ALK4, ALK7 ACVR2, ACVR2B SMAD2/3

Nodal ALK4, ALK7 ACVR2, ACVR2B Cripto, Cryptic SMAD2/3

GDF1 ALK4, ALK7 ACVR2, ACVR2B Cripto, Cryptic SMAD2/3

GDF3 ALK4, ALK7 ACVR2, ACVR2B Cripto, Cryptic SMAD2/3

Myostatin (GDF8) ALK4, ALK5 ACVR2 SMAD2/3

GDF9 ALK4 BMPR2 SMAD2/3

GDF11 ALK4, ALK5 ACVR2, ACVR2B SMAD2/3

Inhibin ** — ACTR2 Betaglycan

Lefty-1 ** — — Cripto, Cryptic

Lefty-2 ** — — Cripto, Cryptic

BMP2 ALK3, ALK6 ACVR2, ACVR2B, BMPR2 RGM SMAD1/5

BMP4 ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

BMP5 ALK2, ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

BMP6 ALK2, ALK3, ALK6 ACVR2, ACVR2B, BMPR2 RGM SMAD1/5

BPM7 ALK2, ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

BPM8 ALK2, ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

BMP9 ALK1 ACVR2, BMPR2 Endoglin SMAD1/5

BMP10 ALK1 ACVR2, BMPR2 Endoglin SMAD1/5

BMP15 ALK6 BMPR2 SMAD1/5

GDF5 (BMP14) ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

GDF6 ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

GDF7 ALK3, ALK6 ACVR2, ACVR2B, BMPR2 SMAD1/5

AMH ALK2, ALK3 AMHR2 SMAD1/5

BMP3 ** — ACVR2B

Activin C Unknown Unknown

Activin E Unknown Unknown

BMP3b (GDF10) Unknown Unknown

GDF15 ***

Alternative names are indicated in parentheses, except

(*)
ALK5 is also known as TβRI or TGFBR1; ALK2 as ActR1A or ACVR1A; ALK4 as ActR1B or ACVR1B; ALK7 as ACVR1C; ALK3 and 

ALK6 as BMPR1A and BMPR1B, respectively; and, ACTVR2 and ACVR2B as ActRII and ActRIIB, respectively.

(**)
Antagonistic ligands: Inhibin antagonizes Activins, Lefty antagonizes Nodal, and BMP3 antagonizes other BMPs.

(***)
GDF15 is a distant member of the TGF-β family and signals through glial-derived neurotrophic factor receptor α-like (GFRAL)
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Table 2.

Transcription factors (TF) that interact with R-SMADs to regulate developmental processes.

TF Signal SMAD Cell Context Target genes Process (species)

Oct4 BMP SMAD1 ES cells Sox2, Nanog, Oct4 Pluripotency (m)

Oct4 Nodal SMAD2 Epiblast ES cells Sox2, Nanog, Oct4 Pluripotency (h,m)

FOXH1 Nodal SMAD2/3 ES cells Bra/T, Gsc, Mixl1 Mesendoderm formation (h,m)

EOMES Nodal SMAD2/3 Mesendoderm progenitors Sox17, Fzd8, Cer, Foxa2 Endoderm specification (h,m)

BRA/T BMP SMAD1/5 Mesendoderm progenitors Cdx2, Cbr, Tbx6 Mesoderm specification (h)

ZFP423 BMP SMAD1/5 Mesoderm progenitors Xvent2 Ventral mesoderm specification (x)

GATA1/2 BMP SMAD1/5 Erythroid progenitors Hemgn Erythroid differentiation (h)

C/EBPα BMP SMAD2/3 Myeloid progenitors Cxcr4 Myeloid differentiation (h)

MYOD1 TGF-β SMAD2/3 Myogenic progenitors Adora1 Myoblast differentiation (m)

PU.1 TGF-β SMAD2/3 Pro-B cells Vpreb2 B-cell differentiation (m)

RUNX3 TGF-β SMAD2/3 B cells Ig locus Immunoglobulin class switching (m)

STAT5* TGF-β SMAD2/3 Naïve CD4+ T cells Foxp3 Treg cell differentiation (m)

RORγt TGF-β SMAD2/3 Naïve CD4+ T cells IL-17, IL-23R TH17 cell differentiation (m)

ATF1 TGF-β SMAD2/3 CD8+ T cells Prf1, GzmB CTL inhibition (m)

NFkB* TGF-β SMAD2/3 Osteoclast precursors Nfatc1 Osteoclast differentiation (m)

DLX3 BMP SMAD1/5 Hair follicle progenitors Gata3 Hair follicle development (m)

? (RAS)* TGF-β SMAD2/3 Epithelial progenitors Snail EMT (h,m)

SNAIL TGF-β SMAD2/3 Epithelial progenitors (Cdh1), (Klf5) EMT (h,m)

ATF3 TGF-β SMAD2/3 Epithelial progenitors (Id1) Differentiation (h)

FOX1~3* TGF-β SMAD2/3 Epithelial progenitors Cdkn1a, Cdkn2b Cell cycle inhibition (h,m)

E2F4/5* TGF-β SMAD2/3 Epithelial progenitors (Myc) Cell cycle inhibition (h)

AP1* TGF-β SMAD2/3 Epithelial progenitors SerpinE1 Extracellular matrix modulation (h)

TFs include LDTFs and

(*)
SDTFs. Target genes in parenthesis are repressed. EMT, epithelial-mesenchymal transition. Examples are from human (h) and mouse (m). .
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