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Abstract: The bidirectional communication between neurons and microglia is fundamental for the 
proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation 
(CD) along with their receptors represent ligand-receptor signalling that is uniquely important for 
neuron – microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 
(OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. 
They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respec-
tively, are predominantly present on the microglia, resulting in the specific axis which maintains the 
CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for 
many neurological diseases. 

In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological 
and pathological processes within the CNS. We want to underline the critical involvement of these 
molecules in controlling neuron – microglia communication, noting that dysfunctions in their inter-
actions constitute a key factor in severe neurological diseases, such as schizophrenia, depression 
and neurodegeneration-based conditions. 
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1. INTRODUCTION 

 Bidirectional communication and interaction between 
neurons and the neighbouring microenvironment belong to 
the most essential aspects of healthy brain functioning. The 
exchange of signals linking microglia with neurons is re-
quired for the maintenance of housekeeping functions and 
homeostasis within the CNS. This communication is crucial 
in brain functions, including angiogenesis [1], axonal out-
growth [2], development [3], neurogenesis [4], neuronal cir-
cuit remodelling [5], plasticity [6, 7] and immune responses [8]. 
As a consequence, it translates into the proper functioning of 
the organism at cognitive, emotional and behavioural levels. 

 A double-sided character is a key feature of the coopera-
tion between neurons and microglia. This means that both 
neuronal cells can control the activity of microglia, but also 
conversely – microglia regulate the functioning of neurons. 
Neurons secrete a number of factors that influence the state 
of microglial activation [9]. A hallmark of microglia during 
homeostasis is remaining significantly quiescent while ful-
filling complex surveillance roles in a healthy brain [10].  
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To some extent, neuronal signals are not only in control of 
keeping the microglia in the “resting” phenotype [11, 12] but 
also regulate basal motility [13], proliferation and phagocy-
tosis of microglia [9]. 

 The influence of microglia on neurons is more exten-
sively covered by literature. First, as shown using two-
photon imaging to study the mouse cortex, microglial cells 
make physical contact with neuronal dendritic spines [14]. In 
line with this observation, the results of Tremblay et al. [15] 
showed that microglia created contact with neurons, includ-
ing synaptic spines, in the visual cortex. Another study also 
described microglial-to-neuronal soma contact in the living 
brain [16]. Altogether, these reports clearly proved the pres-
ence of a direct connection between neurons and microglia. 

 Microglia regulate neuronal activity not only by direct 
contact but also by influencing signalling pathways, such as 
complement system, Toll-like receptors (TLR), purinergic 
and adenosine signalling (we recommend the excellent re-
view of Marinelli et al. [17], who addressed this subject in 
impressive detail). These mechanisms contribute to a variety 
of neuronal functions, including neurotransmission [18],  
cell survival [19], neuroprotection [20] and axonal sprouting 
[21, 22]. 

 Several factors mediate the communication between neu-
rons and microglia. Both of these cell types are able to ex-
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press molecules that bind to cognate receptors on neurons/ 
microglia to promote specific biological actions. This group 
of molecular agents consists of neuropeptides, neurotrophins, 
neurotransmitters, CD, anti- and pro-inflammatory cytokines 
and chemokines [17, 23, 24]. 

 In the present review, we surveyed the literature data 
concerning the broad role of CX3CL1, CD200 and their re-
ceptors in both physiological and pathological processes 
within the CNS. We underlined the critical involvement of 
the ligand-receptor pairs (CX3CL1-CX3CR1 and CD200-
CD200R) in controlling neuron – microglia communication, 
noting its dysfunctions as key factors that lead to severe neu-
rological diseases, such as schizophrenia, depression and 
neurodegenerative conditions (Alzheimer’s and Parkinson’s 
diseases). 

2. CHEMOKINES AND CLUSTERS OF 
DIFFERENTIATION IN THE HEALTHY BRAIN – A 
SHORT OVERVIEW 

2.1. Chemokines 

 The superfamily of small (8-15 kDa) proteins, called 
chemokines, consists of various ligands. These factors are 
defined by structure and are divided into four main sub-
groups (C, CC, CXC, CX3C), depending on the number and 
spacing of their two N-terminal cysteine residues [25]. The 
common name of these biological factors comes from the 
ability to induce directed chemotaxis (chemotactic cytoki-
nes) [25]. Since the description of the first molecules with 
chemotactic activity, approximately 50 chemokines, as well 
as 25 (20 signalling and 5 non-signalling) chemokine recep-
tors, have been recognized [26]. 

 Typically, the chemokine system shows bilateral activa-
tion: one chemokine can bind to more than one receptor and, 
correspondingly, a number of different chemokines can be 
recognized by the same receptor [27]. The exceptions to this 
pattern are CX3CL1 and CX3CR1. The literature describes 
the basic roles of this vast and complex system of proteins 
within the organism, including the development and homeo-
stasis of immune cells and also the induction or modulation 
of inflammation (reviewed by Rot and von Andrian [28], and 
Griffith et al. [26]). 

 In parallel with their well-established role in the immune 
system, chemokines and their receptors have multiple actions 
in the CNS. One of the processes regulated by these mole-
cules is the blood-brain barrier (BBB) permeability [29-36]. 
Other authors documented the importance of chemokines in 
synaptic transmission, plasticity and spatial memory [34-36]. 
A continuously increasing number of reports indicate that in 
the CNS these molecules also take part in adult neurogenesis 
[37, 38], gene regulation and abnormal neural stem cell 
maturation [39], cell proliferation [40], neuroendocrine regu-
lation (reviewed by Callewaere et al. [41]), neurotransmis-
sion [42] and neuroprotection [43]. 

 Chemokines have a special role in controlling microglial 
activity and its properties. In the cortex of mice, microglia 
promoted the differentiation of neural progenitors in the 
process of frequent movement throughout the structure [44]. 
The migration was mediated by the interaction of the 

chemokine (CXCL12) with its receptor (CXCR4). With re-
gard to promoting migration, CCL11 significantly enhanced 
this process in primary microglia cultures prepared from the 
brains of newborn mice [45]. Feng et al. [46] applied a rat 
photic injury model to the investigation of the influence of 
CCL2 on the activation and migration of microglia. The re-
sults provided the conclusion that the overall (particularly 
the spatial-temporal) expression pattern of this chemokine 
correlated closely with the examined properties of microglia. 

2.2. Clusters of Differentiation 

 In general, the CD designation is used for classifying 
multiple cell surface proteins [47]. Since the first Human 
Leucocyte Differentiation Antigens Workshop in 1982, the 
official CD list has included more than 370 individual and 
unique markers in humans [48]. The surface expression of a 
particular CD molecule may not be specific for a single cell 
type or a cell lineage, yet they are commonly used as cell 
markers in immunophenotyping [49]. CD factors vary 
greatly in terms of physiological functions, which include 
roles in cell signalling [50], cell adhesion [51] or leucocyte 
migration [52]. These molecules may act as ligands (e.g., 
CD40, CD70, CD200) or receptors (CD27, CD46, CD200R, 
CD358) and may be expressed on the surface of a broad 
range of cell types within an organism, including the CNS. 

 In the nervous system, one of the main effects of CD 
proteins concerns the regulation of microglial activity. Under 
physiological conditions, the so-called resting microglia con-
stitutively express certain levels of CD11a, CD11b, CD11c, 
CD18 [53], CD14, CD45 [54], CD68 [55, 56], etc. Several 
CD factors are considered markers of microglial phenotypes 
and, as a consequence, as indicators of an activated state of 
these cells. The M1/M2 paradigm, which is a simplified 
model to classify the two directions of the inflammatory re-
sponses, distinguished M1 phenotype, representing pro-
inflammatory characteristics, from M2 (with M2a, M2b and 
M2c subtypes), highlighting the anti-inflammatory activity 
of microglia [57]. In addition to this early categorization, 
subsequent data assigned CD molecules to specific pheno-
types. M1 microglia are characterized by the expression of 
CD14, CD16, CD32, CD40, CD45, CD68, CD74, CD86, 
while M2 microglia are mainly associated with CD23, 
CD33, CD36, CD64, CD68, CD80, CD86, CD163, CD200R, 
CD204, CD206, CD209 [58-60]. 

 Multiple reports have presented the contribution of CD 
molecules to the process of phagocytosis in the CNS (re-
viewed by Fu et al. [61]). Other data highlighted the in-
volvement of these factors in oestrogen-related immune sig-
nalling in the brain [62, 63]. The widely described participa-
tion of CD antigens in maintaining the CNS homeostasis 
also consists of their involvement in other processes, some of 
these are: priming of microglia [64], antigen presentation, 
proliferation, apoptosis, cell migration [65-67], neuroprotec-
tion [68], neurodevelopment [16], BBB stability [69], synap-
tic plasticity [70], mitochondria functioning [71], insulin 
action [72] and lipid metabolism [73]. 

 In terms of sustaining homeostasis in the CNS, the 
ligand-receptor pairs CX3CL1-CX3CR1 and CD200-
CD200R are the most prominent chemokines and CD, re-
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spectively (Fig. 1), because of the unique cell-type-specific 
localization of their components. 

2.3. CX3CL1-CX3CR1 Axis in the Healthy Brain 

 CX3CL1 (also known as fractalkine in humans and rats 
or neurotactin in mice) is the only known member of the 
chemokine CX3C class, possessing a specific motif in which 
two cysteine residues are separated from each other by three 
amino acids [74, 75]. This transmembrane protein occurs in 
two isoforms: soluble and membrane-bound [76]. The level 
of CX3CL1 is vastly higher in the brain than in the periphery 
[77]. In the CNS, where the expression of fractalkine is con-
stitutive, neurons are its predominant source [78]. Yet, it 
should be mentioned that the production of this chemokine 
on other cell types within the CNS (mostly astrocytes) re-
mains an open question [79, 80]. In the brain, CX3CL1 is 
primarily expressed in the amygdala, cerebral cortex, globus 
pallidus, hippocampus, striatum, thalamus and the olfactory 
bulb, with scant expression in the cerebellum [81]. 

 CX3CL1 appears to be the only ligand for CX3CR1 (pre-
viously named V28). CX3CR1 is a seven-transmembrane do-
main G-protein-coupled receptor [82]. CX3CR1 was shown 
to be on the surface of monocytes/macrophages, neutrophils, 
T lymphocytes and natural killer cells, mast cells, thrombo-
cytes, dendritic cells and microglia [83-87]. 

 Since the first reports on CX3CL1 [74] and CX3CR1 
[82], a unique role of this signalling pathway in physiologi-
cal and pathological processes in the CNS has been consis-
tently described (Fig. 2). The main function of CX3CL1 in-
volves the induction of chemotaxis and cell adhesion [88, 
89], but it should be noted that the importance of this protein 
extends beyond a typical chemotactic action. CX3CL1, as 
one of the factors secreted by medial ganglionic eminence 
interneurons, is necessary to promote cortical oligodendro-
genesis [90]. This chemokine elevates oligodendroglial dif-
ferentiation of embryonic and postnatal glial precursors 
without affecting their proliferation. 

 The CX3CL1-CX3CR1 axis is also associated with pro-
moting neurogenesis via various mechanisms [91-96]. For 
example, Sellner et al. [95] demonstrated that microglia de-
rived from the hippocampal dentate gyrus (DG) of Cx3cr1-
deficient mice displayed activation of sirtuin 1 (SIRT1) and 
the NF-κB pathway. This process was limited to the DG and 
was followed by impaired neurogenesis in the hippocampus 
of the knockout animals. 

 One of the most prominent roles of the CX3CL1-
CX3CR1 pathway is to control the activation and proper 
functioning of microglia. The first evidence for this phe-
nomenon was delivered in the article by Maciejewski-Lenoir 
et al. [84]. In vitro stimulation with CX3CL1 led to changes 

 

Fig. (1). Bidirectional communication between neurons and microglia is regulated by the endogenous ligand – receptor systems. Among 
them, the CX3CL1-CX3CR1 and CD200-CD200R axes come to the fore as they participate in the modulation of multiple processes within the 
healthy brain. CX3CL1 and CD200 are principally expressed on neurons, while their receptors (CX3CR1 and CD200R, respectively) are present 
on microglia. BBB – blood-brain barrier, GDNF – glial cell-derived neurotrophic factor. ↑ indicates an increase. Appropriate references are 
provided in []. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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in microglial activity. The alteration in microglia functioning 
included the induction of Ca2+ mobilization, time- and dose-
dependent activation of mitogen-activated protein kinase as 
well as substrate protein kinase B, extensive migratory activ-
ity, actin rearrangement and change in shape of the cells. 
Further, confocal imaging of retinal explants presented that 
CX3CL1, through its receptor, might regulate the dynamism 
and cellular migration of microglia and consequently the 
interactions between microglia and synapses [13]. This con-
clusion was based on results that indicated a decrease in the 
average velocity of spontaneous microglial process motility 
in Cx3cr1-deficient mice. The data showed that CX3CL1 
had the ability to influence microglial activity through the 
regulation of TNF-α production [97]. The anti-inflammatory 
effect of CX3CL1 via the regulation of microglial activation 
was also presented in the research of Mizuno et al. [98], 
where the ligand dose-dependently suppressed the produc-
tion of nitric oxide, IL-6 and TNF-α. As proposed by Ma et 
al. [99], the involvement of the CX3CL1-CX3CR1 system in 
microglial activation occurs, inter alia, in the course of re-
ceptor regulation by leucine-rich repeat kinase 2. 

 To investigate whether the CX3CL1-CX3CR1 axis con-
tributes to spinal long-term potentiation (LTP), Bian et al. 
[100] used exogenous CX3CL1 and anti-CX3CR1 antibod-
ies. As the authors concluded, CX3CL1-CX3CR1 was in-
volved in LTP of C-fibre-induced field potentials in the rat 
spinal dorsal horn, and the mechanism could be regulated 
through IL-18/NFκB signalling. Another study showed that, 
in the CA1 region of the rat hippocampus, CX3CL1 nega-
tively modulated LTP at synapses between Schaffer collater-
als and pyramidal neurons [101]. The chemokine reduced the 
amplitude of the excitatory postsynaptic and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor-
mediated currents via the activation of CX3CR1. The proc-
ess was regulated by intracellular Ca2+ and synaptic activity. 
Comparable results regarding the engagement of the 
CX3CL1-CX3CR1 axis in synaptic transmission were pub-
lished by Bertollini et al. [102]. Superfusion of the ligand to 

mouse hippocampal slices caused a reversible depression in 
the field excitatory postsynaptic potential. The mechanism of 
reduced efficacy in glutamatergic synaptic transmission was 
similar to that implicated in synaptic long-term depression. 

 The study of the tissues obtained from patients with drug-
resistant mesial temporal lobe epilepsy revealed that the 
CX3CL1-CX3CR1 system affected gamma-aminobutyric 
acid (GABA)A currents in the human temporal lobe [103]. 
As shown by Heinisch and Kirby [104], CX3CL1 and sero-
toninergic (5-HT) neurons interact at the anatomical and 
functional levels in the raphe nucleus of the rat brain. The 
whole-cell patch-clamp recordings provided the possibility 
to show that CX3CL1 enhanced GABA synaptic activity at 
5-HT neurons in the dorsal raphe nucleus. CX3CL1 elevated 
the functioning of the hippocampal N-methyl-D-aspartate 
receptor through mechanisms involving adenosine receptor 
type A2 activity and D-serine release [105]. These effects 
required the presence of CX3CR1 on microglia. 

 Several studies have reported that CX3CL1 serves as a 
neuroprotective factor within the CNS. As shown by the use 
of organotypic cerebellar slice cultures, the addition of re-
combinant CX3CL1, prior to H2O2-induced oxidative stress, 
significantly reduced the demyelination associated with a 
toxic amount of H2O2 and alleviated astrocyte toxicity [106]. 
CX3CR1 was involved in the internalization of the microtu-
bule-associated protein – tau – by microglia [107]. These 
results, obtained from in vitro and in vivo experiments, sug-
gested that the CX3CL1-CX3CR1 pathway played a key role 
in the phagocytosis of tau by microglia. Consistent with re-
ports on its neuroprotective characteristics, CX3CL1 pro-
tected striatal neurons from dendritic pruning and death, 
which had been induced by the combined exposure to mor-
phine and the regulatory protein necessary for an increase in 
HIV dsDNA transcription level, which is called Tat [108]. 
Similarly, the CX3CL1 protective effect was described in the 
context of neurotoxicity produced by another HIV-associated 
protein – gp120 [109]. The use of primary hippocampal neu-

 

Fig. (2). Since the first reports on CX3CL1 and CX3CR1, unique roles for this network in physiological and pathological processes in the 
CNS has been continuously described. Cx3cr1-/- mice are a highly useful tool for investigating processes affected by the CX3CL1-CX3CR1 
axis. To date, the literature includes reports describing the changes in the behaviour of these animals and in crucial CNS mechanisms. Hp – 
hippocampal, NPC – neural stem/progenitor cell. ↓ indicates a decrease and ↑↓ indicates contradictive results implicating the disturbance of 
the process. Appropriate references are provided in [].(A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 
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ronal cultures enabled the observation of the neuroprotective 
effect of CX3CL1 against glutamate-produced toxicity, which 
was possible due to the presence of extracellular adenosine 
[110, 111]. The role of the CX3CL1-CX3CR1 axis in neu-
ronal survival and neurotrophic effects in the CNS were also 
indicated by other research groups [43, 98, 112-114]. 

2.4. CD200-CD200R Axis in the Healthy Brain 

 CD200 (also termed OX-2 or MRC OX-2 in earlier arti-
cles) is a membrane glycoprotein, containing two extracellu-
lar immunoglobulin domains, a transmembrane region and a 
cytoplasmic domain. This ligand belongs to the immuno-
globulin superfamily (IgSF) of cell-surface proteins [115]. 
Both the human and mouse forms of this antigen have a mo-
lecular weight (MW) of 32 kDa, while in rats, the MW of 
CD200 is origin-specific: 41 kDa in the brain and 47 kDa in 
thymocytes [116, 117]. 

 CD200 is ubiquitous throughout the body. It is localized 
on vascular endothelial cells, follicular dendritic cells, B and 
T lymphocytes, placental trophoblasts, lung epithelial cells 
and smooth muscle cells [118]. In the brain, this glycopro-
tein is expressed on neurons [119] and oligodendrocytes 
[120] but not on microglia [121]. In the human brain, CD200 
is robustly expressed in the cerebellum, cerebral cortex, hip-
pocampus, striatum and spinal cord [122]. 

 The only receptor for CD200, known as CD200R (or 
OX-2R), is also a membrane glycoprotein. In contrast to its 
ligand, the receptor contains an NPXY motif (with three ty-
rosine residues in its intracellular region), which is a signal-
ling domain [123]. The expression of CD200R is limited 
principally to cells of myeloid lineage, including dendritic 
cells, macrophages, neutrophils, mast cells and microglia 
[123-125]. CD200R, similar to CD200, exists in several pos-
sible isoforms, often restricted to particular tissues [123, 126]. 

 The specific structural characteristics and localization of 
CD200 and CD200R allow this axis to control the bidirec-
tional communication between neurons and microglia. Re-
garding the importance of CD200-CD200R in sustaining 
homeostasis in the CNS, most of the in vivo data come from 
studies based on Cd200-deficient mice (Fig. 3). As reported 
by Hoek [127], the CD200-CD200R axis maintains micro-
glia in the quiescent state, as indicated by the ramified ap-
pearance of these cells, as well as the expression of mole-
cules such as major histocompatibility complex class I and 
II, CD11b and CD45 at low or negligible levels. Lack of this 
signalling leads to the activation of microglia, as character-
ized by less ramified, shorter processes with the disrupted 
arrangement, an increase in CD11b and CD45 expression 
and the aggregation of microglia. 

 Multiple factors seem to be engaged in microglial activa-
tion through the pathway controlled by the CD200-CD200R 
system. Experiments on cortical neuronal cultures, prepared 
from embryos of C57BL/6 mice, highlight the functional 
role of N-glycosylation at Asparagine 44 of CD200R in the 
classical activation of microglia [128]. The Cd200r gene 
expression is regulated, in part, through the transcription 
factor CCAAT/enhancer-binding protein β, which binds the 
Cd200r promoter and inhibits transcription of the receptor 
[129]. 

 The major role of the CD200-CD200R pathway was also 
described in the context of response to inflammatory chal-
lenges, generated, inter alia, with lipopolysaccharide (LPS) 
[130, 131], the TLR2/TLR1 agonist – Pam3CSK4 [70] or 
amyloid-β (Aβ) [132]. In the brains of Cd200 knockout 
mice, these insults produced an exaggerated reaction, possi-
bly due to the increased relative expression of TLR2 and 
TLR4 [70, 133]. Proper activation of CD200R by its ligand 
is also required to modulate inflammatory cytokine produc-

 

Fig. (3). Most of the data regarding the importance of CD200-CD200R signalling in sustaining homeostasis but also in pathological proc-
esses in the CNS come from studies using Cd200-deficient mice. These animals have been characterized by broad alterations in the immu-
nological response (activation of microglia, changed resolution of inflammation, etc.), changes in the BBB permeability and LTP. BBB – 
blood-brain barrier, LPS – lipopolysaccharide, Aβ – amyloid-β, Pam3CSK4 – the TLR2/TLR1 agonist, LTP – long-term potentiation. ↑ indi-
cates an increase. Appropriate references are provided in [].(A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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tion (e.g., levels of IL-1β, IL-6, TNF-α) [70, 121]. Consistent 
with these observations, the data showed that the CD200 
fusion protein (CD200Fc) reduced age-related and LPS-
induced microglial activation, and also partially overcame 
the disruption of the LTP observed both in aged and LPS-
treated rats [134]. Furthermore, slices prepared from Cd200-/- 
mice did not display LTP in the Schaffer collateral-CA1 
synapses to the same degree as those slices prepared from 
wild type mice, which clearly indicates that CD200 is di-
rectly implicated in synaptic plasticity [70]. The use of an 
anti-CD200R1 blocking antibody showed that the CD200-
CD200R interaction played a role in the neuroprotective ac-
tion of the peroxisome proliferator-activated receptor-gamma 
agonist called 15-deoxy-Δ12,14-prostaglandin J2 [135]. The 
CD200-CD200R axis is also engaged in neuroprotective 
properties of endocannabinoid anandamide (AEA) against 
LPS or interferon (IFN)-γ activated microglia-induced toxic-
ity [68]. AEA protects neurons from inflammatory damage 
by upregulating CD200R through the activation of cannabi-
noid receptor type 2. This phenomenon was supported by 
data showing that AEA was unable to induce neuroprotec-
tion in microglia derived from Cd200r-deficient mice [68]. 

 Another function of CD200-CD200R signalling in the 
CNS is the protection of dopaminergic neurons by the sup-
pression of microglial activation and the promotion of glial 
cell-derived neurotrophic factor (GDNF) production [136]. 
GDNF is a survival factor for dopaminergic neurons. In vi-
tro, it increases their size and neurite length, promotes their 
survival [137], and also influences the activation of micro-
glia and protects hippocampal neurons from excitotoxic in-
sults [138]. As shown using primary microglia culture, the 
expression of GDNF is increased after exposure to CD200 
[136]. 

 The data suggest that CD200-CD200R may be involved, 
to some extent, in controlling BBB permeability, because 
there was an infiltration of T cells and macrophages in the 
brain of Cd200-deficient mice, which led to the increased 
expression of TNF-α, IL-6, monocyte chemotactic protein-1, 
IFNγ-induced protein-10 and RANTES [139]. The proper 
interactions between CD200 and its receptor had an impact 
on phagocytosis and lysosomal activity, while the absence of 
this interplay increased Aβ engulfment [133]. As a “don’t eat 
me” signal molecule, CD200 is associated with apoptosis. 
During this form of programmed cell death, the expression 
of CD200 is elevated on apoptotic cells, and the level of the 
protein remains under the control of both caspase- and p53-
dependent pathways [140, 141]. However, a report from 
Yang et al. [142] stated that the expression of CD200 was 
affected by the combination of apoptosis, autophagocytotic 
cell death and necrosis, rather than by one of these processes. 
As shown by Webb and Barclay [143], CD200 appears on 
neuronal bodies and axons, where it is involved in axonal 
extension [143, 144]. CD200 plays a role in the process of 
anxiogenic sprouting and elongation, in addition to synapse 
formation [145] and neuritogenesis, which involves the in-
teraction and activation of the fibroblast growth factor recep-
tor [146]. The role of CD200 in the oligodendrogenesis re-
covery mechanism was also demonstrated, as the ligand may 
promote this process [147]. 

3. MALFUNCTIONS OF THE CX3CL1-CX3CR1 AND 
CD200-CD200R AXES AND THEIR IMPLICATIONS 
FOR THE PATHOGENESIS OF SCHIZOPHRENIA 

 Schizophrenia is a severe psychiatric disorder that affects 
up to 1% of the population worldwide. Statistics of the 
World Health Organization (WHO) [148] from 2018 inform 
about more than 23 million diagnosed cases of this disease. 
A hallmark of schizophrenia is its heterogeneity, which is 
manifested in the clinic, both in the aetiology and in the 
course of the disturbances and symptoms. 

 According to one of the accepted classifications, the 
symptoms are divided into three main groups: 1) positive, 
among which hallucinations, delusions or agitation are listed; 
2) negative, which include: speech impoverishment, anhedo-
nia, apathy and attention disorders; and 3) cognitive deficits: 
reduced ability to concentrate, impairment of various types 
of memory and difficulties in understanding information and 
using it to make decisions [149]. 

 Factors of various origins have been indicated as the base 
for the symptoms and, therefore, as an aetiology of schizo-
phrenia, often emphasizing their complicity in the final pic-
ture of the disease. This condition develops not only because 
of the so-called genetic predispositions [150, 151] but also 
because of environmental factors, which include, among 
others: prenatal malnutrition [152], exposure to traumatic 
experiences [153] and, particularly worth underlining, bacte-
rial and viral infections [154, 155]. 

 In the brain, the main immunocompetent cells are micro-
glia [156]. Through interaction with neurons, under physio-
logical conditions, microglia maintain a resting phenotype 
[157]. When the CNS is affected, microglia become acti-
vated, which is characterized by their increased phagocytic 
activity, mobility and the production of pro-inflammatory 
cytokines [158]. Persistent microglial activation may cause 
neuronal degeneration and synaptic dysfunction [159] and 
could lead to the subsequent development of psychiatric dis-
orders, including schizophrenia. 

 Therefore, disturbances to the CX3CL1-CX3CR1 and 
CD200-CD200R protein systems, which are listed as key 
mediators of neuron – microglia communication, might be 
crucial in the disease course. 

3.1. CX3CL1-CX3CR1 and Schizophrenia 

 The DBA/2 mouse strain has been suggested to be a suit-
able model for investigating schizophrenia-related behav-
iour, because of the characteristic deficits (e.g., significantly 
reduced social interactions and prepulse inhibition) observed 
in these animals [160-162]. Downregulation of Cx3cl1 gene 
expression in the cortices of DBA/2 mice was reported by 
Ma et al. [163]. The authors implicated CX3CL1 as a regula-
tor of microglial activation and social behaviour in the ani-
mals. The group of Zhan et al. [18] indicated that Cx3cr1-/- 
mice showed alterations in social and repetitive behaviours. 
Zhan [164] also showed that Cx3cr1 knockout mice dis-
played reduced baseline connectivity that is driven from the 
prefrontal cortex to the dorsal hippocampus during the ha-
bituation period in the social interaction test. A similar fea-
ture was found in schizophrenic patients, for whom severely 
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reduced connectivity between the hippocampus and the pre-
frontal cortex was observed [165, 166]. 

 Meta-analysis performed by Bergon et al. [167] revealed 
that CX3CR1 expression was significantly downregulated in 
post-mortem brains and peripheral blood mononuclear cells 
obtained from schizophrenic patients. The change was inde-
pendent of confounding variables (e.g., tobacco smoking) 
and was closely associated with depression – anxiety pheno-
type. Comparable data using integrated analysis of schizo-
phrenia data sets were published by Li et al. [168]. This 
group discovered that CX3CR1 level was remarkably dimin-
ished in the hippocampi of patients with schizophrenia. In 
another study, Ishizuka et al. [169] also observed a strong 
association between the expression of CX3CR1 and schizo-
phrenia. The researchers proved that the rare variant 
(Ala55Thr) in the gene for the receptor contributed to an 
increased risk for developing this severe psychiatric disorder. 
Ala55, which is located in transmembrane helix 1 (TM1), 
forms a hydrophobic core with other non-polar residues of 
TM1 and helix 8 in the receptor. The variant in which a hy-
drophobic (alanine) residue is replaced by a hydrophilic 
(threonine) residue may weaken the hydrophobic TM1 – 
helix 8 interaction and consequently destabilize the confor-
mation of helix 8. The Ala55Thr variant in CX3CR1 might 
lead to impairment in CX3CL1-CX3CR1 signalling, thereby 
influencing microglial function. In contrast, an overview of 
the schizophrenia-associated genes and transcripts presented 
by van Mierlo et al. [170] showed that the results linking 
CX3CR1 expression with the disease were highly heteroge-
neous. The authors found the evidence insufficient to con-
sider CX3CR1 as the risk factor. However, as they admitted, 
the study included many limitations that could have differed 
their conclusion from the observations of others (e.g., using 
the summary statistic information, data obtained from bulk 
brain tissue – not from specific structures, no control on 
variables that may have an impact on the immune system). 

 Numerous data indirectly suggested the involvement of 
the CX3CL1-CX3CR1 system in the etiopathogenesis of 
schizophrenia. Alterations in neurogenesis and cell prolifera-
tion, as well as the reduced size of the hippocampus, have 
been indicated as the parts of the disease pathology [171-
174]. These processes must function properly for effective 
learning and memory, in particular, contextual and spatial 
learning [175-177], which are impaired in schizophrenia 
[178]. The age-dependent increase in the number of activated 
microglia can suppress neurogenesis [179]. Bachstetter et al. 
[91] evidenced that in the course of ageing, CX3CL1-
CX3CR1 signalling became disrupted, leading to enhanced 
microglial activation and decreased neurogenesis in the hip-
pocampus. Mice lacking the Cx3cr1 gene were characterized 
by reduced hippocampal neural stem/progenitor cell (NPC) 
proliferation and neurogenesis. The proliferation of NPCs 
was also decreased when a blocking antibody for CX3CR1 
was infused into the left lateral ventricle of rat brains, while 
the intracerebroventricular infusion of recombinant CX3CL1 
reversed the disruption of neurogenesis in the aged-rat-brain 
[91]. The article by Sellner et al. [95] drew a slightly differ-
ent conclusion that CX3CR1 promoted neurogenesis, but the 
process was independent of CX3CL1 and relied on inhibiting 
SIRT1 and NF-κB signalling. In that study, activation of 

SIRT1 alleviated cognitive impairment in Cx3cr1-/- mice, as 
manifested by disrupted learning and memory in the Morris 
water maze test. Another feature observed for these animals 
was the alteration in synaptic plasticity and synaptic pruning 
– the processes required for the development of neural cir-
cuits [18, 93, 180, 181]. Cx3cr1 knockouts also exhibited a 
change in the number of dendritic spines and immature syn-
apses [96, 180]. Due to the extensive literature data suggest-
ing that schizophrenia may have a neurodevelopmental basis 
[182, 183], the involvement of the CX3CL1-CX3CR1 axis in 
controlling the mechanisms of neurogenesis, cell prolifera-
tion, synaptic plasticity and synaptic pruning may be a new 
target for future therapy. 

3.2. CD200-CD200R and Schizophrenia 

 The disturbances described in schizophrenic patients 
comprise electroencephalogram oscillatory abnormalities, 
which are heritable and genetically-mediated [184-186]. 
Data from Narayanan et al. [187] showed that the theta activ-
ity of the brain was significantly correlated with and medi-
ated by gene clusters involved in glutamic acid pathways as 
well as by cadherin and synaptic contact-based cell adhesion 
processes. In this study, CD200 was one of the highly ranked 
genes moderating changes in theta activity, which, as a 
mainly cortical-hippocampal circuit-based process, may in-
dicate a crucial role in the mechanisms controlling memory, 
spatial information and synaptic plasticity [187]. These ab-
normalities contribute to the heterogeneous core of the dis-
turbances and symptoms observed in schizophrenia [188-
190]. The study on lymphoblastoid cells obtained from 
monozygotic twins discordant for schizophrenia revealed a 
change in CD200 expression, suggesting the possible patho-
logical contribution of the CD200-CD200R axis in suscepti-
bility to schizophrenia [191]. On the other hand, the charac-
terization of macrophages from schizophrenic patients re-
vealed no changes in CD200 expression compared to those 
of the control [192]. However, as the authors underlined, it 
must be taken into account, that the data came from a small 
number of samples. Additionally, studies of clinical sub-
groups and additional screening tests used to assess the full 
phenotype of the macrophages are needed to confirm the 
conclusion described. 

 Maternal immune activation (MIA) produced by the sys-
temic administration of LPS or polyinosinic:polycytidylic 
acid (Poly I:C) injection to pregnant dams of rodents are 
commonly accepted animal models of schizophrenia [193]. 
They are widely characterized in terms of biochemical [194-
197], neuroanatomical [198-200] and behavioural [197, 200, 
201] attributes, in both mice and rats. To date, no changes in 
CD200R level have been described in isolated microglia 
after a maternal immune response was induced by Poly I:C 
challenge in mice, regardless of the sex or age of the animal 
[202]. Unfortunately, the researchers did not measure the 
level of the ligand for CD200R, which could have been af-
fected by the treatment. Lin et al. [203] accentuated that 
treatment with Poly I:C during pregnancy might increase 
embryo resorption in mice and that the mechanism involved, 
at least partially, direct inhibition of CD200 expression on 
cytokeratin 7-positive cells. 
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 In the study by Antonson et al. [204], maternal infection 
with porcine reproductive and respiratory syndrome virus 
(PRRSV) tended to upregulate CD200 expression, while 
CD200R level was unchanged in the microglia from the hip-
pocampi of foetal piglets. The same research group reported 
that CD200R level increased in the prefrontal cortex and the 
striatum, and CD200 concentration decreased in the hippo-
campus and the striatum of prenatally PRRSV-exposed pig-
lets [205]. In experimental conditions, PRRSV is applied 
during pregnancy to induce maternal infection, which in-
creases the risk of neurobehavioural disorders, including 
schizophrenia, in the offspring [204]. Comparable results 
were shown for young and adult mice after influenza treat-
ment. Significantly reduced levels of CD200 were detected 
in the hippocampi of these animals [206, 207]. Cd200-
deficient mice developed more severe disease, associated 
with enhanced lung infiltration and lung endothelium dam-
age after inoculation with influenza [208], and also had 
higher activity of macrophages, leading to the delayed reso-
lution of inflammation [209]. The importance of CD200 dur-
ing influenza infection in reference to schizophrenia results 
from the fact that prenatal infections with this virus are con-
sidered to confer a risk factor for the development of schizo-
phrenia. This correlation was supported by evidence from 
population and epidemiological studies, which showed a 
higher occurrence of psychoses with schizophrenic symp-
toms following influenza epidemics [210, 211]. 

4. THE ROLES OF CX3CL1-CX3CR1 AND CD200-
CD200R AXES MALFUNCTIONS IN THE 
DEVELOPMENT OF DEPRESSION 

 Depression has been reported as the leading cause of dis-
ability in terms of total years lost due to the impairments it 
generates [212]. According to the WHO estimations [213], 
the disease affects more than 300 million people worldwide. 
The condition is symptomatically heterogeneous, spanning 
cognitive, emotional, motivational and physiological altera-
tions [214-216]. Without treatment, depressive symptoms 
can last for weeks, months or even a lifetime, and in severe 
cases may lead to suicidal attempts and death. 

 The aetiology of depression has a diversified nature, thus 
making the discovery of an exact cause challenging. As a 
result, alterations in multiple mechanisms have been pro-
posed in the literature, with the following few contributors 
specified: monoaminergic systems [217-219], genetic back-
ground [220], circadian rhythm [221], neurotrophic factors 
[222], brain glucose metabolism [223], mitochondrial func-
tioning [224-228], response of an organism to stress both 
during the prenatal period and early life [229-232], neuroin-
flammatory processes, particularly involving cytokines [233-
235]. 

4.1. CX3CL1-CX3CR1 and Depression 

 To date, only a few articles have evaluated the expression 
of CX3CL1 in patients with depression. In those affected by 
moderate-severe depression, the serum level of CX3CL1 was 
elevated when compared to that in the control patients [236]. 
A similar observation was reported in plasma samples from 
patients diagnosed with major depressive disorder with co-

morbid cocaine addiction [237]. The level of CX3CL1 was 
thus suggested as a potential biomarker for depression and 
anxiety in the course of colorectal cancer, due to the raised 
serum level of this protein identified in patients with this 
condition [238]. 

 In depression, the serotonergic pathway is a highly af-
fected neurotransmission system. Immunohistochemical and 
electrophysiological studies revealed the neuroanatomical 
relationship between 5-HT transmission and CX3CL1 in the 
rat dorsal raphe nucleus [104]. Furthermore, the functional 
interaction linking those factors was described, showing that 
CX3CL1 enhanced the number and the sensitivity on 5-HT 
of postsynaptic GABA receptors [104]. The literature 
documented the participation of the CX3CL1-CX3CR1 
system in the regulation of tryptophan metabolism. In mice 
lacking Cx3cr1, the induction of depressive behaviour 
(through the administration of LPS) was associated with the 
activation of the enzyme indoleamine 2,3-dioxygenase 
(IDO) [239]. IDO modulated the metabolism of tryptophan 
and led to the formation of kynurenine instead of 5-HT. 

 Exposure to stressful events of various types (chronic 
restraint, mild or acute stress, psychosocial stress, prenatal 
stress, etc.) is another widely investigated plausible cause of 
depression. Accordingly, experimental approaches using 
diverse types of stress are considered useful animal models 
to simulate this condition [240]. In the article by Trojan et al. 
[231], prenatal stress caused anxiety and depressive-like dis-
turbances in the adult offspring of rats. The changes were 
followed by the reduction in CX3CL1-CX3CR1 expression 
in the hippocampi and the frontal cortices of these animals. 
The chronic administration of the antidepressants (tianeptine 
and fluoxetine) normalized the observed alterations both on 
the behavioural and biochemical levels [231]. Additionally, 
the intracerebroventricular application of exogenous 
CX3CL1 alleviated the changes in the behaviour and in the 
inflammatory processes observed in the brains of prenatally 
stressed rats [241]. The affected mRNA levels of Cx3cl1 and 
Cx3cr1 were detected in the prefrontal cortex and in the dor-
sal and ventral hippocampus of adult male rats exposed to 
chronic mild stress [242]. 

 Most of the research attempts to identify the role of the 
CX3CL1-CX3CR1 system in the generation of depressive-
like behavioural dysfunctions have been based on genetic 
models with a knockout of the receptor gene. Cx3cr1-/- mice 
showed prolonged depressive behaviour and social with-
drawal in response to acute immune stress following a sin-
gle, peripheral LPS injection [243]. The study by Milior et 
al. [244] provided evidence that disorders in neuron – mi-
croglia signalling occurred via the CX3CL1-CX3CR1 path-
way in response to chronic unpredictable stress. Winkler et 
al. [245] showed that Cx3cr1-deficient mice were resilient to 
chronic stress-induced depression, as demonstrated by a lack 
of anhedonia. In another study, Cx3cr1 knockout mice were 
completely unaffected by the exposure to chronic unpredict-
able stress in terms of emotional, cognitive, neurogenic and 
microglial responses to the insult, while their wild-type 
counterparts displayed these depressive-like characteristics  
[246]. Further evidence supporting this phenomenon came 
from the research showing that the animals with the depleted 
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receptor were characterized by resistance to the occurrence 
of depressive behaviour in a chronic despair model of de-
pression [247]. Contrary to wild-type animals, in Cx3cr1-
deficient mice, the lack of changes in microglial morphology 
was described. This observation indicated that microglial 
hyper-ramification is controlled by the neural-microglial 
CX3CL1-CX3CR1 axis. 

4.2. CD200-CD200R and Depression 

 Nearly all the data regarding the participation of the 
CD200-CD200R pathway in the pathomechanisms of de-
pression were derived from studies on animal models of this 
disease, with most applying different stress procedures. 
Wang et al. [248] used the early-life social isolation (ESI) 
model of stress to characterize the development of depres-
sive-like behaviour in rats. The authors observed that, in the 
hippocampi of the ESI animals, the expression of Cd200 
receptor, which promoted microglial quiescence, was sig-
nificantly decreased [248]. In turn, Bollinger et al. [249] 
found that various types of restraint stress could lead to brain 
region- and sex-dependent changes in CD200-CD200R sig-
nalling in corticolimbic circuitry. Acute and chronic stress 
increased Cd200 mRNA level in the orbitofrontal cortex 
(OFC) in the female rats. In males, chronic stress increased 
the expression of Cd200r in the OFC and the basolateral 
amygdala (BLA), as well as Cd200 in the dorsal hippocam-
pus. Besides, acute stress produced an increase in Cd200r 
transcript in the BLA of male animals [249]. These changes 
were correlated with a decrease in the activation of micro-
glia. 

 Recently published observations revealed that exposure 
to the acute stressor (inescapable tail shock, ITS) resulted in 
a reduction in Cd200r level in the hippocampus, the BLA 
and the central nucleus of the amygdala 24 hours post-stress 
[250]. Similar results were reported by Fonken et al. [251]. 
They observed that ITS generated a decrease in the level of 
Cd200r in the hippocampus of male and female rats. A con-
tradictory observation was published by Blandino et al. 
[252], who suggested that inescapable footshock lowered 
Cd200r transcript in the hypothalamus but not in the hippo-
campus of rats. The discrepancies between these reports con-
cerning the hippocampus might be attributed to the various 
protocols used by the two research groups. In turn, Lovelock 
and Deak [253] observed no changes in the expression of 
either Cd200 or Cd200r in the paraventricular nucleus of the 
hypothalamus, the hippocampus or the prefrontal cortex after 
inducing chronic escalating distress, which was consistent 
with the data previously communicated by the same authors 
[254]. 

 The outcome of the experiments on rat primary microglia 
cultures showed that treatment with dexamethasone for 72 
hours reduced Cd200r level and induced the ramified form 
of microglia [255]. As shown by Wachholz et al. [256], IFN-
α vulnerable mice, which are a model of immune-mediated 
depression, seemed to have a higher expression of CD200R 
in the microglia. These animals developed a depressive-like 
phenotype, which was manifested by an increased immobil-
ity time in the forced swim and the tail suspension tests as 
well as reduced explorative behaviour observed in the novel 
object exploration test [256]. 

5. THE ROLE OF CHANGES IN CX3CL1-CX3CR1 
AND CD200-CD200R INTERACTIONS IN THE 
NEURODEGENERATION-BASED DISEASES 

5.1. Alzheimer’s Disease 

 Alzheimer’s disease (AD) is recognized as the most 
common cause of dementia (50 – 75% cases) and, conse-
quently, it is a growing global health concern [257]. The 
condition is characterized by a progressive decline in cogni-
tive functioning (memory, language, learning and thinking), 
which is substantially escalated among people 65 years or 
older [258]. 

 The pathophysiological picture of AD consists of the 
presence of Aβ plaques and neurofibrillary tangles composed 
of hyperphosphorylated tau but also dystrophic neurites, as-
trogliosis, microglial activation and consecutive neurodegen-
eration [259-263]. The processes associated with deleterious 
changes, including the death of neurons, are initiated in the 
cortex and then extend to the hippocampus, which are the 
brain regions involved in memory and learning [264, 265]. 
Eventually, pathology affects the entire brain [266]. 

 Neuroinflammation is also extensively involved in the 
complex pathology and symptoms of AD [60]. The progres-
sive problems centred on Aβ plaques and neurofibrillary 
tangles are accompanied by a number of immunological al-
terations, containing increased secretion of pro-inflammatory 
cytokines. Whether these disturbances are causes or conse-
quences of AD remains unknown; however, inflammation 
within the brain of AD patients has been extensively investi-
gated in recent years. 

5.1.1. CX3CL1-CX3CR1 and Alzheimer’s Disease 

 The importance of the CX3CL1-CX3CR1 axis in the 
pathology of AD seems to be undeniable, as evidenced by 
the enormous number of scientific articles concerning this 
correlation. The subject was reviewed in a few excellent arti-
cles; however, the amount of continuously emerging data 
elicits the need for further systematization of the findings. 

 As published by Strobel et al. [267], CX3CL1 is highly 
expressed in the hippocampus, which is the main area of 
pathological changes, in the brains of AD patients. The ele-
vated level of CX3CL1 reflected the progression of the dis-
ease [267]. A similar observation was described by Bolós et 
al. [107]. The authors reported a concomitant increase in 
CX3CL1 protein level, phosphorylated tau and the number 
of microglia in post-mortem hippocampal tissue from AD 
patients. The disruption of the CX3CL1-CX3CR1 system 
and the subsequently altered neuron – microglia communica-
tion seemed to be more prominent with the progression of 
AD. Yet, the same research group showed a reduction in the 
protein level of CX3CL1 in the cerebrospinal fluid obtained 
from AD patients, compared to the non-demented age-
matched controls [268]. 

 A significant observation in the context of AD was also 
provided by Lyons et al. [269]. The expression of Cx3cr1 
mRNA diminished in the brains of aged rats and coincided 
with an age-related increase in microglial activation. The 
treatment of these animals with exogenous CX3CL1 attenu-
ated the disturbances that had been observed and induced the 
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activation of the phosphatidylinositol-3 kinase pathway, 
which is required to maintain microglia in a quiescent state 
[269]. 

 Recent research based on the rTg4510 mouse model of 
tauopathy revealed that induced overexpression of CX3CL1 
resulted in the reduction of tau pathology and microgliosis, 
as well as the amelioration of neuronal loss in the brains of 
these animals [270]. Furthermore, the treatment with 
CX3CL1 improved cognitive performance on the novel ob-
ject recognition and radial arm water maze tasks by the mice 
[271]. 

5.1.2. CD200-CD200R and Alzheimer’s Disease 

 The analysis in the post-mortem brain tissues from pa-
tients with AD revealed that the protein level of CD200 
negatively correlated with the levels of phosphorylated tau 
and Aβ plaques (in the temporal cortex) and neurofibrillary 
tangles (in the temporal and the cingulate cortices) [272]. 
These results suggested that the progressively increased in-
flammatory responses occurred with increasing severity in 
AD pathology. In another report from this research group 
[273], the expression of CD200 and CD200R (at both the 
mRNA and protein levels) was affected in the hippocampus 
and the inferior temporal gyrus in post-mortem brain tissues 
obtained from AD patients. The authors demonstrated that 
CD200R production by human microglia was elevated by the 
anti-inflammatory cytokines IL-4 and IL-13, which are con-
sidered to be generally lacking in elderly human brains 
[273]. 

 The evidence to support these observations from the 
post-mortem examinations has come from the experiments 
applying the animal models of AD. Lyons et al. [121, 130] 
published data showing that the hippocampal activation of 
microglia in aged and Aβ-treated rats was followed by the 
perturbed expression of CD200. Treatment with CD200Fc 
alleviated LPS-generated microglial activation in the hippo-
campus of aged rats [134]. Further, the impairment of the 
LTP in the DG, as described for those animals, was attenu-
ated when they were treated with CD200Fc. The result sug-
gested that the CD200-CD200R axis might positively impact 
memory in AD, which was characterized as the LTP-based 
process [274]. In the multidimensional study by Varnum et 
al. [136], the injection of the viral vector expressing CD200 
restored hippocampal neurogenesis and suppressed β-
amyloidosis in APP mice, which are the transgenic model of 
AD. The administration of the vector weakened the inflam-
mation represented by reduced NOS2+ and the increased 
number of YM1+ Iba1+ cells. In vitro, CD200 expression 
dramatically affected microglia, causing increased neuronal 
maturation. CD200 stimulated and altered microglial activa-
tion, enhanced the survival of CD11b+ primary microglia and 
also improved the ability of these cells on Aβ42 phagocytosis 
and GDNF expression [136]. 

5.2. Parkinson’s Disease 

 Parkinson's disease (PD) is the second most common 
neurodegenerative disorder [275]. Statistics have been used 
to predict that the number of people affected by PD is ex-
pected to increase by more than 50% by 2030, up to more 

than 9 million cases worldwide [276]. The condition is char-
acterized by motor and nonmotor symptoms. The classical 
motor components of the disease include bradykinesia, mus-
cular rigidity, rest tremor, postural and gait impairment, 
while nonmotor features consist of cognitive impairment, 
psychiatric symptoms, olfactory dysfunction, sleep disorders, 
autonomic dysfunction, pain and fatigue [277]. 

 The pathophysiology of PD is complex and not fully elu-
cidated. However, a progressive loss of dopamine-producing 
neurons in the substantia nigra pars compacta (SNpc) and 
widespread distribution of intracellular aggregates of alpha-
synuclein protein (α-syn) have been reported as the core 
characteristics of this condition [278, 279]. α-Syn is the ma-
jor component of Lewy bodies and Lewy neurites, the patho-
logical hallmarks of PD [279]. 

5.2.1. CX3CL1-CX3CR1 and Parkinson’s Disease 

 The research analysing the cerebrospinal fluid (CSF) of a 
large cohort of PD patients revealed that the ratio of 
CX3CL1 to Aβ1-42 was positively correlated with PD sever-
ity and progression [280]. Other results from the CSF ex-
amination showed that the exosomal RNA level of CX3CR1 
was significantly reduced in the CSF of patients with PD (in 
that article, a similar observation was also noted for AD pa-
tients) [281]. Yet, the expression pattern of the differentially 
expressed microRNA for CX3CR1 was upregulated in the 
peripheral whole blood obtained from PD patients [282]. 

 Studies on the role of CX3CL1-CX3CR1 signalling in 
the pathomechanisms underlying PD have been widely based 
on Cx3cr1 knockout mice. Castro-Sánchez et al. [283] ana-
lysed the contribution of the receptor to α-syn-associated 
degeneration and the activation and dynamics of microglia 
after α-syn stimulation. The injection of the vector carrying 
the A53T mutant of this protein (α-SYNA53T) into the SNpc 
of the knockout animals revealed that the lack of Cx3cr1 
enhanced the neurodegenerative and neuroinflammatory 
processes initiated by α-SYNA53T treatment. The authors also 
proved that exposure to α-SYNA53T in the conditions of 
Cx3cr1-deficiency shifted microglial activation towards more 
pro-inflammatory phenotypes [283]. What is interesting, the 
group of Thome [284] observed the opposite effect, showing 
that the receptor might be significant in disease progression 
of synucleinopathies. The depletion of Cx3cr1 resulted in a 
decrease in microglial phagocytosis and α-syn-associated 
inflammation in primary microglia originating from the 
knockout mice. 

 Another approach to investigate the involvement of 
CX3CL1-CX3CR1 system in PD includes the use of 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-
hydroxydopamine neurotoxin (6-OHDA) models of the dis-
ease. The MPTP model combined with Cx3cr1 knockout 
showed that, in SNpc, CX3CR1 had a protective effect 
against CCL2 overexpression by astrocytes, leading to do-
paminergic neurodegeneration [285]. The general conclusion 
about the neuroprotective action of CX3CL1 was supported 
not only by the studies of Bickford’s group, who applied 
MPTP [286] and 6-OHDA [287] models but also by the 
model with α-syn overproduction via recombinant adeno-
associated virus [113]. 
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 The literature has also suggested other factors linked to 
PD. Among them, infection with Toxoplasma gondii might 
be implicated in the development of PD [288] (as well as 
schizophrenia [289] and AD [290]) or it may have had, at 
least, an influence on certain symptoms [291]. In a mouse 
study, the cortical neurodegeneration caused by chronic ex-
posure to this neurotropic parasite led to increased CX3CL1 
expression accompanied by microglia activation [292]. Ad-
ditionally, the missense mutations in Leucine-Rich Repeat 
Kinase 2 (LRRK2) were proposed as significant players in 
PD. In the microglia derived from Lrrk2-/- mice, both 
mRNA and protein levels of CX3CR1 were increased and 
the cells migration towards the source of CX3CL1 was en-
hanced [99]. 

5.2.2. CD200-CD200R and Parkinson’s Disease 

 In PD patients, disturbances in the CD200-CD200R in-
teraction were described for the peripheral immune cells 
[293]. Monocyte-derived macrophages (MDMs) from young 
and elderly patients with PD were compared with those ob-
tained from age-matched controls to determine any changes 
in CD200R expression. Basal CD200R levels were the same 
in all the examined groups, yet the induction of the receptor 
in response to various inflammatory stimuli was affected in 
the MDMs from the PD patients [293]. In addition, the 
stimulus-induced level of CD200R in the MDMs from the 
PD patients was inversely correlated with the level of TNF-α 
secretion and the age of PD onset. 

 Neuroinflammation, with microglial activation coming to 
the foreground, is among the prominent pathological fea-
tures of PD. As shown by Xie et al. [294], the peripheral 
injection of LPS led to the mobilization of microglia, fol-
lowed by the enhanced expression of Cd200 and Cd200r in 
the substantia nigra of rats. The attenuation of this activation 
by CD200Fc protected dopaminergic neurons from the nega-
tive effect of the LPS-induced inflammation. On the con-
trary, blockage of signalling with anti-CD200R antibody 
accelerated the neuronal loss [294]. Altogether, these results 
suggested that the CD200-CD200R axis might be relevant to 
the course of PD. Comparable results were published by Xia 
et al. [295]. The authors presented that the induction of pe-
ripheral blood monocyte tolerance alleviated the neuroin-
flammation produced by the intraperitoneal treatment with LPS. 
The process was mediated by the upregulation of CD200R. 

 A study using an in vivo model of PD, based on the infu-
sion of MPTP hydrochloride, revealed that the levels of 
CD200 and CD200R were reduced in mouse cerebral corti-
ces in a time-dependent manner [296]. This observation sug-
gested that this signalling pathway might participate in the 
progression of PD, due to the simultaneously obtained re-
sults showing that the dopamine level decreased similarly. 
The in vitro approach, with an injection of 1-methyl-4-
phenylpyridinium ion in primary microglia cells, allowed for 
the determination that the protective effect of CD200 on the 
dopaminergic neurons was mediated through the promotion 
of the opening of the ATP-sensitive potassium channel 

 

Fig. (4). The disruption of the neuron – microglia communication, specifically the CX3CL1-CX3CR1 and CD200-CD200R pathways, leads 
to deleterious processes, mainly neuroinflammation and neurodegeneration. The lack of this balance has been increasingly reported as the 
basis for the development of severe psychiatric (schizophrenia, depression) and neurodegenerative (Alzheimer’s and Parkinson’s diseases) 
conditions. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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[296]. This beneficial process was accompanied by the inhi-
bition of microglial activation and the cessation of ATP re-
lease. Besides, the ageing-related reduction in CD200 ex-
pression in the rat SNpc was reported by Wang et al. [297]. 
The suppressed levels of CD200 and CD200R were also 
characteristics of MPTP/probenecid-induced PD mice [298]. 
These animals had disturbed motor balance and coordina-
tion, likewise the declined number of dopaminergic neurons 
in the SNpc and lowered density of those cells in the stria-
tum [298]. Other in vivo evidence was provided by Zhang et 
al. [299], who employed the 6-OHDA model combined with 
a CD200R-blocking antibody. In the 6-OHDA rats with 
moderate dopaminergic neurodegeneration in the SNpc, the 
administration of the antibody significantly aggravated the 
impairment. 

CONCLUSION 

 In the present article, we reviewed some of the relevant 
data from the literature regarding the role of neuron – micro-
glia communication both in the healthy brain and during the 
pathological processes within the CNS. We underlined that, 
in this context, both the CX3CL1-CX3CR1 and CD200-
CD200R systems deserve special recognition for their spe-
cific actions and wide participation in the regulation of mul-
tiple processes (microglial activation, apoptosis, phagocyto-
sis, neurogenesis, neuroinflammation, synaptic plasticity, 
etc.). In recent years, it has become undeniable that malfunc-
tions in these axes are involved in psychiatric (schizophre-
nia, depression) and neurodegenerative (Alzheimer’s and 
Parkinson’s diseases) disorders, as the outcome of these 
conditions appears to rely on the processes controlled by 
CX3CL1, CD200 and their respective receptors (Fig. 4). The 
comprehensive evidence supporting these relationships has 
been provided within this article. However, further research 
leading to a profound understanding of the signalling path-
ways, critical for the proper communication between neurons 
and microglia, is essential to determine new therapeutic di-
rections that will enable the maintenance/restoration of ho-
meostasis in the CNS. 
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