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Abstract

The ability of medical image analysis deep learning algorithms to generalize across multiple sites 

is critical for clinical adoption of these methods. Medical imging data, especially MRI, can have 

highly variable intensity characteristics across different individuals, scanners, and sites. However, 

it is not practical to train algorithms with data from all imaging equipment sources at all possible 

sites. Intensity normalization methods offer a potential solution for working with multi-site data. 

We evaluate five different image normalization methods on training a deep neural network to 

segment the prostate gland in MRI. Using 600 MRI prostate gland segmentations from two 

different sites, our results show that both intra-site and inter-site evaluation is critical for assessing 

the robustness of trained models and that training with single-site data produces models that fail to 

fully generalize across testing data from sites not included in the training.

Index Terms—
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1. INTRODUCTION

While deep learning methods are increasingly applied to medical image analysis tasks [1], 

challenges remain with respect to their clinical use. In clinical setups, robustness and 

generalizability are critical, especially given the differences in imaging equipment across 

sites. Typically in research, however, the data used to train and test these algorithms does not 

span the full range of clinical environments. It is not feasible to collect data across all 

clinical sites and all imaging equipment. This results in training and testing datasets that 

have limited numbers of samples, have homogeneous distributions of subjects, and have 

uniform data sources, e.g. using the same magnetic resonance (MR) imaging (MRI) scanner 
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for all data. Overall, using data in this manner results in deep learning models that are tuned 

to specific training data.

While training with fully representative data from all hospitals may never be practical, an 

alternative strategy is to train specific models for very specific data acquisition protocols, 

e.g. one model per MR scanner at every clinical site for each clinical task. In this scenario, 

learned models may be shared across sites, but the model training is unique for individual 

clinical tasks. While transfer learning [2] and learning without forgetting [3] facilitate model 

training and model reuse, re-training models for every new piece of equipment and for every 

task is not practical either. Image normalization methods offer another solution for working 

with multi-site data.

Data normalization is a key pre-processing step for machine learning algorithms. In natural 

images, changes in illumination and brightness contribute to intensity heterogeneity, 

however, the large number of image samples available to these applications makes training 

feasible and simply removing the dataset’s global mean intensity value from all pixels is 

empirically sufficient for deep neural networks with these types of images [4]. This is not 

possible with medical images that come from different equipment and can have vastly (or 

subtly) different image intensity characteristics. While deep learning has found success with 

CT imaging [5], which benefits from a standardized intensity scale across devices, MRI 

presents a challenge (even for simple tasks [6]). Not only do MR images from different 

patients exhibit variability in intensity distribution, but they exhibit variability across 

scanners and sites, e.g. different means and variances (Fig. 1). Medical imaging data is 

heterogeneous in terms of subject anatomy and limited in the number of samples. Therefore, 

per image normalization is necessary for medical images to account for differences in 

imaging hardware.

In this paper, we investigate the generalization of a deep learning prostate gland 

segmentation algorithm across multiple sites and we demonstrate the impact different 

normalization methods have on both intra-site and inter-site evaluation. Prostate 

segmentation in MRI is a well studied problem [7] subject to inter-site variability [8]. Here, 

we focus on training and testing a popular deep learning segmentation architecture using 

images from 600 subjects from two sites: Stanford and Yale. We show that (i) intra-site 

evaluation alone does not demonstrate algorithm generalizability, i.e. the algorithm can learn 

the intensity characteristics of a particular site but fail during prediction using data from a 

different site, (ii) image normalization has little effect on intra-site training but can be used 

to more robustly apply single-site models to multi-site data, and (iii) single-site training fails 

to learn models that generalize well across multi-site testing data, but image normalization 

can help.

2. METHODS

2.1. Image Normalization

Prior to the segmentation algorithm’s training and testing, we apply a normalization function 

f to each image to produce an intensity-normalized version of that image I’ = f(I). We test 

five different methods to perform image normalization: (i) None, which uses the raw 
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intensity values and performs no normalization; (ii) Scaled, which scales the image 

intensities to have intensity values within the range [0, 1]; (iii) Gaussian, which shifts and 

scales the image intensity to have zero mean and unit variance; (iv) Quantile quantile 

normalization, which shifts the intensities to have zero median and unit interquartile range; 

and (v) Histogram matching, which is a non-linear mapping of image intensities to match a 

target distribution [9]. In this case, we create an idealized target distribution by averaging the 

median-centered histograms of all images from a single site (Yale). We then match the 

histograms from all other images (from both sites) to this target distribution. The Scaled, 

Gaussian, and Quantile normalization methods are linear transformations of the image 

intensity values, such that f(I) = αI + β, while the Histogram matching method performs a 

non-linear mapping. Fig. 1 shows the original MRI prostate intensity distributions without 

normalization and Fig. 2 shows the normalization results.

2.2. Model Training and Segmentation

Given a set of N training images I = {Ii, Mi|i = 1, … , N}, where Ii denotes an anatomical 

MR image with a paired binary segmentation mask Mi, we train a deep neural network to 

perform prostate gland segmentation. We use a modified version of the U-Net [10] fully-

convolutional network (FCN) architecture. Our implementation of this network differs from 

the standard U-Net architecture in that we used three max-pooling operations instead of the 

standard four, which results in a total of 18 convolutional layers (7,696,256 trainable 

parameters). We use a patch-based training approach, training with patch sizes of 128 × 128 

pixels. For each training epoch, we randomly extracted 6,400 overlapping patches from the 

N images in the training data set. To augment our training set, we randomly flip patches left 

and right to take advantage of anatomical symmetries. We train with a mini-batch size of 64 

patches and optimize the cross-entropy loss function using the Adam optimizer with initial 

learning rate 0.0005 with exponential decay 0.98. We used no dropout layers in the model in 

order to simplify the analysis of the data normalization. All models were trained for a total 

of 20,000 iterations.

To segment a test image I not included in the training set, we take advantage of the FCN 

architecture to adjust our patch size during inference to cover the entire image field. Here, 

we select a patch size of 256 × 256 to cover the entire image field of view for the largest 

images. This strategy to use larger patch sizes during inference helps avoid both the need for 

blending overlapping patches and the possibility of introducing edge artifacts at patch 

borders during prediction time. For images with dimensions less than 256, we mirror pad the 

images to fill the entire patch dimensions.

3. RESULTS AND DISCUSSION

From clinical databases at Stanford and Yale, we selected two sets of prostate MRI IS and 

IY, respectively, each containing N = 300 subjects who underwent MR-guided prostate 

cancer biopsy. Stanford images were acquired on a 3T GE Discovery MR750 scanner and 

Yale images were acquired on a 3T Siemens Verio scanner. For each subject i = 1, … , N, we 

have an anatomical T2-weighted (T2W) MR image Ii acquired without an endorectal coil 

and a paired prostate gland segmentation Mi. This segmentation was performed by a 
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radiologist as part of standard clinical practice using a semi-automated segmentation process 

[11] with the ProFuse imaging software (Eigen, Grass Valley, CA). The distribution (Mean

±SD) of prostate volumes for Stanford and Yale was 59.3 ± 36.3 and 58.5 ± 35.8 cc, 

respectively. All data were anonymized. From the 3D image volumes, we extracted the 

central axial 2D slice of the prostate and the corresponding mask by computing the gland’s 

center of gravity (COG) from the mask and then selecting the 2D slice closest to the COG’s 

z-value. We resampled these midgland slices to have 1.0 mm isotropic spacing using linear 

interpolation for the T2W MRIs and nearest neighbor interpolation for the masks. Using this 

data, we tested the effect of different normalization methods (Sec. 2.1) on the segmentation 

performance of a deep neural network (Sec. 2.2) trained using data from a single site and 

from both sites. We evaluated segmentation performance by calculating the Dice overlap 

between the predicted prostate gland segmentation and the ground-truth segmentation mask. 

For each train-test pair, we assessed significance between pairwise comparisons of the 

normalization methods using a Wilcoxon signed rank test with a significance level of 0.05.

3.1. Single-site Training

First, we evaluated both intra-site and inter-site segmentation performance of segmentation 

models trained using data from only a single site. For each site, we performed a 3-fold cross-

validation study using N=200 subjects for training in each fold and using the remaining 100 

images for testing such that all images in the set were tested once. Model training was 

repeated for each of the five different normalization methods. We performed intra-site 

testing by using the trained model from each fold to segment the 100 left-out test images 

from the same site. Additionally, we performed inter-site testing by using the trained model 

from each fold to segment 100 images from the other site. We repeated the same training 

and testing procedure for models and data from both sites.

Boxplots of the Dice overlap results (Fig. 3) illustrate the effect of each image normalization 

method for intraand inter-site segmentation performance. The choice of normalization 

method has a limited effect on the segmentation performance when testing on data from the 

same site. For intra-site testing, we observed statistically significant differences between 

Scaled and all other methods as well as None and Quantile normalization at Yale, and both 

None and Scaling normalization methods performed significantly worse than all other 

methods at Stanford. However, when testing on the data from a different site, the choice of 

image normalization method has a profound impact. This is illustrated most clearly in the 

case of testing Yale data on models trained with Stanford data, where using no normalization 

resulted in median Dice segmentation values of zero and Scaling resulted in highly variable 

segmentations significantly worse than other methods. For the best performing 

normalization methods in inter-site testing, we observed no significant differences between 

Gaussian and Histogram normalization for Stanford train-Yale test data, and no significant 

differences between Quantile and Histogram normalization for Yale train-Stanford test data. 

Overall, segmentation performance was worse for inter-site testing (Table 1), which 

indicated that models over-trained to the single-site data.
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3.2. Multi-site Training

To evaluate the effect of including data from multiple sites in model training, we performed 

another set of 3-fold cross validation experiments. For each fold of multi-site training, we 

selected 100 subjects from Stanford and 100 subjects from Yale to form a training set IS+Y 

with N = 200 subjects to train our model. For each testing fold in this setup, we selected 100 

images from Stanford and 100 images from Yale to form a test set of 200 images such that 

each subject was tested only once among the 3 folds. Compared to the single-site training 

results, multi-site training results in much-improved performance when testing with data 

from multiple sites (Fig. 4). We observed that Quantile normalization produced the highest 

median Dice scores (0.944), which was significantly higher than all other normalization 

methods. Using Quantile normalization, Table 1 shows that multi-site training significantly 

improved multi-site testing results compared to single-site training.

4. CONCLUSION

In this paper, we present an analysis of how well a particular deep neural network 

generalizes across different sites using different image normalization methods, which is a 

critical question to answer for algorithms in clinical use. We demonstrate segmentation 

results using 2D prostate MRI and we show that a Quantile normalization strategy appears to 

work well for this data. Here, the Quantile method centered the intensity distribution of the 

anatomy of interest (the prostate) to zero (Fig. 2) because it is robust to outlier intensities 

present in the rest of the image volume and it does not rely on the assumption of the 

intensities being Gaussian. In the future, we plan to apply this approach to other image 

segmentation tasks using different image modalities as well as to 3D data. In the future, we 

would like to test using more than two sites to investigate how many sites is enough to 

achieve general-izable model training. We also plan to incorporate the image normalization 

process directly into the model training procedure itself. We finally note, that a medical 

image is a function of both the scanner and the anatomy. Results obtained when training on a 

single scanner and evaluated on images from the same scanner can be artificially “inflated”, 

as these high dimensional deep neural networks have the flexibility to learn not only 

appearance but also the specific interactions of a given scanner and a structure. Conversely, 

as we demonstrate in this paper, such methods can yield unacceptable results when applied 

to images from a different scanner.
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Fig. 1. 
Example axial slices from T2W MR image volumes with manually segmented prostate 

glands from two sites: (top left) Stanford and (bottom left) Yale. (Right) The histograms of 

image intensity within the prostate gland (defined by the manual segmentations) for N = 300 

subjects from each site show two distinct intensity profiles that result from using different 

MR scanners.
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Fig. 2. 
Histograms of T2W MRI intensity within the prostate gland (defined by manual 

segmentations) from two different sites: Stanford (orange) and Yale (blue) (N = 300 for each 

site). The distribution overlap has a profound effect on segmentation performance when 

training a deep neural network. Here, we show four different image normalization methods 

and their effect on the prostate gland intensity distribution: (from left to right) (i) adjusting 

the intensities to range between [0, 1] (Scaled); (ii) adjusting the intensities to have zero 

mean and unit variance (Gaussian); (iii) adjusting the intensities to have zero median and 

unit inter quartile range (Quantile); and (iv) performing histogram matching to a target 

distribution (Histogram). Fig. 1 shows the original intensity distributions prior to 

normalization.
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Fig. 3. 
Intra-site and inter-site testing illustrates the importance of image normalization methods on 

prostate gland segmentation performance (Dice overlap) when training with data from a 

single site. We show results for models trained using Stanford images alone and tested on 

data from either Stanford or Yale, as well as results for models trained using Yale images 

alone and tested on data from either Stanford or Yale. Boxplots show the median, 25th and 

75th percentiles, extremes (approximately the middle 99.3%), and outliers.

Onofrey et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Multi-site training results in much better segmentation performance (Dice overlap) across 

different sites compared to intra-site training (Fig. 3). Boxplots show the median, 25th and 

75th percentiles, extremes (approximately the middle 99.3%), and outliers.
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Table 1.

Intra-site, inter-site, and multi-site prostate segmentation results (Dice overlap (%)) using the Quantile 

normalization method on data from Stanford (S) and Yale (Y). Values are reported as Median (interquartile 

range).

Training Data
Testing Data

S Y S+Y

S 0.944 (0.039) 0.924 (0.075) 0.935 (0.053)

Y 0.921 (0.085) 0.945 (0.040) 0.933 (0.056)

S+Y 0.944 (0.038) 0.944 (0.044) 0.944 (0.040)
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