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Abstract

The hyperactive RAS and inflammation are closely associated. The angiotensin-II/AT1R axis of 

the RAS has been explored extensively for its role in inflammation and a plethora of pathological 

conditions. Understanding the role of AT2R in inflammation is an emerging area of research. The 

AT2R is expressed on a variety of immune and non-immune cells, which upon activation triggers 

the release of a host of cytokines and has multiple effects that coalesce to anti-inflammation and 

prevents maladaptive repair. The anti-inflammatory outcomes of AT2R activation are linked to its 

well-established signaling pathways involving formation of nitric oxide and activation of 

phosphatases. Collectively, these effects promote cell survival and tissue function. The 

consideration of AT2R as a therapeutic target requires further investigations.
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1. INTRODUCTION

The RAS plays a pivotal role in the pathogenesis of hypertension and various renal and 

cardiovascular diseases. Ang-II is a major hormone of the RAS and acts via AT1R and 

AT2R. There is well-documented evidence suggesting the role of AT1R in various diseases, 

including its proinflammatory role and its involvement in hypertension and tissue injury. 

AT2R later surfaced, owing to the anti-inflammatory effects in immune [1, 2] and non-

immune cells [3, 4]. During pathological conditions, a variety of immune cells infiltrate to 

the effector organs and modulate the organ microenvironment by releasing an array of 

cytokines, chemokines and effector molecules. These infiltrated cells (mainly granulocytes, 

lymphocytes and monocytes) interact with the resident cells via chemokines and cytokines 

and modulate the site of injury initially as a pro-inflammatory deleterious phase followed by 
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an anti-inflammatory repair phase. The RAS has considerable influence on immune cells 

(adaptive as well as innate), injury and repair.

In general, AT2R expression is lower as compared to its counterpart, AT1R [5], but strongly 

upregulated following tissue injury [6]. Since the discovery of orally bioavailable selective 

AT2R agonist C21, the anti-inflammatory role of AT2R has become increasingly clear [7]. 

The goal of this article is to review the expression and function of AT2R in response to 

pharmacological activation in various immune and non-immune cells and their relationship 

with organ-specific effects and BP regulation. Fig. (1) summarizes the balance between pro- 

and anti-inflammatory responses which are differentially regulated by Ang II.

1.1. Adaptive Immune System

T-cells are the central players of an adaptive immune system. Various T-cells (CD4/CD8) 

play a pivotal role in pathogen/tumor clearance and maintenance of immune homeostasis. 

AT2R expressing CD4+ T-cells were elevated in heart failure in human and rodent model. 

These AT2R+CD4+ T-cells expressed FoxP3 (regulatory T-cells), secreted IL-10 (a major 

anti-inflammatory cytokine) and other anti-inflammatory cytokines [1]. In vivo AT2R 

stimulation also leads to an increase in AT2R+ cell population in the infarcted myocardium 

and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction [6]. 

Additionally, AT2R expression was also detected in a population of CD8 T-cells infiltrating 

in the periinfarct myocardium. A subset of CD8+AT2R+ was detected seven days after 

myocardial infarction in rats. These cells showed upregulated anti-inflammatory IL-10 and 

downregulated pro-inflammatory IL-2 and IFN-γ [2], which was thought to be a part of the 

protective response to counter AT1R mediated aggravation of cardiomyocytes.

Recently, a population of CD4+AT2R+ cells was identified in thoracic aortic aneurysm, a 

progressive fatal aortic pathological dilation. These cells displayed an inhibitory effect on 

proliferation and MMP2 expression in endothelial cells as opposed to the CD4+AT2R− cells 

which promoted proliferation and MMP2 expression in endothelial cells [8]. AT1R through 

the activation of immune cells induces arterial inward remodeling and thus reduced blood 

flow in cardiovascular disorders. On the contrary, AT2R expressing T lymphocytes, by 

secreting IL-17, have been involved in flow (shear stress) mediated outward remodeling, 

collateral arteries growth in ischemic diseases and revascularization. Mice lacking AT2R or 

athymic mice (lacking T-cells) did not observe flow (shear stress) mediated outward 

remodeling [9].

The role of other immune cells like B cells, NK cells and NKT (natural killer T) cells has 

rarely been studied in renal or cardiac injury model. However, the AT1R and AT2R 

expression on uterine NK cells and their role in BP management during pregnancy in mice 

have been reported [10]. This further supports the notion that T-cells also have a role to play 

in renal, cardiac and neuronal pathologies resulting from stroke or ischemic attack. This may 

pave the ways to further explore the possibilities of studying AT2R expression on immune 

cells in pathological conditions such as in chronic and acute renal injuries. Also, we have 

substantial evidence that AT2R signaling can be modulated using receptor-ligand 

interactions as studied by our lab and many others [3, 11–13]. Another study provides 

evidence that T-cells and NK cells possess a fully functional RAS, and the ability to produce 
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and deliver Ang-II to inflammatory sites. It revealed the presence of renin, its receptor, 

angiotensinogen and ACE in these cells by mRNA analysis. Both the AT1R and AT2R are 

expressed, and serve their functions in chemotaxis, cell proliferation and calcium signaling. 

However, antagonists specific to these receptors could not completely abolish the Ang-II-

mediated effects, which indicates that another functional angiotensin receptor might be 

present in T-cells and NK cells and involved in these effects [14].

1.2. Innate Immune System

The innate immune response acts as the first line of defense against an array of pathogens. It 

is non-specific, and acts rapidly, beginning within a few hours of infection [15]. The major 

components of the innate immune system include physical barriers, such as epidermis of the 

skin, tears, saliva, mucus membranes and their secretions, and cells such as macrophages, 

DCs and neutrophils, which are the major phagocytic cells of the immune system. Besides, 

leukocytes including basophils and eosinophils are also important for pathogen clearance 

and immunoregulation [16]. Research establishing a link between innate immune system 

and hypertension has flourished in the recent years. While the role of AT1R present on the 

immune cells has been sufficiently discussed in the past, there is only a limited discussion on 

the role of AT2R in this context [17–18].

1.2.1. Monocytes/macrophages—Almost two decades ago, it was reported that 

macrophages express all the components of RAS, except chymase. A 6-fold increase in 

AT2R expression was found during the differentiation of monocytes to macrophages which 

may be involved in the development of atherosclerosis [19]. AT2R was upregulated in the 

glomerular cells and macrophages, thereby attenuating acute glomerular lesions in 

glomerulonephritis [20]. Another study on adjuvant-induced arthritis rat model showed that 

direct AT2R stimulation with agonist CGP42112 in vitro inhibited the activity of IL-1β-

stimulated monocytes, along with AT1R downregulation and AT2R upregulation in the 

stimulated monocytes [21]. The anti-inflammatory role of AT2R activation by its agonist 

C21, in TLR-4 mediated inflammation indicated a critical role for IL-10. This study also 

provides evidence regarding the involvement of ERK1/2 pathway in the release of IL-10 

following AT2R stimulation in macrophages [22]. In a similar study, the direct activation of 

AT2R on THP-1 and U937 cells by agonist C21 was anti-inflammatory since it attenuated 

the early inflammatory responses mediated by TLR-4, through the regulation of pro- and 

anti-inflammatory cytokines at both the gene and protein level [23]. In an experimental mice 

model of AE, direct activation of AT2R by agonist C21 inhibited the activation of resting 

microglia, and infiltration of the activated microglia (a subpopulation of macrophages in the 

brain) in the lumbar spinal cord [24]. It was confirmed by this study that AT2R was 

expressed in microglia, T-cells, spinal cord and brain aggregates.

In contrast to the anti-inflammatory role of AT2R, peripheral macrophages expressing AT2R 

predominantly infiltrate the site of nerve injury and are critical for triggering pain 

sensitization. Selective AT2R antagonism by the depletion of peripheral macrophages 

chemo-genetically and transplantation of AT2R-null hematopoietic cells was found 

beneficial in inhibiting the neuropathic pain hypersensitivity [25]. In another study by the 

same group of researchers, it was observed that the activation of AT2R on peripheral/skin 
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macrophages that infiltrate the injury site, triggers the production of ROS and RNS. This 

mediated the trans-activation of cell damage sensing ion channel TRPA1, resulting in the 

excitation of mouse and human sensory dorsal root ganglion which represents a peripheral 

mechanism for the induction of chronic neuropathic pain [26]. This ROS and RNS 

production was scavenged by AT2R antagonist PD123319 and N-acetyl cysteine, which 

indicates a mechanism for the attenuation of nociceptor excitation to provide relief from 

pain.

Considerable evidence suggests that AT2R has antihypertensive, anti-inflammatory and anti-

proliferative effect, but some of the above mentioned recent studies highlighting the role of 

macrophage AT2R in promoting chronic neuropathic pain hypersensitivity would impose a 

challenge on the existing knowledge about AT2R, and necessitates elucidating other 

properties of this receptor, which may have not been addressed yet.

1.2.2. Dendritic Cells—For the first time, the differential expression of RAS 

components was identified in immature and mature DCs by using human cDNA microarray 

(27). The blockade of AT2R resulted in the development of DCs expressing significantly 

higher levels of CD1a, a well-characterized marker for DCs differentiation, with high 

endocytic capacity and allostimulatory activities, as compared to control DCs (28). It was 

also reported that DCs sufficiently express the components of RAS including the two axis: 

ACE-Ang II-ATjR and the ACE2-Ang-(1–7)-MasR. Phosphorylation of ERK1/2 induced by 

Ang-II was markedly enhanced by Ang-(1–7) co-treatment, but this effect was significantly 

inhibited by AT2R antagonist PD123319 [29]. In another study, the importance of Ang-II in 

the regulation of DCs was highlighted as being pro-inflammatory and immunomodulatory in 

function. The proliferation and phagocytic activity of DCs was markedly inhibited by Ang-II 

treatment, but the maturation of DCs and their migratory activity were significantly 

enhanced. However, it did not indicate any specific role of AT2R in the maturation or 

proliferation of DCs [30].

1.2.3. Neutrophils—Neutrophils overexpressing ACE were more efficient in killing 

methicillin-resistant Staphylococcus aureus during infection, probably due to increased 

production of ROS, especially the superoxide radical generation by neutrophils. This 

indicates that neutrophils overexpressing ACE could boost the immune response to bacterial 

infections which are antibiotic-resistant [31]. However, the specific role of AT2R in these 

studies was not reported. Since AT2R is important for Ang-II induced mechanical 

hypersensitivity, Ang-II-induced infiltration of macrophages and neutrophils in the hind paw 

of the mouse was investigated for AT2R expression. However, no amplification for either 

AT1R or AT2R could be seen in peritoneal PMN [26]. In another study, human neutrophil 

and platelet content, and release of 20-HETE, which is synthesized in response to Ang-II 

and essential for regulating vascular tone, BP and renal function, was significantly enhanced 

by Ang-II treatment predominantly via AT2R. The receptor blockade by its antagonist 

PD123319 markedly reduced both the content and release of 20-HETE from neutrophils and 

platelets [32]. These findings related to the role of AT2R in innate and adaptive immunity 

have been summarized in Fig. (2).
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1.3. Non-immune Cells

1.3.1. Vascular Endothelial Cells—Endothelial cells harbor and release a number of 

factors involved in (patho)physiology of hypertension. NO is one of these factors critically 

involved in vasodilation. Endothelial dysfunction, regardless of the type of injury leading to 

decreased bioavailability of NO, contributes to change in cell surface electrostatic charge 

and increases permeability to proteins and inflammatory cells [33]. AT2R is strongly linked 

to NO formation [34, 35] which is corroborated by studies showing exacerbation of 

oxidative stress and injury in AT2R/ApoE-double KO mice [36] and reduced expression of 

inflammatory mediators in atherosclerotic plaque during overexpression of AT2R [37, 38]. 

C21 also reduces aortic infiltration of immune cells and vascular stiffness by reducing ECM 

components (fibronectin, collagen) [39]. Additionally, anti-inflammatory effects of AT2R 

may encompass suppressed expression and signaling of lectin-like oxidized low-density 

lipoprotein scavenger receptor-1, a scavenger receptor of ox-LDL [38, 40] which requires 

further elucidation.

Obesity is characterized by chronic low-grade inflammation and is associated with 

impairment in sodium excretion. Accumulation of sodium is also linked to endothelial 

glycocalyx damage and impairment in vascular permeability [41]. We have observed 

infiltration of CD68+ monocyte/macrophage in obese kidney which was reduced 

considerably with AT2R agonist C21 treatment [42]. As AT2R function is linked to NO 

formation and sodium excretion [43, 44], the AT2R-mediated reduction in immune cell 

infiltration may partly involve reduction in sodium accumulation and preservation of 

vascular permeability.

1.3.2. Vascular Smooth Muscle Cells—The Ang-II is a potent stimulator of cytokine 

release and expression of MCP-1 and other mediators (ICAM-1, VCAM-1, MMP, 

plasminogen activation inhibitor) involved in vascular inflammation through NFΚB activation. 

The AT2R function is associated with activation of phosphatases. The expression of AT2R is 

transcriptionally upregulated during vascular injury. This suggests that pharmacological 

activation can be targeted to contain inflammation. Additionally, anti-inflammatory effects 

of AT2R may also partly involve relaxation of vasculature that involves NO formation, 

inhibition of ROS and RhoA-Rho kinase-dependent myosin light chain phosphorylation and 

modulation of calcium sensitivity [45].

Tyrosine and serine phosphorylation of STATs is critical for its activation and IFN-γ 
signaling. IFN-γ and many other signaling molecules (IL-1β, Ang-II, glucose and insulin) 

upregulate AT2R expression through interferon regulatory factor-1 [46]. Hence, AT2R is 

speculated to have immunomodulatory function in VSMCs. This finding has been supported 

by another study performed in PC12W cells that expresses AT2R but not ATiR. AT2R 

stimulation by CGP42112 reduced STAT phosphorylation and TNF-α production [47].

1.3.3. Renal Epithelial Cells—RPTCs are vulnerable to a number of inflammatory 

stimuli including hypertension, proteinuria, endotoxemia (lipopolysaccharide), ischemia, 

glucose, fatty acids, etc.
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1.3.3.1. Hypertension: Sodium may accumulate with or without fluid accumulation in the 

renal interstitium [48]. Intake of HSD [43] and experimental hypertensive simulations (e.g. 
2-kidney-1-clip) have been associated with angiotensinemia. Ang-II is reported to facilitate 

sodium reabsorption which may further accelerate hypertensive phenotype [49]. Ang-II also 

may directly induce expression of cytokines (IL-1β, IL-6, IL-8, TNF-α) in epithelial cells 

[69]. Particularly in 2-kidney-1-clip hypertensive model, the AT2R agonist C21 treatment 

reduced mRNA and protein expression of cytokines (TNF-α, IL-6 and TGF-β1) in renal 

interstitial fluid [50]. In stroke-prone SHR rats, C21 reduced ED1+ monocytes/macrophages 

infiltration, expression of collagen and tubular damage [51].

1.3.3.2. Proteinuria: Diet low [52] or rich [53] in sodium can modify immune response 

and kidney disease progression. Proteinuria is frequently associated with HSD intake and is 

an indicator of several comorbid conditions including obesity, diabetes and hypertension. 

The exposure of RPTCs to luminal protein (albumin) load per se has been reported to 

activate PKC-NOX-NFΚB pathway [54] and aid in release of potent pro-inflammatory mediators 

from epithelial cells and influx of leukocytes causing injury and apoptosis [55]. AT2R is 

located in RPTCs and has been reported to be upregulated during obesity [56]. 

Pharmacological stimulation of AT2R by CGP42112a has been reported to reduce 

inflammatory mediators in obese rat kidney [57]. Likewise, another selective AT2R agonist 

C21 has been reported to reduce proteinuria [51, 58] and several other inflammatory stimuli 

including Ang-II [59,60], hypertension [60, 61] and oxidative stress [57, 58]. In another 

study, anti-proteinuric and anti-oxidative benefits upon chronic treatment with C21 were 

correlated with anti-inflammatory changes in STZ-induced diabetic kidney [62].

1.3.3.3. Endotoxemia: In HK-2 cells, we have reported that AT2R stimulation via NO 

formation stimulates the release of anti-inflammatory IL-10, which may have reduced the 

release of pro-inflammatory cytokines (TNF-α, IL-6) upon endotoxemic challenge with LPS 

[42]. This change is paralleled in obese Zucker rat (a model of low-grade endotoxemia), 

showing reductions in circulating and renal TNF-α and IL-6 upon C21 treatment [42]. 

Moreover, acute administration of C21 has been reported to increase renal IL-10, which is 

hypothesized to reduce renal content of MCP-1 and IL-6 and limit infiltration of CD11b+ 

leukocytes in mice kidney challenged with LPS [3].

1.3.3.4. Ischemia: The anti-inflammatory role of AT2R in animal models of ischemic 

renal injury has been recognized based on early findings showing aggravation of renal 

interstitial infiltration and activation of macrophages and fibrocytes upon deletion of AT2R 

[63]. Along the same line, pharmacological activation of AT2R by C21 demonstrated 

reduced myeloperoxidase activity (marker of neutrophil influx) and circulating MCP-1 in 

rats subjected to myocardial ischemia [64].

Ischemia also causes cell cycle arrest in RPTCs. Such cells are prone to produce and release 

growth factors (i.e. TGF-β1, MCP-1) which through paracrine signaling, can activate and 

transform adjacent pericytes and fibroblast to myofibroblast with marked upregulation of 

collagen [65]. RPTCs may also acquire mesenchymal characteristics (secretory, motility and 

plasticity), undergo remodeling and transform into fibroblasts via multiple pathways in 

response to numerous stimuli [65–67]. In HK-2 cells, AT2R is co-localized with TGF-βRII 
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and CGP stimulation strengthens AT2R-TGFβRII interaction, reduces TGFβRII expression 

and prevents epithelial-to-mesenchymal transition in NO-dependent manner [68]. Renal 

tubules may directly release these stimuli and participate in propagation of oxidative stress, 

activation of inflammasome, recruitment of immune cells and formation of ECM. The latter 

involves either synthesis or inhibition of breakdown. The breakdown process is dependent 

on a balance between MMP and tissue inhibitor of MMP [67]. However, the mechanism 

through which AT2R reduces ECM is not known and needs to be explored.

1.4. Pulmonary Epithelial Cells

Anti-inflammatory effects of AT2R were estimated to extend to lung parenchyma based on 

reports showing aggravated acid-induced or sepsis-induced acute lung injury [69]. This 

finding has been corroborated by a report showing reduced monocytic, neutrophilic and 

eosinophilic infiltration and lung injury in neonatal rat pups exposed to hyperoxia upon 

administration of novel and highly specific AT2R ligand MOR107 [70]. Hyperoxia is a 

stimulus associated with inflammation and oxidative stress in respiratory diseases [71]. 

However, there were some inconsistencies as the anti-inflammatory effects of AT2R agonist 

MOR107 did not correlate with mRNA expression of potent chemoattractants (MCP-1, 

chemokine-induced neutrophilic chemoattractant-1) and other indices of lung injury such as 

alveolarization, vascularization and capillary alveolar leakage [70].

1.5. Neuronal Cells

1.5.1. Ischemic Stroke—The potential of AT2R as an anti-inflammatory target emerged 

from a study showing greater ischemic injury and neurological deficits in AT2R-KO mice as 

compared to wild-type mice and ATiR blockade was less effective in containing injury in 

AT2R-KO mice as compared to wild-type mice [72]. Pharmacological activation of AT2R 

reduced the activation of microglia (local antigen presenting cell), apoptosis, infarct volume 

and motor deficits, and increased neuronal survival in a BP and CBF-independent manner in 

a focal reperfusion model of stroke-induced in conscious SHR by administering 

endothelin-1 (inflammatory vasoconstrictor) to the middle cerebral artery through a 

surgically implanted cannula [73–75]. However, one study showed improvement in CBF 

with C21 treatment after stroke induction by middle cerebral artery occlusion [76]. AT2R-

coupled vasodilatory NO can modulate neuronal bioavailability of free radicals [77]. Hence, 

anti-inflammatory effect of AT2R in microglia can be ascribed to cerebral vasorelaxation 

[75], phosphatase-mediated direct inhibition of PKC activation and p47phox 

phosphorylation [78] and superoxide formation [74, 76]. The neuronal survival exerted by 

AT2R in animals subjected to cerebral ischemia is partly dependent on hypoxia-inducible 

factor-α [79], brain-derived neurotrophic factor [24, 79], and vascular endothelial growth 

factor, which is involved in the regenerative processes [80]. These effects are AT2R-specific 

as PD123319 totally [75, 78, 80] or partially reversed [73, 74]. In another study, peripheral 

administration of C21 after stroke induction reduced the inflammatory markers in cerebral 

cortex 24-hr post-ischemic stroke [81]. Moreover, the role of AT2R in revascularization [82], 

in improving regenerative efficacy and migration of bone marrow mononuclear cells [83, 84] 

and mesenchymal stem cells [85, 86], and in cell survival [6, 83, 84] has been established.

The anti-inflammatory attributes of AT2R in non-immune cells are summarized in Table 1.
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CONCLUSION

The anti-inflammatory function of AT2R has been sufficiently evidenced by its involvement 

in modulating numerous key mediators (Ang-II, cytokines, chemokines, and oxidative 

stress) that establishes communicative pathways amid non-immune cells (neuronal, 

epithelial, endothelial and smooth cells) and cells of innate and adaptive immunity. The anti-

inflammatory effects of AT2R seem to be BP-independent [39, 50] and involve NO 

formation and activation of phosphatases as an underlying mechanism. The benefits of AT2R 

activation are not only limited to hypertension, CKD, obesity, diabetes, pulmonary arterial 

hypertension and atherosclerosis [53] but extend to retinal diseases [87] and autoimmune 

diseases such as encephalomyelitis [24, 88, 89] and rheumatoid arthritis [90]. Anti-

inflammation mediated by AT2R activation is promising in myocardial infarction and cardiac 

repair [64, 84]. However, further studies are needed to investigate the therapeutic utility of 

AT2R since macrophage AT2R promotes chronic neuropathic pain hypersensitivity.
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LIST OF ABBREVIATIONS

ACE Angiotensin converting enzyme

AE Autoimmune encephalomyelitis

AKI Acute kidney injury

Ang-I Angiotensin-I

Ang-II Angiotensin-II

ARBs Angiotensin receptor blockers

AT1R Angiotensin-II type 1 receptor

AT2R Angiotensin-II type 2 receptor

AT2R-KO Angiotensin-II type 2 receptor knock out

BP Blood pressure

CBF Cerebral blood flow

CKD Chronic kidney diseases

DCs Dendritic cells

ECM Extracellular matrix

ERK Extracellular signal-regulated kinase
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20-HETE 20-hydroxyeicosatetraenoic acid

HK-2 Human kidney-2

ICAM-1 Intracellular cell adhesion molecule-1

IL-1β Interleukin-1β

IL-10 Interleukin-10

IL-6 Interleukin-6

MCP-1 Monocyte chemoattractant protein-1

MMP Matrix metalloproteinase

NFκB Nuclear factor kappa B

NK Natural killer

NKT Natural killer T lymphocytes

NO Nitric oxide

NOX NADPH oxidase

ox-LDL Oxidized LDL

PMN Polymorphonuclear

RAS Renin-angiotensin system

ROS Reactive oxygen species

RPTCs Renal proximal tubular epithelial cells

RNS Reactive nitrogen species

SHR Spontaneously hypertensive rat

STAT Signal transducers and activators of transcription

TGF-β1 Transforming growth factor-β1

TGFβRII TGF-β1 receptor II

TNF-α Tumor necrosis factor-α

VCAM-1 Vascular cell adhesion molecule-1

VSMCs Vascular smooth muscle cells
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Fig. (1). 
Balance between pro- and anti-inflammatory responses regulated by Ang-II.

Patel et al. Page 16

Curr Pharm Des. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. (2). 
Role of AT2R in innate and adaptive immunity.
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