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Abstract

Over the past few decades, the advent and development of genomic assessment methods and 

computational approaches have raised the hopes for identifying therapeutic targets that may aid in 

the treatment of glioblastoma. However, the targeted therapies have barely been successful in their 

effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits 

high heterogeneity, both spatially and temporally. Existence of different genetic sub-populations in 

glioblastoma allows this tumor to adapt itself to the environmental forces. Therefore, patients with 

glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the 

whole tumor and not to the specific genetic sub-regions. Genomic alterations within the tumor 

develop distinct radiographic phenotypes. In this regard, magnetic resonance imaging plays a key 

role in characterizing molecular signatures of glioblastoma, based on regional variations and 

phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of 

research to explore the connections between genetic alterations and imaging features. 

Radiogenomics proffers numerous advantages, including non-invasive and global assessment of 

the tumor and its response to the therapies. In this review, we have summarized the potential role 

of radiogenomic techniques to stratify patients according to their specific tumor characteristics 

with the goal of designing patient-specific therapies.
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INTRODUCTION

Glioblastoma is the most frequently occurring primary malignant brain tumor in adults, with 

a median patient survival of 12–15 months (1), which has moderately improved lately due to 

the emergence of tumor treatment fields (2). Only about 5% of patients survive past 5 years 

from the time of diagnosis (3). Glioblastoma is identified with distinctive features of local 

invasion and diffuse infiltration into the surrounding brain tissue (4), significant genomic 

instability, cellular proliferation, robust angiogenesis, resistance to apoptosis, and tendency 

for necrogenesis (5,6). This leads to high likelihood of recurrence, poor response to 

treatment, and morbidity.

Surgical resection is not curative for glioblastoma, and even after gross total resection of the 

apparent tumor followed by radiotherapy with concurrent and adjuvant chemotherapy, tumor 

progression occurs (7). One of the main reasons for treatment failure in glioblastoma lies in 

notable cytological and genetic intra-tumor heterogeneity (8). It has been indicated that 

various genetic sub-populations co-habit within glioblastoma (i.e., there exists spatial 

genetic heterogeneity), which trigger different radiographic appearances and hinder 

therapies that do not account for the whole cohabiting tumor sub-populations in a tumor 

(9,10).

Over the past decade, the advent of gene expression profiling has provided new insights 

about the molecular and mutational profile of glioblastoma (11). Accordingly, a growing 

body of evidence has shown that “integrated” histological and molecular (phenotypic and 

genotypic) features are required for diagnosis of diffuse gliomas, which led to the 2016 CNS 

WHO consensus for more accurate diagnosis and reduced inter-observer variability (12). 

This is useful for improved tumor classification and better harmonization of patient cohorts 

for identification of patients most likely to respond to targeted therapies.

For gene expression profiling of the tumors, biopsy or surgical resection is required. 

Biopsies are usually prone to sampling errors and cannot provide a comprehensive 

molecular characterization within the tumor (13). Radiogenomics is a relatively new 

paradigm formed to non-invasively obtain tumor molecular characteristics (e.g., gene 

expression profiles or mutations) by virtue of the tumor’s radio-phenotypical signature 

(14,15). In addition to pre-operative assessments, radiogenomics can be immensely helpful 

in monitoring longitudinal changes of the tumor in response to treatments and adaptation of 

treatment strategies (16). MRI, as an indispensable diagnostic tool for neuro-oncology, has 

provided a platform for genomics studies through radiogenomics.

This review discusses the role and potential of MRI in radiogenomic studies for analysis of 

patients diagnosed with glioblastoma. We first start with a brief introduction of genomics of 

glioblastoma and the principle of radiogenomics, followed by an overview of findings of 

radiogenomic studies. Consequently, the considerations and challenges of current 

radiogenomic studies, as well as future directions, are discussed.
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GENOMICS OF GLIOBLASTOMA

Genomics has the potential to contribute in the management of glioblastoma in several ways, 

including aiding in precise diagnosis, identification of targetable driver mutations, clinical 

trial design, and subtyping (11). The use of molecular information led to the genetic and 

clinical distinction of primary (or de novo) from secondary glioblastoma, which arise from 

lower grades. Specific genetic alterations are different in primary and secondary 

glioblastoma: the IDH1 mutation is particularly frequent in secondary glioblastoma and 

young patients. It is therefore used as a diagnostic marker of secondary glioblastoma, and 

provides superior information to clinical and/or pathological data (17). Furthermore, TP53 
mutations are highly common in secondary glioblastoma, while EGFR overexpression is 

frequent in primary ones. Additionally, EGFR amplification, PTEN mutation, and loss of 

chromosome 10 are predominant in primary glioblastoma (18,19). Genomic profiling further 

facilitates the diagnosis by rectifying pathological findings and prognosis (20) through DNA 
methylation stratification, both of which can immensely affect the treatment plan, e.g., by 

avoiding chemotherapy (21).

Genomic information can also be helpful in the identification of mutations favorable for 

targeted, personalized therapies, and in homogenizing patient populations in clinical trials. 

Although there have been rare encouraging cases, most of the designed targeted therapies 

have failed to make improvements in the management of glioblastoma (11,22). Molecular 

biomarkers could aid the oncologists in prescribing chemotherapy regimens that are most 

effective according to the given mutations or to enroll patients in relevant clinical trials.

The advent of technologies that can measure genomic information in cancer has raised the 

hopes for finding biomarkers that predict resistance to traditional therapies (23). While 

molecular analyses are worthwhile for the stratification of glioblastoma patients, there are 

challenges in their application when put into practice. The analysis is dependent on the 

tissue samples obtained by surgical resection or biopsy procedure and therefore limited by 

the time at which the tissue is collected and the spatial location of the sampled tissue within 

the heterogeneous tumor. Furthermore, sub-optimal genomic analysis techniques, the type, 

cost and depth of coverage of the assay, can impose challenges in multi-institutional clinical 

trials (24). MRI is a versatile tool that can aid in non-invasive uncovering of genomic 

alterations before biopsy or surgery and guiding targeted biopsies. It can be further 

incorporated in the whole management spectrum from detecting patient-specific therapeutic 

targets, monitoring treatment response, and prognosis.

RADIOGENOMICS OF GLIOBLASTOMA

Imaging genomics (or radiogenomics) can be performed to either understand any possible 

molecular associate of a specific radiographic phenotype, or indicate how a particular 

genomic variation might impact the imaging traits of the tumors (15,16,25). Radiogenomic 

studies are either exploratory or hypothesis-driven (16). In exploratory studies, a variety of 

imaging features are tested against several genomic alterations. On the other hand, in 

hypothesis-driven studies, for a specific genetic variation (gene mutation or pathway 

alteration), relevant radio-phenotypes are evaluated.
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A radiogenomic study should ideally be designed based on a systematic approach 

comprising of several steps: 1) image acquisition, 2) image post-processing, including noise/

artifact reduction, intensity and/or orientation standardization, co-registration of the multi-

parametric MRI scans, 3) region-of-interest definition using manual annotation or 

(semi-)automatic segmentation, 4) feature extraction based on human-engineered 

(conventional radiomics) or deep learning approaches, and 5) data analysis for prediction of 

tumor genomics, involving machine/deep learning methods for feature selection, 

classification, and cross-validation. There are numerous leading review papers with detailed 

descriptions of these steps (8,26,27). A schematic flow-graph of a radiomics study is 

illustrated in Fig. 1 and the radiogenomic studies designed according to this workflow are 

summarized in Table 1.

While the mentioned analytical strategy should preferably be undertaken, there are only a 

few radiogenomics studies that have been carried out with this design. Here, we provide an 

overview of the radiogenomics studies according to their exploratory or hypothesis-based 

design, and their molecular characteristic of interest.

Exploratory Studies

Most of the existing radiogenomic studies are intended to establish relationships between the 

tumor radiographic characteristics (e.g., tumor enhancement volume, necrotic extent) and 

gene expression profiles or pathways. These exploratory studies aimed to build foundations 

for the best research design, data collection, and analysis to help in developing relevant 

hypotheses for future studies. As exploratory studies seek to find relevant mutations that 

may produce distinctive radiographic phenotypes, we have summarized the overview of 

these studies based on their investigated radio-phenotypical characteristics.

Tumor Core

Van Meter et al (28) explored intra-tumor genetic variations in regions located in the 

periphery of enhancing mass on T1CE and poorly-enhancing central tumor core. Using 

microarray technology, RNA sequencing was performed for specimens collected intra-

operatively from the tumor periphery and the necrotic or pre-necrotic regions, via image-

guided stereotactic biopsies. Significant differences were found for therapeutic targets like 

EGFR and VEGF. The results were suggestive of the existence of spatial variations in intra-

tumor glioblastoma regions, with the enhancing tumor periphery having an increased 

expression of genes involved in proliferation and invasion events, and the poorly enhancing 

and low perfused core having an elevated rate of expression for hypoxia-induced genes.

In a study by Diehn et al (29) on 22 patients who underwent stereotactic localized biopsy 

sampling, the gene-expression profiles were shown to be discriminant between contrast 

enhancing and non-enhancing tissues. Furthermore, an infiltrative subtype of glioblastoma, 

which was specified by the presence of an infiltrative pattern in the edematous region, was 

significantly associated with the genes involved in CNS development and gliogenesis. This 

finding suggested a possibility of shared gene-expression programs between infiltrative 

glioblastoma subtype and glial progenitors or CNS stem cells. The tumor’s mass effect was 

shown to be correlated with the genes associated with proliferation, and contrast 
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enhancement on T1CE images was shown to be related to the genes involved in hypoxic 

processes.

Pope et al (30) compared gene expressions based on DNA microarrays between 

incompletely-enhancing (IE) and contrast-enhancing (CE) tumors in newly diagnosed 

glioblastoma. 71 genes, including proangiogenic and edema-related genes including VEGF, 

showed overexpression in CE compared to IE glioblastoma. Several genes related to primary 

glioblastoma were expressed in CE, while a few genes related to secondary glioblastoma 

showed expression in IE glioblastoma, with the latter event being associated with longer 

survival.

Analysis of copy number variation in multicentric glioblastoma (defined by the presence of 

multiple foci of contrast enhancement on T1w images or multiple isolated lesions with high 

signal intensity on T2-FLAIR images) has revealed dissimilar gene expression profiling and 

signaling pathways in different foci of multicentric glioblastoma, which is suggestive of high 

intra-patient heterogeneity of molecular characteristics (31).

The volume of CE tumor on MRI, in addition to clinical and genomics factors (HRAS copy 

number variation) has also been reported to provide an accurate prognosis of survival in a 

cohort of 102 glioblastoma tumors (32).

Most of the radiogenomic studies have been carried out using correlation and/or statistical 

significance assessment. The first group to explore the relationship of radio-phenotypes with 

molecular pathways using a machine learning approach was Itakura et al (33). They included 

a multi-institutional cohort of 265 GBM patients (development cohort (n=121), validation 

cohort (n=144)), and calculated 388 image features from T1CE images. Three imaging 

phenotypes were identified using a clustering algorithm: pre-multifocal, spherical, and rim-

enhancing. The pre-multifocal imaging phenotype with the worse survival was significantly 

associated with the c-Kit stem cell factor receptor pathway. The spherical phenotype with 

intermediate survival was linked to down-regulation of 21 pathways, including VEGFR and 

PDGFR-α signaling. The rim-enhancing phenotype with the favorable survival was 

differentiated by the up-regulation of 31 pathways, including PDGFR-β signaling and many 

of the down-regulated pathways in spherical phenotype, such as VEGFR signaling. This was 

further evaluated by Rathore et al (34), who found a relationship between these imaging 

subtypes with Verhaak’s molecular subtypes of glioblastoma tumors (35).

Peritumoral Edematous/Tumor-Infiltrated Tissue

The high amount of non-enhancing peritumoral edematous/tumor-infiltrated tissue (appeared 

as hyperintense region on T2-FLAIR images) was used as the imaging characteristic in 

exploration of gene associations in a study by Zinn et al (36). They suggested that this 

edema/cellular invasion phenotype exhibits upregulated PERIOSTIN (POSTN) gene set and 

downregulated miR-219, which was predicted to bind to and regulate POSTN. The 

expression of POSTN was related to poor overall and progression-free survival. In a 

consecutive study, they proposed that the combination of tumor volume, age, and KPS 
(VAK) can provide a 3-point scoring system for classification of glioblastoma (37). They 

showed that the group with good prognosis (the so-called VAK-A) was significantly 

Fathi Kazerooni et al. Page 5

J Magn Reson Imaging. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with p53 activation and favorable MGMT promoter methylation status, as 

compared to the poor prognosis class (VAK-B).

Jamshidi et al (38) carried out a preliminary study on 23 glioblastoma patients and showed 

an association of vasogenic edema with PI3K signaling network, and a correlation of SVZ 

involvement with Ras oncogene family members.

Necrotic Core

In a study on necrotic volumes extracted from MRI scans of 99 glioblastoma patients (30 

female, 69 male), Colen et al (39) identified gender-specific molecular mechanisms for cell 

death (TP53 apoptotic in male patients, MYC oncogenic in female patients), suggesting the 

importance of including sex as a covariate in analyzing molecular data, designing clinical 

trials, and planning therapies. This was one of the first radiogenomic studies highlighting 

sex-related variations in genomics and imaging characteristics of glioblastoma.

Using a correlation approach, Grossman et al (40) demonstrated association of necrotic 

volume with apoptosis and immune response, CE volume with signal transduction, and 

peritumoral edematous/tumor-infiltrated tissue with homeostasis.

Diffusion Restriction

Cui et al (41) conducted a multi-institutional study, in which high-risk volume (HRV) of 

glioblastoma, defined as the region with low cellularity according to ADC-map and high 

enhancement on T1w images, was tested against MGMT methylation status, and mutation 

status of multiple genes. HRV was not predictive of MGMT methylation status but their 

combination served as a strong predictor of the overall survival. Furthermore, HRV was 

significantly higher in the PIK3CA-mutant compared to the wildtype group.

Zinn et al (42) studied ADC values in the NE portion of the tumor, based on T2-FLAIR 
images, in 35 glioblastoma patients and found that more diffusion restriction (lower ADC 
values) in the peritumoral edematous/tumor-infiltrated tissue was correlated to distinct 

genomic networks and differentially-expressed genes that play a role in invasion.

Heiland et al investigated the role of DTI-derived parameters in identification of gene 

expression pathways (43) in 21 patients who underwent neuro-navigated biopsy operation. 

In the CE tumor region, FA was strongly associated with activation of epithelial-to-

mesenchymal transition pathway and glioblastoma with high FA had the worse prognosis, 

MD was linked to the genes related to neural function and higher MD was suggestive of 

more favorable prognosis.

Angiogenesis

Barajas et al (44) collected multiple biopsies from CE and peritumoral non-enhancing 

regions. They observed elevated CBV and PH values, and decreased PSR and ADC values, 

within CE regions. According to RNA expression patterns obtained by microarray analysis, 

6,653 genes were differentially expressed between the two biopsy specimen groups (CE vs 

NE). Genes associated with mitosis, angiogenesis, and apoptosis were significantly up-

regulated in CE regions as compared to NE parts. Heiland et al showed that vessel size (VS) 
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is highly related to hypoxia, and Epithelial Growth Factor (EGF) pathway and Epithelial-to-

Mesenchymal-Transition (EMT) were strongly linked to CBV (45). CBV and CBF-related 

radiomic features have shown to be significantly related to upregulation of PDGF, EGFR, 

and VEGF pathways and downregulation of PTEN pathway in a study by Kong et al (46).

Metabolic Function

Only a handful of exploratory studies have investigated MRS in association with genomic 

data. In a study on 20 glioblastoma patients, Heiland et al (47) explored the relationship 

between the concentration of metabolites derived from MRS and gene expression pathways. 

They found that gene expression pathways associated with oligodendrocytic and neural 

development were significantly correlated to nNAA metabolite (NAA in the tumor 

normalized to the contralateral healthy tissue); high nCr was found to be correlated to 

proneural glioblastoma subtype, and low nCr was related to mesenchymal subtype; nGlx 
was significantly linked to the gene expression profiles involved in hypoxia and cytoskeletal 

processes; low nGlx was associated to neural subtype, and its high value was related to the 

classical subtype. Patients with higher nNAA showed longer progression-free survival.

Hypothesis-Driven Studies

Hypothesis-driven studies on glioblastoma are carried out given a certain hypothesis, based 

on the assumption of variations of one or more genes, pathways, or molecular subtypes, and 

through exploring the relevant radio-phenotype that best represents the assumed genomics 

alteration. Glioblastoma harbors around 60 mutations, however, many of these mutations are 

only “passengers” and only a few are driver mutations (48), which will be explained further.

In what follows, we have categorized the studies based on the mutation of a gene of interest 

with a focus on the genes that are most relevant for diagnosis and/or targeted therapies, 

signaling pathways, or molecular subtypes in glioblastoma. A summary of the most 

repeatable imaging findings for molecular signatures can be found in Table 2.

Isocitrate Dehydrogenase1 (IDH1)

The IDH1 enzyme, found primarily in the cytoplasm and peroxisomes, which are cellular 

structures that process numerous molecule types, convert isocitrate to ketoglutarate. This 

leads to production of NADPH molecule, which is important for many cellular processes, 

such as producing energy, and protecting cells from harmful molecules called reactive 

oxygen species. The IDH1 gene is responsible for providing instructions for producing the 

IDH1 enzyme. The IDH1 mutation produces an oncometabolite called 2-hydroxy-glutarate 

(2-HG), which in turn affects hypoxia inducible factor 1α (HIF-1α). In glioblastoma, an 

elevation of HIF-1α is a factor in progression of tumor (49,50). IDH1 mutations are frequent 

in younger patients with grade II gliomas or secondary glioblastoma, and are generally 

found to have more favorable prognosis with increased overall and progression-free survival 

than IDH1-wildtype tumors (49–51). IDH1 status has been included in WHO 2016 

classification guidelines, due to its significant prognostic importance in stratifying gliomas.

Several radiogenomic studies have suggested connections between the IDH1 mutation with 

radio-phenotypic appearance of glioblastoma. Chang et al (52) demonstrated that small 
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regions of enhancement and larger proportion of non-enhancing tumor, cysts with low T1 
and suppressed T2-FLAIR signal intensity, and well-defined tumor margins are more 

predictive of IDH1-mutant tumors. Similarly, another research study suggested that large 

regions of NE tumor can predict IDH1 mutations (53). Hong et al (54) indicated that IDH1-

mutant patients have a larger volume of abnormality on T2w and higher ratio of the T2w to 

T1CE volumes. Additionally, higher mean nADC and longer progression-free survival was 

observed for IDH1-mutant tumors compared to wildtype. Yamashita et al (55) studied 55 

patients (11 patients with IDH1 mutations) and proposed that absolute tumor blood flow 

(derived from the CBF maps of ASL imaging), relative tumor blood flow (the ratio of CBF 
in the tumor ROI compared to contralateral normal tissue), necrosis area, and percentage of 

cross-sectional necrosis area inside the enhancing lesion (the proportional area of no 

enhancement within the largest cross-sectional area of enhancement) were significantly 

higher in the IDH1-wildtype group than in mutant group. No significant differences were 

found for minimum or mean ADC values in the enhancing regions of the tumor (T1CE 
enhancement).

With regard to tumor location, researchers have reported somewhat similar findings: In the 

work by Carrillo et al (53), IDH1 tumors occurred more in the frontal lobe, which was also 

verified by Ellingson et al (56) who showed the prevalence of IDH1-mutant tumors in the 

left frontal lobe. In a study of a mixture of different glioma grades, Altieri et al (57) 

demonstrated that IDH1 mutations occur mainly in the right hemisphere and for IDH1-
wiltype glioblastoma, temporal lobe is the main area of incidence (249 gliomas; 221 HGG 

and 28 LGG). Conversely, in another study of lower grade (199 grade II/III) gliomas on the 

lesion location for IDH1/2 and TERT mutations, Arita et al (58) reported frontal, insular and 

temporal lobes as the incidence locations of IDH1/2 mutants. Neyra et al (59) used a voxel-

based lesion symptom mapping (VLSM) analysis, and investigated the association of several 

key genes with tumor location. They found a predominance of the IDH1 mutation in the 

frontal lobe adjacent to the rostral extension of the lateral ventricles both lower grade 

gliomas and glioblastoma. Overall, IDH1 mutations seem to be more frequently occurring in 

the frontal lobe.

As mentioned earlier, 2HG is an oncometabolite that has a key role in altering the HIF1A 
levels leading to switching the tumor cell functions towards progression and malignancy. 

The IDH1 mutation leads to production of 2HG and increasing evidence supports 2HG to be 

an optimal biomarker of the IDH1 mutation. Accumulation of 2HG in the tumors with an 

IDH1 mutation can be noninvasively detected in-vivo by MRS (60–62), which is ideal 

compared to biopsy, as it does not impose any risks to the patient and can be repeated, it can 

cover different tumorous regions and consider the normal appearing brain as an internal 

reference tissue (63). This method seems to present a unique example of MR-based non-

invasive detection of a tumor biomarker that is biologically well-supported. However, 

accurate diagnosis based on this method is dependent upon proper acquisition and 

quantification methods to avoid false positive results (61,64).
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O6-methylguanine-DNA Methyltransferase (MGMT)

MGMT is a protein coding gene that encodes O6-alkylguanine DNA alkyltransferase, which 

is a DNA repair enzyme. MGMT is crucial for genomic stability and is involved in cellular 

defense against mutagenesis and toxicity from alkylating agents, which are potent 

carcinogens resulting in cell death, mutation, and cancer. Genome-wide methylation of 

MGMT may be associated with carcinogenesis and tumor progression, silencing of tumor 

suppressors such as TP53 and PTEN (65,66). Methylation of MGMT promoter occurs in 

35–45% of malignant gliomas (WHO grades III and IV) and is an important predictive 

biomarker for the patient’s response to alkylating chemotherapy in glioblastoma. 

Particularly, MGMT promoter methylation could affect the decision for adjuvant 

chemoradiotherapy and temolozomide treatment for elderly patients, as it could be too toxic 

for this patient population (67). For elderly patients with MGMT methylated high-grade 

gliomas, when temozolomide treatment was adopted, the overall survival improved and for 

unmethylated group, only radiotherapy is more efficient (68). Progression time is proposed 

to be significantly longer in patients with MGMT promoter methylation (21.9 months) 

compared to the unmethylated group (9.2 months), and pseudo-progression, which is a result 

of treatment-induced blood brain barrier disruption, is more frequent in MGMT methylated 

group. This in fact reflects the effectiveness of radiotherapy followed by temolozomide 

therapy for the patients with MGMT methylation and has shown to increase the overall 

survival in this patient group (69).

Prediction of MGMT methylation status, based on MRI, seems to be challenging but if 

successful, it will provide a worthwhile non-invasive diagnostic methodology for patient 

stratification and treatment planning, compared to biopsy. In this regard, Ahn et al (70) 

found that MGMT methylation was not significantly associated with any features on 

conventional MRI or DCE-MRI-derived Kep and Ve or DTI-derived ADC and FA. However, 

Ktrans was statistically higher in MGMT methylated group. As methylated glioblastoma 

tumors indicate more favorable prognosis, the increased Ktrans in the tumor for this group 

could be attributed to better penetration of the drugs leading to a better response to 

treatment.

Rundle-Thiele (71) indicated that minimum ADC was strongly correlated to MGMT status 

and its elevation was highly suggestive of methylation. According to Chang et al (52), for 

the MGMT methylated group, heterogeneous nodular enhancement, presence of eccentric 

cyst, higher portion of non-enhancing tumor with cortical involvement, and slight frontal 

location dominance can be observed. Texture features from T2w imaging in a work by 

Korfiatis et al (72) could predict MGMT methylation status in 155 patients with 85% 

accuracy whereas Li et al (73) built a radiomic model with an accuracy of 80% based on 

features extracted from a combination of T1w, T1CE, T2w and T2-FLAIR images for 

prediction of MGMT status in 133 patients.

Kickingereder et al (74) in a study on 181 GBM patients, reported on added value of 

radiomics to MGMT status and clinical information for improving the prediction of overall 

and progression-free survival of patients by around 10%. This was similarly verified by Bae 

et al (75).
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The most frequent location of MGMT-methylated glioblastomas seems to be the left 

temporal lobe (56,76) or the parietal lobe (57), and the MGMT unmethylated group prevail 

in the insular lobe. MGMT-methylated tumors with an IDH1 mutation mostly grows in the 

left frontal lobe (56).

Platelet-Derived Growth Factor (PDGF)

PDGFs and their receptors (PDGFRs) play a critical role in cell growth and division, blood 

vessel formation, proliferation of mesenchymal cells, cell migration, and response to 

damage. PDGF gene encodes receptor tyrosine kinases (RTKs), a type of cell surface 

receptor, which transmits signals from cell surface into the cell via signal transduction 

(77,78). Amplification of PDGF and PDGFR genes, rearrangement of PDGFR-α or 

overexpression of PDGF ligand, are the common mutations in ~10% of glioblastoma (79). 

PDGF expression has been shown to be associated with negative prognostic markers of 

glioblastoma, such as age and lack of the IDH1 mutation (11,80).

A study by Gutman et al (81) suggested that PDGFR-α could be predicted by the ratios of 

hyperintensity/total tumor volume and tumor bulk/total tumor volume on T2-FLAIR images. 

Hu et al (82) collected 81 tissue samples using a neuro-navigation biopsy procedure from 18 

GBM patients and investigated the differences between gene mutations in the enhancing 

tumor and brain around tumor based on multi-parametric MRI. PDGFR-α amplification was 

strongly linked to the texture feature belonging to discrete orthonormal Stockwell transform 

(DOST) and gray-level co-occurrence matrix (GLCM) categories, derived from isotropic 

diffusion maps (p), and moderately correlated to DOST texture on EPI+C images.

Vascular Endothelial Growth Factor (VEGF)

In glioblastoma, neo-angiogenesis is a crucial physiologic process to ensure existence of an 

adequate blood supply for proliferation, survival, and invasion of tumor cells. The VEGF 
and its receptor (VEGFR), which belong to the PDGF supergene family, is among the 

dominant pro-angiogenic factors regulating angiogenesis in gliomas. VEGF expression in 

glioblastoma occurs mostly in the vicinity of necrotic and hypoxic regions through hypoxia-

dependent and –independent mechanisms. Hypoxia is observed in the regions deprived of 

oxygen, leading to accumulation of hypoxia inducible factor-1α (HIF-1α) which activates 

several hypoxia-related genes, including VEGF. Hypoxia-independent mechanism of VEGF 
upregulation acts through dysregulated activation of mitogenic and survival pathways (83–

85). Several anti-angiogenic drugs and therapies for inhibition of VEGF(R) have been 

developed and are undergoing clinical trials or approved (bevacizumab, as an anti–VEGF-A 
humanized monoclonal antibody) for treatment of glioblastoma. However, these drugs have 

shown no benefit for improving the overall survival (86).

In a preliminary study, Diehn et al (29) showed that contrast enhancement was associated 

with the activation of tumor hypoxia genes (including VEGF). Beig et al (87,88) performed 

RNA sequencing for 21 gene expression profile which are associated with hypoxia. Three 

clusters of low, medium, and high hypoxia index were identified to be correlated with 

radiomic features. Texture features that quantify structural heterogeneity within edema 

region on T1w and T2w images, and features that represent the edges and ripples in the 
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enhancing tumor region on T2-FLAIR images were significantly associated with the 

hypoxia enrichment score.

With a different perspective about the connection between fractal features of volumetric 

contrast enhancement regions on T1CE and tumor genomics, Miller et al (89) calculated 

fractal pattern features from 39 GBMs. They showed significant correlations of high fractal 

dimension with mitochondrial respiration/ATP production pathways and increased VEGF 
expression. They concluded that the complexity of contrast enhancement represented by 

variations in fractal features is linked to the genetic pathways of a shift to glycolytic 

metabolism and VEGF expression.

Epidermal Growth Factor Receptor (EGFR)

EGFR is a cell surface protein and a transmembrane tyrosine kinase receptor, present in 

epidermal cells, and is a key factor in regulating cell division and death. EGFR gene encodes 

the EGFR protein to extend the membrane for one end to remain inside and the other to 

project outside. This allows the protein to attach to ligands for receiving signals helpful for 

the cell to respond to the environment (90), which follows by activation of a series of 

intracellular signaling cascades influencing apoptosis, angiogenesis, and invasion.

Overexpression or amplification of EGFR gene is a feature of more aggressive primary 

glioblastoma (approximately 60%) and is less frequent in secondary glioblastoma (~10%) 

(91). The most common mutant of EGFR is called variant three (EGFRΔIII, or EGFRvIII), 
which results from deletion of exons 2 to 7 of the EGFR gene. This mutation has been 

suggested to be crucial in gliomagenesis and causes increased proliferation, motility, 

aggressiveness and resistance to therapy for tumor cells (92,93).

Targeting EGFR has shown satisfactory outcomes for several cancers such as colorectal 

cancer, non-small cell lung cancer, and pancreatic cancer. While being a ‘signature 

molecule’ for glioblastoma, the reason behind unsuccessful application of EGFR targeting 

drugs is still undetermined. It is suggested that the failure of EGFR-targeting therapies is 

attributed to drug delivery issues, numerous adaptive mechanisms, alternate pathway 

adaptation and less relevance in later stages of the disease (94,95).

EGFR amplification/overexpression occurs mostly in the infiltrating edges and is a factor for 

upregulating the genes that play a role in glioblastoma invasiveness (96,97). Thus, from an 

MRI standpoint, the infiltrating tumor sub-regions, especially in the edema, seem to harbor 

relevant radiographic signatures to EGFR amplification/overexpression. In 2005, Aghi et al 

(98) examined 75 patients with glioblastoma and found an increased value for T2 (high 

intensity) to T1 enhancement ratio, and fuzzier borders for tumors with EGFR amplification. 

This alteration can produce peritumoral edematous/tumor-infiltrated tissue and angiogenesis, 

facilitating tumor invasion into the surrounding tissue. This can be further explained by the 

less sharpness of tumor borders indicating an indefinite border between active tumor and the 

peritumoral edematous/tumor-infiltrated tissue. In consistency, Bosnyak et al (99) suggested 

a lower T1 contrast volume and lower T1/T2 volume for tumors with EGFR amplification. 

Diehn et al (29) showed that EGFR overexpression is significantly associated with higher 

ratio of CE volume to necrotic core volume. Conversely, Gutman et al (81) found that the 
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necrosis/CE ratio was significantly higher in EGFR mutants. In a research by Bale et al 

(100), higher diffusion restriction was observed in tumors with EGFR amplification while 

lesion enhancement was not specific for EGFR amplification.

EGFR alterations are linked to changes in neo-angiogenesis and can be captured by MR 

perfusion-derived parameters. Arevalo-Perez et al (101) tested 82 glioblastoma tumors with 

known status of EGFRvIII using DCE-MRI, and concluded that patients with EGFRvIII 
mutations showed increased relative plasma volume and Ktrans. Gupta et al (102) indicated 

that glioblastoma with EGFR amplification had higher rCBV and lower PSR, and those with 

EGFRvIII mutation had higher median rPH than the wildtypes.

Intra-tumoral spatial variation of the EGFR mutation has been explored in a few studies. 

Analysis of biopsy samples collected intra-operatively from CE tumor and NE tumor regions 

by Hu et al (82) demonstrated that EGFR amplification is more prevalent in the CE tumor 

compared to the NE regions and it significantly correlates with texture features on rCBV 
maps (indicative of microvessel volume and angiogenesis) and a few features based on T2w 
images (reflective of tissue water and edema). Bakas et al (103) proposed a peritumoral 

heterogeneity index derived from DSC-MRI to characterize peritumoral infiltration and 

vascularization patterns in the close and distant regions to the CE tumor, and showed that 

this index serves as a non-invasive imaging signature for predicting EGFRvIII status.

In a machine learning approach and using multi-parametric MR images, Akbari et al (104) 

discovered that EGFRvIII mutant group exhibit higher rCBV and PH scores associated with 

elevated neo-angiogenesis, lower water concentration based on T2-FLAIR, and lower ADC 
value related to dense and non-necrotic regions. Furthermore, they found that EGFRvIII 
mutants occur more frequently in the frontal and parietal lobes while the wildtype tumors 

are mostly located in the temporal lobe (Fig. 2). This finding was earlier reported by Bilello 

et al (105), who found that EGFRvIII mutations are more prominent in the frontal lobe as 

compared to the wildtype tumors, which prevail in the right frontotemporal region. However, 

other findings about location of tumors with EGFR amplification or EGFRvIII mutation are 

contradictory with the aforementioned studies. For example, Ellingson et al (56) showed that 

tumors with EGFR amplification or EGFRvIII mutation occur most frequently in the left 

temporal lobe.

Phosphate and Tensin Homolog (PTEN)

PTEN is a tumor suppressor gene that maps to the chromosomal region 10q23 and regulates 

cell division to avoid uncontrolled or rapid proliferation. It inhibits the growth factor signals 

from passing through the PI3K/AKT signaling pathway. The encoded PTEN enzyme makes 

modifications to other proteins and lipids for removing phosphate groups. Furthermore, it 

triggers apoptosis process, plays a role in cell migration, adhesion of cells to surrounding 

tissue, angiogenesis, and possibly helps in maintaining the genetic information of the cell. 

The aforementioned processes lead to the inhibition of excessive cell growth and tumor 

formation (90). In most of the cancers, PTEN loss or downregulation is one of the most 

frequent mutations and has been suggested to be an early phenomenon in glioblastomas 

(106). Some studies suggest that the PTEN mutation is linked to poor survival in patients 
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with glioblastoma (107,108). PTEN loss is a rare incident in lower grade tumors, rather, it is 

a sign of tumor progression into a more malignant form (108).

So far, PTEN has not been considered a therapeutic target individually. Early studies on anti-

proliferation therapy drugs suggested that EGFRvIII-mutant glioblastoma responds to EGFR 
inhibitors when their PTEN was intact (109). Only recently, researchers have found a 

mechanism of resistance to therapies, i.e. ionizing radiation and chemotherapy, which is 

moderated by phosphorylation of PTEN on tyrosine 240 (pY240) by FGFR (110). Blocking 

Y240 phosphorylation in glioblastoma models in mice showed to induce radiation sensitivity 

and increase survival.

Most of the few studies investigating imaging-PTEN mutation have been unsuccessful in 

indicating any radio-phenotype that can discriminate the glioblastoma with the PTEN 
mutation from the wildtype group (41,111,112). The only study with notable results seems 

to be the one carried out by Hu et al (82), where in a multi-parametric MRI study of 81 

tissue samples, collected by a neuro-navigation biopsy procedure from 18 GBM patients, 

strong correlation between PTEN loss and a texture category called local binary patterns 

(LBP) on T2w images was shown. Furthermore, it was suggested that the loss or deletion of 

PTEN was more common in the CE tumor tissue samples compared to brain around tumor 

(or the NE tumor component).

The tumors with a lack of loss of PTEN (PTEN wildtypes) have been reported to occur most 

frequently in the left frontal lobe and the tumors with PTEN loss had a high likelihood of 

appearing in periventricular white matter regions near the posterior aspect of the left lateral 

ventricle (56), although this has not been confirmed by other researchers (59).

Signaling Pathways

The alterations such as deletions, amplifications or other mutations in glioblastoma impact 

genes that function in certain signaling pathways that control the oncogenesis processes and 

orient the mutations within wider signaling networks that further support the progression of 

cancer (48). Description of all signaling molecules and pathways involved in glioblastoma is 

out of scope of this paper. However, it is worthwhile to mention that the most frequently 

altered signaling pathways in glioblastomas are RTK/PTEN/PI3K (signal transduction), p53 
(stress response), and Rb1 (cell cycle control) pathways (109,113).

Different signaling pathways have been tested against imaging traits. Liu et al (114) 

identified an angiogenic subgroup of glioblastoma, in which pathways associated with 

angiogenesis and hypoxia are activated. These patients showed a significantly longer 

survival when treated with anti-angiogenic therapies, suggesting a benefit of this targeted 

therapy for this patient subgroup. It has been suggested that radiologically-identified habitats 

(from a combination of low/high signal intensities on T1w/T1CE/T2w/T2-FLAIR images) 

could relate to pathways and cellular processes such as phosphorylation of STAT-1 and 

natural killer cell activity (115). The features quantifying the presence of edges, spots, and 

ripples (Law energy features) from the CE tumor component showed the best performance 

for predicting the response of glioblastomas to chemo-RT treatment and were significantly 
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associated with PI3K/AKT/mTOR and apoptosis signaling pathways. The former pathway is 

involved in cell proliferation and survival, and the latter with cell death (116).

Molecular Subtypes

Gene expression profiling has revealed a convergence of the subtypes of glioblastoma into 

four expression-based molecular categories, namely classical, neural, proneural, and 

mesenchymal subtypes with somatic alterations (35). PDGFRA amplifications and IDH1 
and TP53 mutations were most frequently found in the proneural group, EGFR alterations 

were mostly present in the classical group, and NF1 abnormalities were mainly categorized 

with mesenchymal GBM (35). These glioblastoma subtypes respond differently to 

aggressive therapies and the survival benefit of the patient from these therapies varies based 

on these molecular classes. The mesenchymal and classical subtypes benefit the most from 

the aforementioned therapies than the proneural group.

Radiogenomic studies have shown differences in the imaging features among different 

molecular glioblastoma subtypes and have supported the hypothesis of specific phenotypic 

appearance of each subtype on MRI. Volume of CE tumor, volume of central necrosis, 

combined volume of CE and central necrosis, and the ratio of T2-FLAIR to CE and necrosis 

were demonstrated to be significantly different in mesenchymal subtype of glioblastoma, as 

compared to non-mesenchymal subtypes. The best predictor of mesenchymal subtype has 

been indicated to be low volume ratio of T2 hyperintensity to contrast enhancement and 

central necrosis (117). Proneural glioblastomas seem to appear with a significantly lower 

level of CE (111,118). The mesenchymal subtype indicates lower level of non-enhanced 

tumor compared to other subtypes (111). This finding has further been supported in other 

studies that report the mesenchymal subtype to be significantly correlated with minimum 

intensity in the edema region, the classic subtype to be associated with edge sharpness and 

intensity within necrosis and peritumoral edematous/tumor-infiltrated regions, in the 

classical tumors compared to mesenchymal subtype, lower intensity in the edematous/tumor-

infiltrated region has been observed (119). Accordingly, features of edge complexity have 

shown to significantly differentiate between mesenchymal and classical molecular subtypes 

(120). The edematous/tumor-infiltrated volume and total tumor volume have been suggested 

as the best predictors of glioblastoma molecular subtypes (40).

None of the rCBVmean or rCBVmax parameters calculated from DSC-MR images within the 

contrast-enhanced part of the lesion were correlated with the molecular subtypes. However, 

the combination of molecular classification with rCBVmean could be highly predictive of the 

patient’s overall survival (121). The added value of rCBV in the NE region (rCBVNER) of 

the tumor to morphologic, clinical, and genomic markers for predicting the overall survival 

has been sought and shown to increase the predictive performance (122).

CONSIDERATIONS AND CHALLENGES OF RADIOGENOMIC STUDIES

Radiogenomic studies intend to contribute to overcoming the current issue of tissue 

sampling error, as they can radiographically assess the whole tumor extent. Nevertheless, 

there are multiple challenges that the scientific community should be taking into 
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consideration, in order to lead to more repeatable, clinically relevant, and hence more 

impactful results.

Need for Ample and Diverse Data

Ample and, importantly, diverse data are required to allow identification of robust radio-

phenotypic patterns of specific molecular characteristics and produce generalizable 

biomarkers. Undeniably this need becomes more apparent with the advent of deep learning 

methodologies, which need a vast amount of data to learn meaningful patterns. Such big 

numbers and diversity cannot be found within a single institution and, currently, can only be 

found in retrospective datasets pooled across multiple institutions. There are a few public 

multi-institutional imaging datasets available via The Cancer Imaging Archive (TCIA, 

www.cancerimagingarchive.net) (123) that describe primarily data of standard clinical 

practice, as well as some clinical trial data, with corresponding molecular characterizations 

available in the National Cancer Institute’s Genomic Data Commons portal (NCI GDC, 

https://portal.gdc.cancer.gov/), as well as corresponding comprehensive proteomic data in 

the Clinical Proteomic Tumor Analysis Consortium (CPTAC, proteomics.cancer.gov) (124). 

Results of various existing studies have been made available through the “Analysis Results” 

dashboard of TCIA website (https://wiki.cancerimagingarchive.net/display/DOI/TCIA

+Analysis+Results), enabling future studies to avoid repetition of the efforts and allow 

reproducibility. An example of such publicly-available results is the expert annotations of 

glioblastoma sub-regions (125), which have formed the ground truth for the data of the 

TCGA-GBM (126) and TCGA-LGG (127) collections included in the International brain 

tumor segmentation (BraTS) challenge (125,128). However, data of standard clinical 

practice are typically heterogeneous in their acquisition protocol (in terms of both the type 

of modalities used and their resolution), as well as in the course of treatment followed, 

which make the data size smaller after inclusion criteria and appropriate curation applies. On 

the other hand, imaging data from clinical trials follow a standardized acquisition protocol 

(129), albeit more difficult to be shared publicly due to data-ownership concerns.

Data Processing and Radiographic Feature Extraction

Various data processing routines and varying parameterization of computational methods 

add to the challenge of identifying ample and diverse data, as further sources of variation in 

quantitative analyses. In favor of reproducibility, appropriate comprehensive description of 

the methodological approaches used in radiogenomic studies, and their parameterization, 

should be at least documented if not distributed as open source implementations. This has 

been the primary aim of the international multi-institutional effort described by the Image 

Biomarker Standardization Initiative (IBSI) (130). IBSI attempts to appropriately summarize 

the mathematical formulation of such computational parameters (e.g., texture features), as 

well as document the minimum acceptable parameters that should be reported when such 

parameters are used in scientific studies, while accounting for the input modality.

The overarching goal of such methodological approaches is to extract comprehensive sets of 

computational parameters (i.e., radiographic features) capturing both visual and sub-visual 

cues of the underlying tissue structure and reflecting biological pathophysiology. The two 

main categories of features that are typically considered are based either on conventional 
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radiomics or deep learning. Conventional radiomics have been primarily described by IBSI 

(130). The underlying principle of deep learning-based features is to learn patterns from 

large datasets and utilize them, for example, 1) as attention maps (131,132) to adjust the 

classifier weights on particular image regions, 2) as additional input modalities, and 3) 

through transfer learning (133).

We note that numerous radiogenomic studies have been implementing well-known 

parameters for their individual studies. In favor of reproducibility, multiple open-source 

software toolkits have been developed and made available, facilitating the extraction of 

various quantitative image characteristics and offering the potential for harmonized 

processing pipelines. Example of such software tools include, but are not limited to, 3D 

Slicer (www.slicer.org) (134), PyRadiomics (www.radiomics.io/pyradiomics.html) (135), 

and the Cancer Image Phenomics Toolkit (CaPTk, www.cbica.upenn.edu/captk) (136).

Curse of Dimensionality

It is commonly observed that the number of radiographic features can be significantly larger 

than the number of subjects involved in a study. This is expected to lead to a well-known 

issue in the domain of machine learning, overfitting the data used to train a machine-

learning-based biomarker, therefore resulting to non-generalizable results. This is not to say 

that the extraction of radiographic features should be limited, as the more comprehensive the 

panel of extracted radiographic features, the more comprehensive the characterization of the 

region of interest. Nevertheless, this “curse of dimensionality” raises the need for 

appropriate cross-validation and feature selection methods. Cross-validation is a well-

established way to provide unbiased performance estimates of a biomarker, quantitatively 

validate its generalization performance, and enable analysis of a given dataset as if 

independent retrospective and prospective cohorts existed, but in a more statistically robust 

manner by randomly permuting across the provided dataset (137). Feature selection results 

in ranking a large number of extracted features based on their descriptive/predictive power 

on the given dataset, while they account for feature collinearities and therefore redundancies.

FUTURE DIRECTIONS

Most radiogenomic studies have focused on predicting individual molecular characteristics 

from pre-operative baseline scans. Taking into consideration that the concept of precision 
medicine is defined by precise molecular tumor characterization, these studies may be 

considered redundant for actual patient management primarily for two reasons. First, in 

many cancers, we note disruptions of multiple pathways (therefore associative multi-

mutational status) for a single patient, instead of an individual molecular characteristic. 

Second, such radiogenomic studies revolve around precision medicine, whereas in most 

situations precise tumor characterization will occur anyway, histopathologically, after 

radiographically identifying a brain tumor suspected of being a glioblastoma.

On the other hand, it has become apparent that glioblastoma molecular characteristics show 

spatiotemporal heterogeneity, described by either loss of mutant expression at the time of 

progression (138) or after treatment, both following standard chemo-radiation (139) and 
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peptide vaccination (140) creating an even further complicated picture (141). This is where 

radiogenomic studies could contribute.

Taking all the above into consideration, there is a need for future directions of radiogenomic 

studies focusing on the concept of personalized/adaptive medicine, instead of revolving 

around precision medicine. This would allow to potentially determine if baseline (developed 

in the primary tumor) radio-phenotypes are preserved in follow up scans irrespective of 

treatment, thereby recognizing the historic molecular profiling of recurrent tumors, or if 

there are radio-phenotypical variations over time that would allow the non-invasive 

longitudinal monitoring of mutational status, thereby evaluating treatment response.

Exemplar computational studies have shown promise on training machine-learning-based 

models across multiple institutions without sharing patient data (142,143). Such distributed 

learning approaches could be investigated further in radiogenomic studies, thereby 

addressing the issue of identifying ample and diverse datasets while also overcoming the 

various data-ownership concerns, and facilitating the exploitation of the full potential of 

homogenized clinical trial data.

Finally, the bi-disciplinary radiogenomic studies started to expand naturally towards 

synergistic analyses of radiographic, histopathologic, genetic, and clinical information. Such 

radio-patho-genomic analyses should speed up scientific discovery and lead to quantitative 

integrated evaluations of patient data on multiple scales, with the intention of contributing 

towards improving personalized and precision medicine. These integrated diagnostic 

approaches could contribute on the specificity of radio-phenotypes associated to distinct 

molecular signatures, that current radiogenomic studies have proved only for 2HG MRS 

(64).

CONCLUSION

Radio-phenotypical (MRI) signatures can assist in tackling the spatiotemporal heterogeneity 

concern, as well as in detecting properties relating to tumor structure, perfusion/neo-

angiogenesis, cellular distribution/density, and metabolic processes. Mounting ongoing 

research, investigating the connections between radiographic signatures and underlying 

genetic changes in glioblastoma, have supported the idea that these alterations are followed 

by radio-phenotypic manifestations. However, current findings are substantially divergent. 

The reason lies in a) inter-patient heterogeneity of glioblastoma, b) the lack of large cohorts 

that can represent this heterogeneity, and c) missing standardized multi-institutional 

guidelines for systematic image acquisition and analysis. With maturation of radiogenomic 

studies through incorporation of machine-learning methods for systematic and reproducible 

methods, there is a hope to find specific radio-phenotypic models that reveal the Achilles 

heel of glioblastoma and encourage personalized targeted therapies.
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ABBREVIATIONS

2HG 2-hydroxy-glutarate

ADC Apparent Diffusion Coefficient

ASL Arterial Spin Labeling

(r)CBF (Regional or Relative) Cerebral Blood Flow

(r)CBV (Regional or Relative) Cerebral Blood Volume

CE Contrast-Enhancing Tumor

Cho Choline metabolite

CNS Central nervous system

Cr Creatine metabolite

DCE-MRI Dynamic Contrast-Enhanced MRI

DNA Deoxyribonucleic Acid

DSC-MRI Dynamic Susceptibility-weighted Contrast-enhanced MRI

DTI Diffusion Tensor Imaging

DWI Diffusion Weighted Imaging

EGF(R) Epidermal Growth Factor (Receptor)

EPI (+C) Echo-Planar Imaging (+Contrast)

FA Fractional Anisotropy

FGFR Fibroblast Growth Factor Receptor

FLAIR Fluid Attenuated Inversion Recovery

GBM Glioblastoma (formerly known as Glioblastoma 

Multiforme)

Glx Glutamate and Glutamine metabolite

HIF1A Hypoxia Inducible Factor 1 Subunit Alpha

IDH Isocitrate DeHydrogenase

Kep flux rate constant

Ktrans The volume transfer constant

MD Mean Diffusivity

MGMT O6 Methylguanine-DNA Methyltransferase
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miRNA microRNA

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

NAA N-acetylaspartate metabolite

NE Non-enhancing Tumor

NF1 Neurofibromin 1

NGS Next Generation Sequencing

PDGF(R) Platelet-Derived Growth Factor (Receptor)

POSTN Periostin gene

PH Peak Height

PI3K Phosphoinositide 3-kinase

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-Kinase Catalytic 

subunit Alpha

PSR Percentage of Signal Recovery

PTEN Phosphatase and Tensin homolog

RNA Ribonucleic Acid

RTK Receptor Tyrosine Kinases

SVZ Subventricular Zone

T1CE Contrast-Enhanced T1-weighted MRI

T1w T1-weighted MRI

T2w T2-weighted MRI

TERT Telomerase Reverse Transcriptase

TP53 (or p53) Tumor protein p53

Ve extracellular volume ratio

VEGF(R) Vascular Endothelial Growth Factor (Receptor)

VS Vessel Size

WES Whole Exome Sequencing

WGS Whole Genome Sequencing

WHO World Health Organization
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Fig. 1. 
A representation of the proper workflow of a radiomic study, which includes the following 

steps: 1) image acquisition, 2) image processing, including noise/artifact reduction, intensity 

and/or orientation standardization, co-registration of the multi-parametric MRI scans, 3) 

region-of-interest definition using manual annotation or (semi-)automatic segmentation, 4) 

feature extraction based on human-engineered (conventional radiomics) or deep learning 

approaches, and 5) data analysis, involving machine/deep learning methods for feature 

selection, classification, and cross-validation. Radiogenomics studies should ideally follow 

the same workflow, with genomics of glioblastoma as their endpoint.
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Fig. 2. 
An illustration of descriptive characteristics of mutant EGFRvIII (EGFRvIII+) tumors 

(adopted from ref. (104) with permission from the authors and the publisher (Oxford 

University Press, License No. 4636511399697)).
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