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Many patients with chronic cerebrovascular disease are 
at increased risk of ischemic stroke because they have 

poor cerebrovascular reserve (CVR), defined as the abil-
ity to increase cerebral blood flow (CBF) in response to 
a vasodilatory stimulus (1). Clinically, CVR is commonly 
measured by using paired CBF measurements before and 
after a vasodilator drug, typically acetazolamide (2).

Acetazolamide is generally safe but contraindicated in 
patients with sulfa allergies or severe kidney and liver dis-
ease (2). Furthermore, patients may present with stroke-
like symptoms during the test. These symptoms, although 
transient and rare, unsettle patients and medical staff. Re-
ported reactions include common mild adverse reactions 
such as headache, flushing, and malaise (3), and rare severe 

adverse events including pulmonary edema, Stevens-John-
son syndrome, and anaphylaxis (2,4). Finally, avoiding an 
intravenous medication makes the test easier to adminis-
ter. Assessing CVR without acetazolamide injection is thus 
valuable for the clinical evaluation of patients with cerebro-
vascular disease.

Several studies have shown that CVR in patients with 
cerebrovascular disease may be predicted from baseline 
perfusion or structural images, including mean transit time 
and time to maximum from dynamic perfusion CT and 
MRI; arterial transit time (ATT) from arterial spin labeling 
(ASL); and the so-called ivy sign on T2 fluid-attenuated 
inversion-recovery images (5–8). Most of these studies 
used a linear model with single input to make predictions. 
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Background: Cerebrovascular reserve (CVR) may be measured by using an acetazolamide test to clinically evaluate patients with cere-
brovascular disease. However, acetazolamide use may be contraindicated and/or undesirable in certain clinical settings.

Purpose: To predict CVR images generated from acetazolamide vasodilation with a deep learning network by using only images 
before acetazolamide administration.

Materials and Methods: Simultaneous oxygen 15 (15O)–labeled water PET/MRI before and after acetazolamide injection were retro-
spectively analyzed for patients with Moyamoya disease and healthy control participants from April 2017 to May 2019. Inputs to 
deep learning models were perfusion-based images (arterial spin labeling [ASL]), structural scans (T2 fluid-attenuated inversion-
recovery, T1), and brain location. Two models, that is, 15O-labeled water PET cerebral blood flow (CBF) and MRI (PET-plus-MRI 
model) before acetazolamide administration and only MRI (MRI-only model) before acetazolamide administration, were trained 
and tested with sixfold cross-validation. The models learned to predict a voxelwise relative CBF change (rCBF) map by using 
rCBF measured with PET due to acetazolamide as ground truth. Quantitative analysis included image quality metrics (peak 
signal-to-noise ratio, root mean square error, and structural similarity index), as well as comparison between the various methods 
by using correlation and Bland-Altman analyses. Identification of vascular territories with impaired rCBF was evaluated by using 
receiver operating characteristic metrics.

Results: Thirty-six participants were included: 24 patients with Moyamoya disease (mean age 6 standard deviation, 41 years 6 12; 
17 women) and 12 age-matched healthy control participants (mean age, 39 years 6 16; nine women). The rCBF maps predicted 
by both deep learning models demonstrated better image quality metrics than did ASL (all P , .001 in patients) and higher cor-
relation coefficient with PET than with ASL (PET-plus-MRI model, 0.704; MRI-only model, 0.690 vs ASL, 0.432; both P , .001 
in patients). Both models also achieved high diagnostic performance in identifying territories with impaired rCBF (area under 
receiver operating characteristic curve, 0.95 for PET-plus-MRI model [95% confidence interval: 0.90, 0.99] and 0.95 for MRI-only 
model [95% confidence interval: 0.91, 0.98]).

Conclusion: By using only images before acetazolamide administration, PET-plus-MRI and MRI-only deep learning models pre-
dicted cerebrovascular reserve images without the need for vasodilator injection.
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fined as an absolute PET CBF change in cerebellum of less 
than 10 mL/100 g/min).

PET/MRI Acquisition
Images were acquired with a simultaneous time-of-flight 3.0-T 
PET/MRI scanner (Signa; GE Healthcare, Waukesha, Wis). 
Each participant underwent two simultaneous PET/MRI per-
fusion scans, at baseline and 15 minutes after intravenous ad-
ministration of acetazolamide (15 mg/kg with a maximum of 
1 g).

Static PET images were reconstructed from 2 minutes of 
detected counts after injection. The reconstruction used time-
of-flight ordered subset expectation maximization and included 
corrections for decay, scatter, random counts, dead time, and 
point-spread function compensation. MRI attenuation correc-
tion was performed with the vendor’s atlas-based method.

Each MRI perfusion scan included two pseudocontinuous 
ASL scans and a phase-contrast MRI scan. Standard single-delay 
ASL with consensus parameters (11) and a Hadamard-encoded 
multidelay ASL sequence (12) were obtained. Phase-contrast 
MRI was performed to measure total brain blood flow at one 
slice in the cervical region perpendicular to the internal carotid 
and vertebral arteries. T1-weighted three-dimensional high-spa-
tial-resolution images and T2-weighted fluid-attenuated inver-
sion-recovery images were acquired for all participants. Detailed 
MRI parameters are listed in Table E1 (online).

CBF Quantification
Quantitative PET CBF maps were generated by combin-
ing phase-contrast MRI and 15O-labeled water PET with a 
method that takes the spatial distribution information from 
the PET maps and scales it to whole-brain mean CBF mea-
sured with simultaneous phase-contrast MRI (13). Quantita-
tive ASL CBF maps were generated from the ASL difference 
images with proton density–weighted reference images. For 
single-delay ASL, CBF maps were quantified by using the 
single-compartment model (11). For multidelay ASL, ATT 
maps were measured by using the signal-weighted delay ap-
proach and ATT-corrected CBF maps were generated from 
the two-compartment model (12).

Image Processing
All images were coregistered to T1-weighted structural im-
ages by using Statistical Parametric Mapping software (version 
SPM12; Wellcome Centre, London, United Kingdom) and 
then normalized to the Montreal Neurologic Institute tem-
plate by using Advanced Normalization Tools (https://stnava.
github.io/ANTs) (14). Relative CBF change due to vasodila-
tion (rCBF) was defined as the difference between CBF after 
acetazolamide and CBF before acetazolamide, normalized to 
each participant’s mean CBF change within the cerebellum, 
based on a spatially unbiased atlas template of human cerebel-
lum (15), to account for individual differences in global CBF 
augmentation. All rCBF maps were smoothed with a 10-mm 
Gaussian filter. The rCBF maps measured with PET (PET 
rCBF) and rCBF maps measured with multidelay ASL 
(ASL rCBF) were calculated.

Abbreviations
ASL = arterial spin labeling, ASL rCBF = rCBF measured with mul-
tidelay ASL, ATT = arterial transit time, AUC = area under receiver 
operating characteristic curve, CBF = cerebral blood flow, CVR = cere-
brovascular reserve, PET rCBF = rCBF measured with PET, rCBF 
= relative CBF change, RMSE = root mean square error

Summary
Deep learning analysis of oxygen 15–labeled water PET or MRI alone 
before acetazolamide administration was applied to create images of cere-
brovascular reserve without the need for pharmacologic vasodilation.

Key Results
 n Both PET-plus-MRI and MRI-only deep learning models used 

images before acetazolamide administration to successfully predict 
cerebrovascular reserve, with oxygen 15–labeled water PET maps 
as a reference.

 n Both models had higher correlation with PET than did arterial 
spin labeling (ASL)–measured cerebrovascular reserve (PET-plus-
MRI model, 0.704; MRI-only model, 0.690 vs ASL, 0.432; both 
P , .001).

 n Both models achieved high diagnostic performance in identifying 
regions with impaired cerebrovascular reserve (area under receiver 
operating characteristic curve, 0.95 for PET-plus-MRI model and 
0.95 for MRI-only model).

However, multiple other factors may also affect CVR, including 
the severity of arterial stenosis, baseline CBF, old strokes, and 
brain location. Deep learning, which recently has shown remark-
able performance in the reconstruction and generation of brain 
images (9), provides a potential method to construct a multivari-
ate nonlinear model to improve prediction of CVR.

Moyamoya disease is a progressive occlusive arteriopathy 
of the anterior circulation that occurs primarily in young 
patients without other comorbidities (10). As such, these 
patients are ideal study participants to investigate severely 
altered cerebral hemodynamics. In this study, we obtained 
simultaneous oxygen 15 (15O)–labeled water PET/MRI in 
patients with Moyamoya disease and healthy control partici-
pants, including PET and ASL MRI scans of brain perfusion. 
We hypothesized that deep learning models can predict vox-
elwise CVR from baseline (ie, before acetazolamide adminis-
tration) structural and perfusion images by using PET CVR 
as the ground truth. Once validated, such an approach would 
allow CVR estimation in settings where pharmacologic vaso-
dilation is either contraindicated or undesirable.

Materials and Methods

Participants
This Health Insurance Portability and Accountability Act–
compliant retrospective study was approved by our institu-
tional review board. Written informed consent was obtained 
from all participants. From April 2017 through May 2019, 
we recruited consecutive patients with Moyamoya disease 
through the Neuroscience Clinics and age-matched healthy 
control participants. Inclusion criteria included age of 15 
years or older and ability to comply with all studies. Exclu-
sion criteria was poor CVR response to acetazolamide (de-
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images, which provide information of tissue composition 
and presence of old strokes; and (d) the voxel coordinate 
in Montreal Neurologic Institute template space, which  
provides information on brain location. In the second model 
(MRI-only model), we excluded the baseline PET CBF map 
from the inputs. The model architecture was a two-dimen-
sional encoder-decoder with a U-Net structure (16), shown 
in Figure 1. In brief, each encoder layer consists of three con-
volutional layers with 3 3 3 kernels, batch normalization, 

Deep Learning Model Implementation
We constructed two deep learning models to predict ground 
truth PET rCBF. The first model (PET-plus-MRI model) in-
cluded 12 inputs from both baseline PET and MRI, including  
(a) baseline PET CBF; (b) baseline ASL: CBF and mean 
ASL difference signal from single-delay and multidelay  
ASL, proton density–weighted images from single-delay 
ASL, and ATT from multidelay ASL; (c) structural scans: 
T1-weighted and T2 fluid-attenuated inversion-recovery 

Figure 1: (a) Image shows conceptual framework of study. Two deep learning models combined multiple inputs from baseline PET and MRI 
to predict relative cerebral blood flow (CBF) change (rCBF) after acetazolamide, with rCBF measured with PET (PET-rCBF) as reference. 
PET-plus-MRI model used both baseline PET and MRI inputs. MRI-only model used only MRI inputs. (b) Image shows architecture of deep learn-
ing model (PET-plus-MRI model shown for simplicity; MRI-only model would exclude baseline PET CBF map from inputs). Network components 
are color coded and labeled at bottom, and input and output image dimensions are labeled. Channel numbers in each step are shown above 
blocks. ASL = arterial spin labeling, ATT = arterial transit time, BN = batch normalization layer, CONV = convolutional layer, FLAIR = fluid-attenuated 
inversion-recovery, linear = linear layer, mASL = mean ASL difference signal, MD = multidelay, PD = proton density–weighted image, ReLU = rectifier 
linear unit, SD = single-delay, Syn-rCBF = synthetic rCBF predicted by deep learning models.
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Table 1: Demographics of 24 Patients with Moyamoya Disease and 12 Healthy Control Participants

Patient No. Sex Age (y) Stenosis or Occlusion Site Prior Stroke Prior Bypass
1 Male 30 Right M1 … …
2 Male 46 Bilateral A1, left M1 Left infarct Left bypass
3 Female 53 Bilateral A1, M1 … Bilateral bypass
4 Male 46 Bilateral M1 Right hemorrhage Bilateral bypass
5 Female 64 Bilateral A1, M1 Left infarct …
6 Female 18 Bilateral A1, right M1, P1 Right infarct …
7 Female 27 Left M1 … …
8 Female 29 Left M1 … Left bypass
9 Female 50 Bilateral A1, M1 … …
10 Female 44 Left M1 Left infarct Left bypass
11 Female 38 Right M1 … …
12 Female 57 Bilateral A1, M1 Left infarct …
13 Female 51 Bilateral A1, M1 Bilateral infarct Right bypass
14 Female 36 Bilateral A1, M1 Bilateral infarct …
15 Female 21 Bilateral M1, left A1 Bilateral infarct …
16 Female 33 Bilateral A1, M1 … …
17 Female 60 Bilateral A1, M1 … …
18 Male 53 Bilateral A1, left M1 … …
19 Female 31 Bilateral A1, M1 … …
20 Female 49 Left M1, right A1 … …
21 Female 43 Right A1, M1 … …
22 Male 32 Right M1 Right infarct …
23 Male 33 Left M1 … …
24 Male 32 Bilateral A1, M1 … …

Note.—There were 17 female patients and seven male patients (mean age 6 standard deviation, 41 years 6 12) with 16 bilateral and 
eight unilateral stenosis or occlusion sites. Ten of 24 (42%) had prior stroke and six of 24 (25%) had prior bypass. There were nine female 
healthy control participants and three male healthy control participants (mean age, 39 years 6 16). Al = first segment of anterior cerebral 
artery, M1 = first segment of middle cerebral artery, P1 = first segment of posterior cerebral artery.

Figure 2: Graphs show image quality metrics of relative cerebral blood flow change (rCBF) maps from PET-plus-MRI model, MRI-only model, and rCBF measured 
with multidelay arterial spine labeling (ASL rCBF) compared with reference PET. (a) Patients with Moyamoya disease. (b) Healthy control participants. In patients with 
Moyamoya disease, both deep learning models were better than was ASL rCBF on all three metrics. In healthy control participants, PET-plus-MRI model was better than 
was ASL rCBF in all three metrics, while MRI-only model was only better than was ASL rCBF for structural similarity index (SSIM). There was no difference between two 
models in all metrics in both patients with Moyamoya disease and healthy control participants. PSNR = peak signal-to-noise ratio, RMSE = root mean square error.
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rectified linear unit activation layer, and 2 3 2 max pooling. 
A residual connection is placed at the central layer. In the de-
coder portion, the data in the encoder layers are concatenated 
to retain high-spatial-resolution information. Finally, linear 
interpolation is performed to give the output of synthetic 
rCBF maps.

Deep Learning Model Training and Testing
All input images except ATT were normalized to the corre-
sponding whole-brain mean. ATT was normalized by 3.7 sec-
onds, which was the longest postlabel delay used. Input images 
were augmented by flipping along x and y direction The cost 
function was defined as weighted mean absolute error minus 
0.1 times structural similarity index metric (17). We weighted 
the weighted mean absolute error by threefold in voxels with 
PET rCBF less than 1, to emphasize accuracy in low CVR 
regions. We added structural similarity index metric as a per-

ceptual loss, which improves performance for image generation 
(18). Adaptive moment estimation was used as the optimization 
method. The initial learning rate was 0.0006 with a batch size 
of 160 slices and 40 epochs.

Sixfold cross-validation was used. The 36 PET/MRI data 
sets were divided into six subgroups, each consisting of six data 
sets from four patients with Moyamoya disease and two healthy 
control participants. For each fold, the data sets from five of 
the subgroups (30 data sets total) were used for training, from 
which 10% of the images were randomly selected for validation. 
This trained network was then tested on the unused subgroup 
(six data sets total). All training and testing were performed 
by using a Tesla V100 PCIe graphics processing unit (Nvidia, 
Santa Clara, Calif ). The code for the model, along with the fi-
nal trained weights from one of the folds of the cross-validation, 
are available on GitHub (https://github.com/paddington0814/
ASLCVR_model).

Figure 3: Graphs show correlation and Bland-Altman plots of relative cerebral blood flow change (rCBF) from both deep learning models and rCBF measured with 
multidelay arterial spin labeling (ASL rCBF), compared with reference PET. (a) Patients with Moyamoya disease (MMs). In patients with Moyamoya disease, both models 
and ASL rCBF correlated with rCBF measured with PET (PET-rCBF), while correlation coefficients of both models were higher than that of ASL rCBF. (Fig 3 continues).
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Detection of Impaired CVR
For each patient with Moyamoya disease, rCBF was calcu-
lated in six vascular territories (anterior, middle, and poste-
rior in each hemisphere), corresponding to two slice locations 
of the Alberta Stroke Program Early CT Score (21). Thresh-
old values of impaired PET rCBF were defined as 3 stan-
dard deviations below the mean PET rCBF values in the 
healthy control participants (Fig E1 [online]). The area under 
the receiver operator characteristic curve (AUC) was used to 
evaluate the diagnostic performance of synthetic rCBF and 
ASL rCBF at identifying territories with impaired CVR. 
A total of 144 vascular territories from the 24 patients were 
included in the analysis. Sensitivity and specificity for each 
method were calculated at the model threshold that maxi-
mized the Youden index. To explore the diagnostic perfor-
mance in a wider range, thresholds of 2 standard deviations 
and 4 standard deviations below the healthy control mean 
were also evaluated.

Assessment of Image Quality
Synthetic rCBF and ASL rCBF image quality were 
quantitatively evaluated by using root mean square error 
(RMSE), peak signal-to-noise ratio, and structural simi-
larity index metric, compared with the ground truth PET 
rCBF maps. All three metrics were calculated within the 
Montreal Neurologic Institute–based brain mask for each 
slice and averaged for each participant.

Assessment of rCBF Quantification
The rCBF was measured in 90 supratentorial cortical re-
gions of interest based on the AAL2 template in each partic-
ipant (19). Mixed-effect models adjusted for within-partic-
ipants clustering by assuming within-participant errors and 
random effects are normally distributed (20), and Bland-
Altman plots examined correlation and agreement between 
synthetic rCBF, ASL CBF maps, and the ground truth 
PET rCBF maps.

Figure 3 (continued): (b) Healthy control participants (HCs). In healthy control participants, both models correlated with PET, while ASL rCBF does not. On Bland-
Altman plots, both models showed less bias and reduced variance compared with ASL rCBF, which showed a proportional bias to rCBF values. Beta is slope of correla-
tion and r is the correlation coefficient. SD = standard deviation, Syn = synthetic, Syn-rCBF = synthetic rCBF predicted by deep learning models.
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P = .10 [control participants]). The details of image quality 
metrics are listed in Table E2 (online).

CVR Quantification Assessment
In patients with Moyamoya disease, rCBF from both deep 
learning models and ASL rCBF were all correlated with PET 
rCBF (Fig 3a), although the deep learning models had better 
correlation than did ASL rCBF (both P , .001). In healthy 
control participants, rCBF values from both models also cor-
related with PET rCBF (P , .001 [PET-plus-MRI model] 
and 0.004 [MRI-only model]), while ASL rCBF did not cor-
relate with PET rCBF (P = .49) (Fig 3b). In both groups, 
the correlation coefficients were not different between the two 
models (P = .62 [patients] and 0.95 [control participants]). On 
Bland-Altman plots, rCBF values from both models showed 
less bias and lower variance than did ASL rCBF for both 
groups. Moreover, proportional bias existed for ASL rCBF 
in both groups, showing overestimation at higher rCBF and 
underestimation at lower rCBF (Fig 3b).

Detection of Impaired CVR
Figure 4 shows the receiver operator characteristic curves and 
Table 2 shows the AUC, sensitivity, and specificity of both 
deep learning models and ASL rCBF to identify vascular 
territories with impaired PET rCBF in patients with Moy-
amoya disease. For each threshold of impaired PET rCBF, the 
AUC of both models were higher than that of ASL rCBF. The 
AUCs for PET-plus-MRI model, MRI-only model, and ASL 
rCBF were 0.95 (95% confidence interval [CI]: 0.90, 0.99), 
0.95 (95% CI: 0.91, 0.98), and 0.89 (95% CI: 0.83, 0.95) for 
a threshold of 3 standard deviations below mean in healthy 
control participants. A similar pattern was seen for milder or 
more severe CVR thresholds. The deep learning models consis-
tently outperformed ASL rCBF, even though the ASL images 
were acquired before and after acetazolamide administration 
while the deep learning models predicted CVR using images 

Statistical Analyses
The Friedman test was used to compare image quality between 
the PET-plus-MRI model, MRI-only model, and ASL methods. 
Posthoc comparison was performed by using Dunn multiple 
comparison test. The differences of correlation coefficient and 
AUC between each method were compared by using Wilcox–
Muska test (22) and DeLong test, respectively. The mixed-effect 
model analyses, Wilcox–Muska test, and DeLong test were per-
formed with Stata (version 15.1; StataCorp, College Station, 
Tex), and the other analyses were performed with GraphPad 
Prism (version 5; GraphPad Software, La Jolla, Calif ).

Results

Participant Characteristics
From the 25 patients with Moyamoya disease who completed 
all studies, response to acetazolamide failed in one patient and 
the patient was excluded. Twenty-four patients (mean age 6 
standard deviation, 41 years 6 12; 17 women) and 12 age-
matched healthy control participants (mean age, 39 years 6 
16; nine women) were included. Participant demographics are 
summarized in Table 1.

Image Quality Assessment
Figure 2 shows the image quality metrics for each method. In 
patients with Moyamoya disease, both deep learning models 
performed better than did ASL rCBF for all metrics (all P 
, .001). In healthy control participants, the PET-plus-MRI 
model outperformed ASL rCBF for all metrics (P = .003 
[RMSE], P , .001 [peak signal-to-noise ratio and structural 
similarity index metric]), while the MRI-only model was only 
better for structural similarity index metric (P = .004). No dif-
ferences in image quality were observed between the two mod-
els when comparing patients and healthy control participants 
(RMSE, peak signal-to-noise ratio, structural similarity index 
metric: P = .39, P = .39, P = .25 [patients]; P = .31, P = .10, 

Figure 4: Graphs show receiver operating characteristic (ROC) curves for identifying vascular territory with impaired relative cerebral blood flow change (rCBF). 
Threshold at 2 standard deviations (STD) below mean rCBF of healthy control participants (left). Threshold at 3 STD below mean (middle). Threshold at 4 STD below 
mean (right). Areas under ROC curve of PET-plus-MRI and MRI-only models are higher than that of rCBF measured with multidelay arterial spin labeling (ASL rCBF) at 
all three thresholds. Detailed areas under ROC curve values and diagnostic performance are listed in Table 2.
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labeling (ASL)–derived maps (correlation coefficient, 0.704 for 
PET-plus-MRI model, 0.690 for MRI-only model vs 0.432 for 
ASL; both P , .001 in patients). Both models also demonstrated 
higher or comparable diagnostic performance than did ASL to 
identify impaired cerebrovascular reserve. Furthermore, the MRI-
only model performed similarly to the PET-plus-MRI model in 
image quality, quantification accuracy, and diagnostic perfor-
mance (all P . .05 in the comparison between the two models).

Baseline perfusion parameters can predict CVR. Among 
common perfusion parameters, timing parameters from dy-
namic susceptibility contrast methods, such as mean transit time 
and time to maximum, best reflect CVR in Moyamoya disease 
and atherosclerotic steno-occlusive disease (5,23). ATT derived 
from multidelay ASL also correlates with CVR and could pre-
dict CVR impairment in unilateral steno-occlusive disease (8). 
Baseline CBF is another important factor to determine CVR. 
In patients with cerebrovascular disease, when cerebral perfusion 
pressure begins to decrease, autoregulation causes vasodilation 
to maintain CBF. Further perfusion pressure decreases cause de-
creased CBF, leading to a nonlinear relationship with CVR (24). 
Patients with decreased baseline CBF are likely to have worse 
CVR than do patients with normal baseline CBF (25). Given 
that CVR changes are expected to be nonlinear functions of per-
fusion parameters, a nonlinear data-driven method such as deep 
learning is expected to provide more accurate predictions than 
these linear predictors.

Structural imaging could also contribute valuable information 
to predict CVR. The presence of leptomeningeal collaterals, such 
as the so-called ivy sign on T2 fluid-attenuated inversion-recovery 

before acetazolamide administration only (Table 2). At the 
threshold of 3 standard deviations, sensitivity and specificity 
for PET-plus-MRI model, MRI-only model, and ASL rCBF 
were 35 of 40 (88%) and 97 of 104 (93%), 35 of 40 (88%) and 
93 of 104 (89%), and 33 of 40 (83%) and 85 of 104 (82%), 
respectively.

Image Assessment
Images from three patients with severe Moyamoya disease, 
defined as having impaired PET rCBF in any vascular terri-
tory, are shown in Figure 5. Synthetic rCBF of both models 
visually show higher image quality than ASL rCBF and are 
similar to PET rCBF. Generally, brain regions with lower 
CBF, longer ATT, and chronic infarcts on baseline images 
had lower rCBF. ASL tended to underestimate rCBF in 
regions with low PET rCBF, consistent with the propor-
tional bias on Bland-Altman plots. Figure 6 presents two pa-
tients with mild Moyamoya disease without impaired CVR 
and a healthy control participant. In mild cases, baseline CBF 
was usually preserved and ATT was not severely prolonged.

Discussion
We constructed deep learning models that combined multicon-
trast information from baseline PET and MRI to predict cere-
brovascular reserve (CVR), using simultaneously acquired oxygen 
15 (15O)–labeled water PET maps as the reference. Both models, 
whether using MRI-only model or PET-plus-MRI model before 
acetazolamide administration, had better image quality (all P , 
.001 in patients) and quantification accuracy than did arterial spin 

Table 2: Diagnostic Performance of Model Predictions and ASL for Identifying Vascular Territory with Impaired rCBF in  
24 Patients with Moyamoya Disease

Mean-2STD Mean-3STD Mean-4STD
Modality AUC* Sen (%) Spe (%) P Value AUC* Sen (%) Spe (%) P Value AUC* Sen (%) Spe (%) P Value
PET-plus-

MRI 
model

0.88 
(0.82,  
0.94)

41/58  
(71)  
[57, 82]

79/86  
(92)  
[84, 97]

P = .03† 0.95 
(0.90,  
0.99)

35/40  
(88)  
[73, 96]

97/104  
(93)  
[87, 97]

P = .09† 0.92 
(0.87,  
0.98)

27/31  
(87) 
[70, 96]

98/113  
(87)  
[79, 92]

P = .32†

MRI-only 
model

0.89 
(0.83,  
0.94)

45/58  
(78)  
[65, 87]

76/86  
(88)  
[80, 94]

P = .04‡ 0.95 
(0.91,  
0.98)

35/40  
(88)  
[73, 96]

93/104  
(89)  
[82, 95] 

P = .11‡ 0.92 
(0.88,  
0.97)

26/31  
(84) 
[66, 95]

98/113  
(87)  
[79, 92]

P = .33‡

ASL  
rCBF

0.78 
(0.70,  
0.86)

45/58  
(78)  
[65, 87]

64/86  
(74)  
[64, 83]

P = .75§ 0.89 
(0.83,  
0.95)

33/40  
(83)  
[67, 93] 

85/104  
(82)  
[73, 89]

P = .89§ 0.88 
(0.81,  
0.95)

26/31  
(84) 
[66, 95]

87/113  
(77)  
[68, 84]

P = .98§

Note.—Unless otherwise specified, data are numerators and denominators, with percentages in parentheses and 95% confidence intervals 
(CIs) in brackets. Mean-2STD indicates threshold value is defined as 2 standard deviations (STD) below mean of relative cerebral blood 
flow change (rCBF) in healthy control participants (rCBF measured with PET [PET rCBF], 0.890). Mean-3STD indicates that 
threshold value is 3 STD (PET rCBF, 0.786). Mean-4STD indicates that threshold value is 4 STD (PET rCBF, 0.683). Number of im-
paired regions of interest (n = 144) was 58 (40%), 40 (28%), and 31 (22%), respectively. Comparison between areas under receiver operat-
ing characteristic curve (AUCs) from different methods was performed with DeLong test. ASL rCBF = rCBF measured with multidelay 
arterial spin labeling (ASL), Sen = sensitivity, Spe = specificity.
* Data in parentheses are 95% CIs.
† Indicates PET-plus-MRI model versus ASL rCBF.
‡ Indicates MRI-only model versus ASL rCBF.
§ Indicates PET-plus-MRI model versus MRI-only model.
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low signal-to-noise ratio. Our deep learning models learned the 
CVR prediction from PET, which was less sensitive to transit 
delay and flow velocity changes and had higher signal-to-noise 
ratio than did ASL.

Both deep learning models showed high diagnostic perfor-
mance in identifying vascular territories with impaired CVR. 
Yun et al (29) reported areas AUCs between 0.85 and 0.94 by 
using CVR measured with single-delay ASL to identify impaired 
CVR regions measured with SPECT in patients with Moy-
amoya disease. Furthermore, Choi et al (8) used baseline ATT 
from ASL to identify impaired CVR in unilateral steno-occlusive 
disease, with an AUC of 0.89. Both our models showed compa-
rable or higher AUCs at all tested thresholds.

On the basis of a previous study showing that 15O-labeled 
water PET CBF can be predicted from only MRI by using deep 
learning, we were not surprised that including baseline PET in-
puts only led to minor improvements over the MRI-only model 
(33). This observation is of great clinical significance. Because 
only MRI is needed for prediction, this technology may be im-
plemented at sites without a PET/MRI scanner and 15O-labeled 
water capability and enable more cost-efficient and streamlined 
identification of patients at risk.

Our study had several limitations. We did not include dy-
namic susceptibility contrast maps, such as mean transit time 

and ASL arterial transit artifact, are associated with reduced CVR 
in chronic cerebrovascular disease (7,26). White matter hyperin-
tensities have lower CVR than do normal-appearing white matter 
(27) and chronic infarcts generally have poor CVR. Furthermore, 
CVR can have considerable variation among different brain re-
gions and between white matter and gray matter (28). This infor-
mation can be provided by anatomic images and template coor-
dinates but is hard to integrate into traditional regression models. 
Deep learning constructs a multimodal nonlinear model, incor-
porating the inherently high-dimensional inputs of baseline perfu-
sion, structure, and location, to predict voxelwise CVR.

The synthetic CVR maps had higher image quality and quan-
tification accuracy than did relative cerebral blood flow change 
(rCBF) measured with ASL (ASL rCBF), even though the 
latter directly measured information after acetazolamide. A pre-
vious study (29) showed that CVR measured with single-delay 
ASL significantly correlated with SPECT-based CVR in pa-
tients with Moyamoya disease. Yet, direct comparison between 
acetazolamide-induced CVR measured with ASL and with the 
reference standard PET is still lacking. Potential pitfalls in us-
ing ASL to measure CVR include arterial transit artifacts (30), 
underestimated flow in long ATT regions (31), labeling effi-
ciency changes with vasodilation (32), and poor image quality 
associated with subtraction maps of a method with inherently 

Figure 5: Representative images in three patients with severe Moyamoya disease with impaired relative cerebral blood flow (CBF) change (rCBF) measured with 
PET. Upper row: Case 1 shows a 43-year-old woman with moderate right M1 stenosis (arrow). Baseline CBF is preserved, while arterial transit time (ATT) is prolonged 
(*), in right cerebral hemisphere. Both PET-plus-MRI and MRI-only models correctly predict impaired rCBF in right cerebral hemisphere, while rCBF measured with 
multidelay (MD) arterial spin labeling (ASL) (ASL rCBF) mistakenly shows lower rCBF in left side. Middle row: Case 2 shows 18-year-old woman with occluded right 
distal internal carotid artery (double arrows). In addition to prolonged baseline ATT (*), reduced baseline PET-CBF, ASL CBF, and mean ASL difference signal (mASL) 
(open arrowheads) are noted in right cerebral hemisphere, as well as a chronic infarct on T2 fluid-attenuated inversion-recovery (FLAIR) (open arrow). Both deep learning 
models correctly predicted more severely impaired rCBF than in case 1. Lower row: Case 3 shows a 33-year-old woman with bilateral M1 occlusion (double arrows). 
Both models successfully predicted impaired rCBF from inputs of prolonged baseline ATT (*) and mildly reduced MD-mASL bilaterally (open arrowheads), PD = proton 
density–weighted image, PET-rCBF = relative CBF change measured with PET, SD = single-delay, TOF-MRA = time-of-flight MR angiography.
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these diseases are similar (although often milder than in Moy-
amoya disease), we cannot be certain that the performance of the 
deep learning models will generalize to patients not included in 
our testing cohort.

In conclusion, deep learning models can combine multi-
contrast information from baseline perfusion imaging and 
structural MRI to create PET-like cerebrovascular reserve 
(CVR) maps. The MRI-only model allows CVR prediction 
with oxygen 15–labeled water PET by using only MRI and 
without injecting acetazolamide, enabling CVR measurements 
in routine MRI settings. The ability to assess CVR without 
pharmacologic vasodilation, radiotracers, or PET scanning 
should benefit the clinical evaluation of patients with cerebro-
vascular disease.
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and time to maximum. Although these parameters have showed 
correlation with CVR, we aimed to provide a gadolinium-
based contrast agent–free protocol, given considerations such as 
nephrogenic systemic fibrosis and deposition (34). Also, using 
contrast enhancement methods before and after acetazolamide 
administration is challenging because the first dose may affect 
quantification of the second dose. Our models predicted nor-
malized rather than absolute CBF change. Although an absolute 
value is more quantitative, there are wide interindividual CVR 
variations even in healthy people, such that normalization fa-
cilitates identification of impaired CVR (35). We did not com-
pare acetazolamide to alternative nondrug CVR measurement 
that uses gas challenge (ie, CO2 inhalation or breath holding). 
However, the need for dedicated equipment such as a gas control 
system, the use of respiratory mask, visual or auditory cueing for 
paced breathing, and respiratory end-tidal CO2 monitoring may 
restrict its clinical use compared with our approach.

Finally, although this is a large study of patients with Moyam-
oya disease, our data set may not encompass the entire spectrum 
of CVR changes and thus potentially limit the generalizability 
of our model. Furthermore, cerebral atherosclerotic disease, an-
other major cause of arterial stenosis, has different pathophysiol-
ogy, collateral formation, and CVR response from Moyamoya 
disease (26,36). CVR evaluation is also important in cerebral 
small-vessel disease (27). While many ASL imaging findings in 

Figure 6: Representative images in two patients with mild Moyamoya disease without impaired relative cerebral blood flow (CBF) change (rCBF) by using PET and 
a healthy control participant. Upper row: Case 4 shows a 29-year-old woman with mild left M1 stenosis (arrow). Both models successfully predict preserved rCBF in 
bilateral hemispheres, while rCBF measured with multidelay (MD) arterial spin labeling (ASL) (ASL rCBF) shows unexpected focal defect at right frontoparietal region. 
Middle row: Case 5 shows a 46-year-old man with bilateral internal carotid artery occlusion (double arrows) after bilateral bypass surgery. Baseline PET-CBF was pre-
served, but focal defects in CBF and mean ASL difference signal (mASL) of both ASLs, arterial transit artifact in MD-mASL CBF map (open arrowhead), prolonged arterial 
transit time (ATT) (*), and old infarct (open arrow) were observed in left anterior frontal region. Both models mistakenly predicted impaired rCBF in left anterior cerebral 
artery territory, probably due to previous bypass surgery. Lower row: Case 6 shows 28-year-old male healthy control participant with normal rCBF measured with PET 
(PET-rCBF). PD = proton density–weighted image, SD = single-delay, TOF-MRA = time-of-flight MR angiography.
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