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Abstract

Background—Coronary artery calcium (CAC) predicts coronary heart disease events and is 

important for individualized cardiac risk assessment. This report assesses the interscan variability 

of CT for coronary calcium quantification using image acquisition with standard and reduced 

radiation dose protocols and whether the use of reduced radiation dose acquisition with iterative 

reconstruction (IR; “reduced-dose/IR ”) allows for similar image quality and reproducibility when 

compared to standard radiation dose acquisition with filtered back projection (FBP; “standard-

dose/FBP”) on 320-detector row computed tomography (320-CT).

Methods—200 consecutive patients (60 ± 9 years, 59% male) prospectively underwent two 

standard- and two reduced-dose acquisitions (800 total scans, 1600 reconstructions) using 320 

slice CT and 120 kV tube voltage. Automated tube current modulation was used and for reduced-

dose scans, prescribed tube current was lowered by 70%. Image noise and Agatston scores were 

determined and compared.

Results—Regarding stratification by Agatston score categories (0, 1–10, 11–100, 101–400,> 

400), reduceddose/IR versus standard-dose/FBP had excellent agreement at 89% (95% CI: 86–

92%) with kappa 0.86 (95% CI: 0.81–0.90). Standard-dose/FBP rescan agreement was 93% (95% 

CI: 89–96%) with kappa=0.91 (95% CI:0.86–0.95) while reduced-dose/IR rescan agreement was 
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similar at 91% (95% CI: 87–94%) with kappa 0.88 (95% CI: 0.83–0.93). Image noise was 

significantly higher but clinically acceptable for reduced-dose/IR (18 Hounsfield Unit [HU] mean) 

compared to standard-dose/FBP (16 HU; p<0.0001). Median radiation exposure was 74% lower 

for reduced- (0.37 mSv) versus standard-dose (1.4 mSv) acquisitions.

Conclusion—Rescan agreement was excellent for reduced-dose image acquisition with iterative 

reconstruction and standard-dose acquisition with filtered back projection for the quantification of 

coronary calcium by CT. These methods make it possible to reduce radiation exposure by 74%.
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Introduction

The presence of coronary artery calcium (CAC) by non-contrast Cardiac CT is a well-

established predictor of coronary heart disease events and may be used for individualized 

cardiac risk assessment (1–3). Interscan variability in the acquisition of CAC imaging may 

affect the proper clinical risk stratification of patients (4,5). The recent introduction of 

iterative reconstruction (IR) reduces image noise and hence permits the use of acquisition 

protocols with lower radiation exposure for CT angiography, but has not been prospectively 

validated against conventional filtered back projection (FBP) on a 320-detector row CT 

scanner (6–11).

This study assesses the reproducibility of standard- and reduced-radiation dose acquisition 

protocols, the latter combined with the use of iterative reconstruction, for CAC 

quantification. The aim was to investigate and whether CAC acquisition at reduced radiation 

dose reconstructed with IR (“reduced-dose/IR”) provides similar reproducibility compared 

to CAC acquisition at standard radiation dose reconstructed with FBP (“standard-dose/

FBP”).

Technical Methods

The study was approved by the Institutional Review Board (IRB) and Radiation Safety 

Committee of the National Institutes of Health and National Heart, Lung, and Blood 

Institute (URL: https://clinicaltrials.gov/ct2/show/NCT01621594. Unique identifier: 

NCT01621594).

200 consecutive patients prospectively underwent non-enhanced CT for coronary calcium 

quantification twice at a standard radiation dose and twice at a reduced radiation dose in 

randomized order (Figure 1). Each scan underwent reconstruction with both FBP and IR 

(AIDR3D Standard, Toshiba Medical Systems, Otawara, Japan). Standard-dose/FBP was the 

reference standard. Patient characteristics were prospectively obtained.

CT imaging was performed using a prospectively ECG-triggered axialacquisition protocol 

on a 320 × 0.5mm detector row CT (AquilionONE ViSION, Toshiba, Japan) with a gantry 

rotation time of 275ms, 0.5mm slice thickness and tube voltage of 120 kV. Data were 
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reconstructed with 3mm slice thickness and no interslice gap or overlap (12). Tube current 

was modulated through automated exposure control (Sure Exposure 3D, Toshiba, Japan).

CAC quantification used the Agatston approach and Society of Cardiovascular Computed 

Tomography (SCCT) standard methodology (12–16). Reduced- versus standard-dose scans 

were interpreted in random order in separate sessions by an experienced cardiologist. To 

quantitatively compare attenuation and image noise between the four reconstructed data sets, 

standard deviation (SD) of the region-of-interest (ROI) measurements were obtained in the 

ascending aorta (Figure 1).

Statistical analysis

Data are presented as mean ± SD or frequency (percentage) for patient characteristics with 

mean and median with 5th and 95th percentile for coronary artery calcium scores.

For each imaging method (standard or reduced radiation, reconstruction with FBP or IR), we 

assessed the intra-method scan reproducibility in multiple ways: by Bland-Altman plots of 

the difference of the two scans vs. the average of the two scans (17), reproducibility of 

categorizing scans into the following ranges: 0, 1–10, 11–100, 101–400, > 400, and absolute 

scan differences We computed the agreement percentage with a bootstrap 95% confidence 

interval and simple kappa statistic corresponding to the five categories. As in Sevrukov et 

al., we obtained 95% repeatability bounds for absolute difference of two scans as 

±2.46 × C × average of tℎe two scans (18). To reduce outlier impact, these regressions 

excluded 2 subjects (1%) with standard-dose/FBP Agatston scores > 2000.

Technical Results

Scan parameters and radiation dose are listed in Table 1. The median (5th–95th percentiles) 

radiation exposure was 74% (51%−76%) lower for low versus standard dose scans 

corresponding to overall medians of 0.37 mSv (5th, 95th: 0.15, 1.2) and for standard dose 

was 1.4 mSv (5th, 95th: 0.46, 3.2; p<0.0001).

Quantitatively examining image noise, the median value for standard-dose/FBP was 15.6 

HU (5th–95th percentiles: 11.3–22.8 HU). Reduced-dose/IR image noise was 18.1 HU 

(13.9–22.2 HU, p<0.00001), but qualitatively clinically acceptable.

A majority of patients (n=124, 62%) had CAC (Agatston score > 0) detected on standard-

dose/FBP scanning. The CAC for the cohort encompassed a wide range of standard FBP 

Agatston scores (0–4715), but 95% of scores were ≤ 1147. Baseline characteristics of the 

patient population (n=200) were representative of a wide range of cardiovascular risk (Table 

2).

Reduced-dose/IR Agatston scores were classified within the same Agatston group as 

standard-dose/FBP scores in 89% of cases (714/800) with a 95% CI of 86–92% (Figure 2). 

This corresponded to a kappa = 0.86 (95% CI of 0.81 – 0.90). For the 79 patients with zero 

CAC on both reduced-dose/IR scans or both standard-dose/FBP scans, 71/79 (90%) had a 

zero calcium score on all standard radiation dose and reduced radiation dose scans. By 

Choi et al. Page 3

J Cardiovasc Comput Tomogr. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bland-Altman analysis, the absolute differences for reduced-dose/IR and standard-dose/FBP 

were nominal at low values and increased across higher CAC scores (Figure 3(a)).

There was very good rescan agreement for repeat scans with respect to the Agatston 

categories. For reduced-dose/IR, the agreement was 91% (95% CI: 87–94%) with 

kappa=0.87 (95% CI:0.83–0.93), for standard-dose/FBP the agreement was 93% (95% CI: 

89–96%) with kappa=0.91 (95% CI:0.86–0.95), for standard-dose/IR the agreement was 

92% (95% CI: 87–94%) with kappa=0.89 (95% CI: 0.84 – 0.94), and for reduced-dose/ FBP 

the agreement was 90% (95% CI: 86–94%) with kappa = 0.88 (95% CI: 0.82 – 0.93). By 

Bland-Altman methods, the absolute differences of both reduced-dose/IR and standard-

dose/FBP rescan values were nominal at small values and increased across increasing scores 

(Figure 3 (b) and (c)).

Discussion

This study is the largest prospective, in-vivo study to evaluate interscan variability and 

reduced radiation dose CAC scoring on a 320-detector row CT scanner. The use of iterative 

reconstruction in coronary calcium imaging by CT has evolved from anthropomorphic 

phantom studies to application in patients at standard radiation dose to assess image noise 

improvement and most recently reduced radiation dose(12,19–26). The results in our study 

compare favorably to smaller studies evaluating reduced radiation dose acquisition protocols 

in combination with IR by Hecht et al. and by Matsuura et al. who tested the use of a hybrid 

IR algorithm based on Poisson denoising algorithm (iDose, Phillips, Best, Netherlands) in 

102 consecutive patients and 77 patients, respectively (25,27,28). Willemink et al. evaluated 

IR in 30 patients at four dose levels and found CAC reclassifications rates to remain within 

15% at 20% of the routine radiation dose(29).

With regard to rescan variability, several reported factors include heart rate, calcification 

density and different reconstruction algorithms (30,31). Our findings demonstrate that IR 

rescan differences are similar to prior studies. Detrano et al. examined the Multi-Ethnic 

Study of Atherosclerosis (MESA) cohort using electron-beam computed tomography 

(EBCT) and multi-detector row CT (MDCT) and found high concordance (96%, k=0.92) 

between EBCT and MDCT, but with a rescan variability of about 20% (5). Later, Ghadri, et 

al. showed that inter-scan variability was high between 64-slice MDCT and 64-slice dual 

source CT with a coefficient of variation of 15% (4). Most recently, Willemink et al. have 

shown differences in Agatston classification of up to 6.5% when CAC was performed by 

testing CAC in cadaveric hearts on 4 different platforms(32).

Several limitations for this study are to be acknowledged. This study was a single-center trial 

using one single platform. The use of 2 standard-dose and 2 reduced-dose acquisitions 

increased radiation exposure to patients, though overall radiation dose delivered was within 

an accepted limit as specified by both the IRB and NIH Radiation Safety Committee. The 

74% radiation dose reduction we used may have been conservative and an even greater 

radiation dose reduction may be achievable without a significant change in risk 

prognostication.
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In conclusion, reduced-dose image acquisition in combination with iterative reconstruction, 

when compared to standard-dose image acquisition with filtered back projection, achieves a 

median radiation dose of 0.37 mSv, resulting in comparable image quality, rescan agreement 

and risk classification while providing 74% radiation dose reduction.
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Figure 1: 
Example of CTs with a region of interest (ROI) in the ascending aorta measuring the image 

noise as the standard deviation (SD) of the ROI in Hounsfield Units (HU) in acquisitions 

with Iterative Reconstruction (IR) and Filtered Back Projection (FBP):

A: Reduced-dose acquisition with iterative reconstruction; B: Standard-dose acquisition with 

filtered back projection; C: Standard-dose acquisition with w iterative reconstruction; D: 

Reduced-dose acquisition with filtered back projection
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Figure 2: 
Overall Agreement of standard-dose acquisition with filtered back projection (FBP) vs. 

reduced-dose acquisition with iterative reconstruction by standard Agatston categories. With 

n=200 patients and 4 measurements per patient, there were 8 possible reconstruction and 

dose combinations. This resulted in n=800 distinct acquisitions and n=1600 total 

reconstructions. In this specific comparison, Agatston scores of low-dose acquisition with 

iterative reconstruction were classified within the same category as standard-dose acquisition 

with filtered back projection in 714/800 cases (89%, 95% CI 86–92%).
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Figure 3: 
(a) Difference between reduced-dose/IR – standard-dose/FBP Agatston Scores: Bland-

Altman plot of difference between reduced-dose/IR and standard-dose/FBP combinations 

with upper and lower 95% confidence bounds shown. The difference in reduced-dose/IR and 

standard-dose/FBP was small at low values (<400) and increased as the mean scores 

increased. The 95% repeatability bounds for the reduced-dose/IR – standard-dose/FBP scan 

differences are −0.05 · average value ± 6.35 average value.

(b) Repeatability of reduced-dose/IR and (c) standard-dose/FBP calcium scores: The 

variability for both reduced-dose/IR and standard-dose/FBP was small at low values (<400) 

and increased as the average scan scores increased. Superimposed on the Bland-Altman 

plots are the 95% repeatability bounds for the scan differences. For reduced-dose/IR, the 

95% bounds are ±5.81 average scan score. For standard-dose/FBP, the 95% bounds are 

±5.19 average scan score.
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Figure 4: Radiation Exposure for Reduced vs. Standard Dose Scans:
As shown in the following box and whisker plots, median radiation exposure for reduced 

dose was median 0.37 mSv (5th, 95th: 0.15, 1.17) and for standard dose was median 1.38 

mSv (5th, 95th: 0.46, 3.18). For reduced-dose scans, the outliers represent patients with high 

BMI (36–45 kg/m2) where the automatic exposure control determined to use high tube 

current. For standard-dose scans, the scanner reached maximal x-ray tube output so there are 

no outliers beyond the 1.5 * interquartile range. The median radiation reduction was 74% for 

reduced-dose vs. standard-dose scans (p<0.0001).
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Table 1:

Scan Parameters and Radiation Dose

N=200 Standard Dose 1 Standard Dose 2 Reduced Dose 1 Reduced Dose 2

Current ± SD, mA 389.8 ± 202.2 390.6 ± 203.3 120.5 ± 82.1 120.5 ± 85.2

Z-Coverage ± SD, mm 117 ± 7 117 ± 7 117 ± 7 117 ± 7

Scans at 120mm Z-coverage, n (%) 168 (84%) 168 (84%) 168 (84%) 168 (84%)

DLP, mGy * cm Median (5th, 95th) 26.3 (16.8, 84.1) 26.3 (16.8, 84.1) 26.4 (17.1, 38.0) 26.4 (17.1, 38.0)

Effective Dose, mSv Median (5th, 95th) 1.4 (0.46, 3.2) 1.4 (0.46, 3.2) 0.37 (0.15, 1.2) 0.37 (0.15, 1.2)

Heart Rate ± SD, beats per minute 58 ± 8 58 ± 8 58 ± 8 58 ± 8

Abbreviations: mA = milliampere; mm = millimeters; DLP = Dose Length Product; mSv = millisievert; SD = Standard Deviation
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Table 2:

Baseline Characteristics (N=200)

Age, years ± SD 60 ± 9 years

Male, n (%) 118 (59%)

Body Mass Index, kg/m2 ± SD 28 ± 5.4

Ethnicity

 White, n (%) 144 (72%)

 Black, n (%) 30 (15%)

 Asian, n (%) 15 (7.5%)

 Hispanic, n (%) 11 (5.5%)

CAD Risk Factors

 Hypertension, n (%) 95 (48%)

 Diabetes Mellitus, n (%) 29 (15%)

 Hyperlipidemia, n (%) 92 (46%)

 Family History of CAD, n (%) 35 (23%)

 Current Smoker, n (%) 14 (7%)

 Former Smoker, n (%) 34 (17%)

Any Risk Factor for CAD 115 (76%)

Abbreviations: SD = Standard Deviation; CAD = Coronary Artery Disease; ACE-I = Angiotensin converting enzyme-inhibitor; ARB = Angiotensin 
Receptor Blocker

J Cardiovasc Comput Tomogr. Author manuscript; available in PMC 2020 August 31.


	Abstract
	Introduction
	Technical Methods
	Statistical analysis

	Technical Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:

