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ABSTRACT
Triple-negative breast cancer (TNBC) is characterized by broad genomic and transcriptional heterogeneity 
and results in a worse prognosis than other breast cancer types. Here, we integrated genomic and 
transcriptomic data combined with clinicopathologic information from 538 patients with TNBC and 
identified four novel significantly mutated genes (SMGs), namely, KDM6A, CD86, RBM47, and IFNGR1. 
A mutational signature (known as age-related signature 1) featured by enrichment of C > T mutations at 
NpCpG trinucleotides was associated with worse survival in TNBC (HR, 1.76 [95% CI, 1.07–2.90]; P = .025). 
We also analyzed gene transcriptomic profiles of TNBC samples and identified immune regulation-related 
gene pathways (e.g., antigen processing presentation and interferon signaling), and the cell cycle was 
significantly altered in samples with different signature 1 activity groups. The analysis further revealed 
that signature 1 was associated with decreased tumor immunogenicity and immunocyte infiltration in 
TNBC. This negative correlation was also observed in lung adenocarcinoma and prostate cancer samples. 
Furthermore, we found that patients with mutational signature 1 were markedly associated with 
decreased tumor mutation burden, even after controlling for age, grade, histological type, lymph node 
status, mutations in BRCA1/2 and ATR, and APOBEC and homologous recombination repair deficiency 
signatures (OR, 0.19 [95% CI, 0.11–0.32]; P < .001). Overall, this study identified previously unreported 
SMGs and re-annotated that age-related signature 1 was associated with a weakened immune micro
environment and predictive of poor survival in TNBC, offering opportunities to stratify patients into 
optimal treatment plans based on genomic subtyping.
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Introduction

Triple-negative breast cancer (TNBC) accounts for 10–20% of 
breast carcinomas and is characterized by a lack of expression 
of the estrogen receptor and progesterone receptor and absence 
of ERBB2 (also known as HER2) amplification.1,2 TNBCs 
result in worse prognosis than other types of breast cancers 
(BCs), with an increased likelihood of early distant recurrence 
and death,1 owing mainly to the extensive molecular hetero
geneity of the disease.3,4

Recent next-generation sequencing has become a powerful 
tool to elucidate potential driver genetic aberrations underlying 
cancer development. TNBCs are significantly associated with 
BRCA1 germline mutations and high levels of genomic instabil
ity; TP53 and PIK3CA are the two most significantly mutated 
genes (SMGs).5 Mutational signatures are the fingerprints of 
endogenous and exogenous factors that have acted over the 
course of tumorigenesis and heterogeneity. Age-related signa
ture 1 was dominated by C > T mutation, which is associated 
with spontaneous deamination of 5-methylcytosine.6 A recent 
study reported that younger Asian BCs harbor a more immune- 
active microenvironment than older Western BCs.7 Signature 3, 

characterized by T > C mutations, was associated with a defi
ciency in genomic integrity maintenance (homologous recom
bination repair deficiency [HRD]) and strongly associated with 
BRCA1/2 mutations in breast cancer.8

Clinical studies also found that patients with breast cancer 
with high immune infiltration, particularly TNBC and HER2- 
positive breast cancer, had better prognosis and treatment 
response.9,10 Recently, the correlation between the specific 
mutational signature process (e.g., HRD and APOBEC signa
tures) and antitumor immune activity has been observed 
across cancer types;11-13 however, the characteristics of 
immune infiltration and its association with mutational signa
tures in TNBC are still unclear. There is also evidence that 
immune-rich TNBCs may be under immune surveillance that 
continuously eliminates many immunogenic clones, resulting 
in lower clonal heterogeneity.10

Since somatic mutations can be applied to clinical practice, 
the assessment of larger patient series is crucial in identifying 
tumor genomic aberrations that are potentially predictive 
responses and investigating whether patients have distinct 
clinical outcomes. Hence, the present study aimed to identify 
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new SMGs and characterize mutational signatures that driving 
the molecular subtypes with genetic prognosticators and 
immune activity in patients with TNBC from published multi- 
omic studies. We believe that these findings may be applicable 
for prognostic prediction and therapeutic guidance for TNBC.

Results

SMGs in TNBC

Somatic mutational profiles of 538 patients with TNBC from 
previous whole-exome sequencing (WES) genomic studies 
were analyzed. A median of 118 mutations per sample (range, 
1–2205) in a total of 93897 coding somatic mutations were 
collected from previously published studies. We combined 
MutSigCV and OncodriveFML algorithms to identify SMGs 
that met the criteria of positive accumulation, clustering at 
a hotspot, and functional importance. We identified a total of 
16 SMGs in the pooled TNBC datasets (Figure 1, 
Supplementary Table S1). Apart from well-known driver onco
genes (e.g., TP53, PIK3CA, FOXA1, KMT2 C/D, PTEN, RB1, 
BRCA1/2), we identified four new SMGs, namely, KDM6A (15 
of 538, 2.8%), CD86 (8 of 538, 1.5%), RBM47 (7 of 538, 1.3%), 
and IFNGR1 (5 of 538, 0.9%), which were not previously 
implicated in TNBC. The mutation plots of these four novel 
SMGs are shown in Supplementary Figure S1.

We also examined the mRNA expression levels of these four 
novel SMGs in tumor tissues versus matched adjacent normal 
control tissue in a separate microarray-based TNBC gene 
expression dataset.14 The analyses showed that CD86 was sig
nificantly upregulated in tumor tissues, whereas KDM6A was 

significantly downregulated in tumor tissues (paired t-test, 
P < .05, Supplementary Figure S2). We also examined the 
association between SMG mutation status and survival prog
nosis. TNBC samples with RBM47 mutations were found to be 
associated with short survival outcomes in the aggregated 
TNBC cohort (log-rank test, P < .001; Supplementary Figure 
S3). A previous study also identified RBM47 as a suppressor of 
breast cancer progression and metastasis, and patients with low 
expression tended to have a poor clinical outcome.15,16

Mutational signatures operative in the aggregated TNBC 
cohort

To gain further insights into the mutational processes opera
tive in patients with TNBC, we delineated the mutation signa
tures from the genomic mutational profile. We first counted 
the number of single-nucleotide variants in the matrix of 96 
possible mutations occurring in a trinucleotide context in each 
TNBC sample and found that the predominant mutations were 
the C > T and C > G transitions at TpCpW trinucleotide sites 
(Figure 2a). Subsequently, we extracted three mutational sig
natures from the TNBC genomic data with varying mutational 
activities and annotated them against the Catalog of Somatic 
Mutations in Cancer (COSMIC) signature nomenclature 
(Figure 2b). Cosine similarity analysis demonstrated that the 
three signatures showed high similarity to known COSMIC 
signatures 1, 3, and 13 (cosine coefficients, 0.95, 0.91, and 0.86, 
respectively; Supplementary Figure S4). The proportion and 
activities of the three extracted signatures in every tumor 
sample (i.e., number of somatic mutations attribute to each 
signature) are presented in Supplementary Figure S5. We 

Figure 1. Mutational landscape of significantly mutated genes in triple-negative breast cancer (TNBC) patients. The left panel indicated gene mutation frequency, the 
upper panel showed mutational prevalence with respect to synonymous and non-synonymous mutations, the middle panel depicts genes mutation landscape across 
analyzed cases with different mutation types color coded differently, and the bottom panel displayed clinical features such as signature 1 status, age, histological type, 
grade, survival status, tumor mutation burden and cohort. New significantly mutated genes were highlighted in upper left bold.
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observed that signature 1 (mutational activity, 16270/82770, 
19.4%) was dominated by C > T transitions at NpCpG trinu
cleotides (often termed CpG dinucleotides) that was associated 
with the age-related accumulation of spontaneous deamination 
of 5-methylcytosine in most cancer types. Signature 3, which 
was the most prevalent signature, accounting for 56899 in 
82770 mutations (68.8%), was reported to have failure of 
DNA double-strand break repair by homologous recombina
tion in breast, pancreatic, and ovarian cancers. Signature 13 
(9601/82770, 11.8%), characterized by C > T mutations at 
TpCpW (where W = A or T) trinucleotide sequences, was 
attributed to the activity of the AID/APOBEC family of cyti
dine deaminases (APOBEC) in breast, bladder, cervical, and 
non-small cell lung cancers (NSCLCs)17 (Figure 2c).

Mutational signature predictive of TNBC survival

To identify the extracted mutational signature activities asso
ciated with TNBC clinical features, we applied unsupervised 
hierarchical clustering for activities of signatures18 and identi
fied two distinctive clusters, C1 and C2 (Supplementary Figure 
S6a). Survival analysis showed that their association with prog
nosis was marginally statistically significant (log-rank test, 
P = .075; Cox regression, HR, 0.57 [95% CI, 0.28–1.14]; 
Supplementary Figure S6b–c). Therefore, we followed the pre
viously recommended method and criteria and stratified the 
extracted mutational signatures into binary variable (i.e., no 
and yes) model.8,19 We observed that patients with mutational 

signature 1 were markedly associated with worse survival out
comes (log-rank test, P = .025; HR, 1.76 [95% CI, 1.07–2.90]; 
Figure 3a). To rule out the possibility that associations between 
signature 1 and prognosis were affected by confounding fac
tors, we incorporated age, grade, histology type, and lymph 
node status into the multivariate Cox regression model. 
Associations between signature 1 and the survival of patients 
with TNBC remained statistically significant after controlling 
for these factors (HR, 1.85 [95% CI, 1.08–3.18]; P = .024; Figure 
3b). We also investigated the correlation between signature 1 
activities and patient age and found a positive correlation using 
the Spearman regression model (Spearman r = 0.197, P < .001; 
Supplementary Figure S7), further confirming previous 
findings.6 We also examined the difference between mutational 
activity and signature 1 with respect to the mutational status of 
these 16 SMGs. Increased mutational activities of signature 1 
were observed in samples with mutations in CBFB, FOXA1, 
NF1, PIK3CA, and TP53 (Wilcoxon rank-sum test, all P < .05; 
Supplementary Figure S8).

Immune-related pathways and immunocyte infiltration 
associated with mutational signature 1

In this analysis, we investigated the potential mechanism 
behind mutational signature 1, which may regulate TNBC 
prognosis. Gene set enrichment analysis (GSEA) on 
REACTOME sets revealed that the enrichment of genes 
involved in the immune system, cell cycle, and class I MHC 

Figure 2. Mutational signatures extracted from the aggregated TNBC dataset. (a) Lego plot representation of mutation patterns in 538 TNBC samples. Single-nucleotide 
substitutions were divided into six categories with 16 surrounding flanking bases. The pie chart in upper left showed the proportion of six categories of mutation 
patterns. (b) The mutational activities of corresponding extracted mutational signatures (Signature 1,3,13 and unmatched, named as COSMIC signature). The 
trinucleotide base mutation types were on the X-axes, whereas Y-axes showed the percentage of mutations in the signature attributed to each mutation type. (c) 
The mutational activities of corresponding mutational signatures showed in pie chart.
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antigen processing presentation were significantly altered in 
samples with different signature 1 grouping (q < 0.001, Figure 
4a, Supplementary Figure S9). We further analyzed the deter
minants of tumor immunogenicity with respect to mutational 
signature 1 using The Cancer Immunome Atlas (TCIA)- 
recommended immunophenoscore (IPS) scheme. 
A significant negative correlation between signature 1 activity 
and immunogenicity level was identified across the TNBC 
samples (Spearman r = −0.13, P = .001, Figure 4b). We also 
conducted mutational signature analysis on other age-related 
tumor types from the TCGA dataset, including lung adenocar
cinoma (LUAD) and prostate adenocarcinoma (PRAD) 
(Supplementary Figure S10a-b), and found that signature 1 
was inversely correlated with the IPS (Spearman correlation 

test, LUAD, r = −0.23; PRAD, r = −0.14; P < .001 
Supplementary Figure S10c-d).

The T cell-inflamed gene expression profile (GEP) and 
immune cytolytic activity (CYT) were also analyzed, and 
a lower score was found in the signature 1 group (GEP scores, 
0.25 vs −0.30, P = .004, Figure 4c; CYT, 15.7 vs 11.2, P = .042, 
Supplementary Figure S11; Wilcoxon rank-sum test). We 
further compared clonal heterogeneity measured using the 
mutant allele tumor heterogeneity (MATH) score, which quan
tified the dispersion of variant allele frequencies in TNBC sam
ples. Accordingly, patients with signature 1 had significantly 
higher MATH scores, indicating stronger clonal genomic het
erogeneity (MATH scores, 43.6 vs 52.2, Wilcoxon rank-sum test, 
P = .007; Figure 4d). Moreover, we evaluated (using the 

Figure 3. Association of mutational signature 1 with prognosis in TNBC cohort. (a) Kaplan-Meier survival analysis classified by mutational signature 1 status. (b) 
Multivariate Cox regression analysis of signature 1 with age, grade, histological type and lymph node status taken into account.

Figure 4. Significantly enriched pathways and immune infiltration alteration with signature 1 activities. (a) Top enriched pathways in distinct signature 1 activity groups 
(no vs yes) was assessed by using GSEA. (b) Correlation between signature 1 activities and IPS. Distribution of T cell-inflamed GEP scores (c) and mutant-allele tumor 
heterogeneity (MATH) score (d) with respect to signature 1 status in TNBC. (e) Tumor infiltrating lymphocytes (TILs) level with signature 1 in TNBC were estimated by 
CIBERSORT algorithm. All comparison was calculated by Wilcoxon rank-sum test.
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CIBERSORT algorithm) the abundance of tumor-infiltrating 
immunocytes in the TNBC microenvironment using the gene 
expression profile data. We found that CD8+ T cells, monocytes, 
macrophages, and antitumor leukocytes were less clustered in 
the mutational signature 1 group (Figure 4e).

Tumor mutation burden (TMB) associated with mutational 
signature 1

TNBC is genomically heterogeneous with varying TMBs, and its 
level is associated with the survival and immune infiltration of 
multiple cancer types.20-22 Therefore, we compared signature 1 
with TMB and found a significantly lower TMB in patients with 
signature 1 (log2 TMB, median, 7.1 vs. 6.3, P < .001; Wilcoxon 
rank-sum test, Figure 5a). Furthermore, MHC Class I-associated 
tumor neoantigen counts (burden) in the TCGA dataset also 
showed a similar tendency (log2 TNB, median, 6.7 vs 5.4, 
P < .001; Figure 5b). TMB was largely attributed to genomic 
instability. To rule out the influence of confounding factors, we 
incorporated genomic integrity maintenance-associated genes 
(mutations in BRCA1/2, ATR, and SMGs in TNBC), extracted 
mutational signatures (1, 3, 13), and clinical features (age, grade, 
histology type, and lymph node status) into the Bayesian logistic 
regression model. The association between signature 1 and TMB 
remained statistically significant after adjusting for such factors 
(OR, 0.19 [95%CI, 0.11–0.32]; P < .001; Figure 5c).

Discussion

In this study, a genomic meta-analysis of 538 TNBC samples 
from five published studies was performed and identified sev
eral novel less frequently mutated SMGs that were not 

recognized previously. We revealed that patients with age- 
related mutational signature 1 were associated with worse 
prognosis in TNBC and confirmed this finding in 
a multivariable Cox regression model. We further identified 
that this age-related signature was associated with lower 
immune activities and decreased TMB, suggesting that cancers 
with signature 1 probably escaped from immune surveillance.

Immune infiltration and surveillance in determining the 
prognosis of various types of cancers are increasingly 
recognized.10,23,24 More than 70% of breast cancers contain at 
least some tumor-infiltrating lymphocytes and eliminate neo
plastic cells by antitumor immunity. In this study, we identified 
that tumors with signature 1 were negatively associated with 
cytotoxic cell infiltration and antitumor immunogenicity, 
further supported by less enrichment among genes related to 
antigen processing presentation and interferon signaling. These 
findings suggest that the tumor immune escape mechanism of 
mutational signature 1 may predict the relapse-free survival of 
patients with TNBC. Moreover, signature 1 activities are nega
tively correlated with the anti-CTLA-4/PD-1 therapies immune 
response predictor IPS (determinant of tumor 
immunogenicity)25 and neoantigen counts, suggesting that sig
nature 1 may regulate treatment response to immunotherapy.

Comprehensive knowledge of the oncogenes underlying 
human cancers is a critical foundation for cancer diagnostics, 
therapeutics, and selection of rational combination therapies.26 

Here, we combined MutSigCV and OncodriveFML algorithms, 
followed by filter criteria, to re-annotate mutations and identified 
four unreported novel SMGs in TNBC. KDM6A (lysine demethy
lase 6A, mutated in 3.0% of patients) is located in the 
X chromosome and catalyzed the demethylation of tri/dimethy
lated histone H3.27 Mutations in KDM6A could promote 

Figure 5. Association of signature 1 with tumor mutation burden in pooled TNBC cohort. Tumor mutation burden (a) and neoantigen burden (b) were stratified by 
mutational signature 1. (c) Multivariate logistic regression analysis of signature 1 mutation with TMB after adjusted for age, grade, histological type, lymph node, 
mutational signatures, and mutations in BRCA1/2 and ATR. Square data markers indicated estimated hazard ratios. Error bars represent 95% CIs.
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carcinogenesis and confer drug resistance in tumors.28,29 

T-lymphocyte activation antigen CD86 is a receptor involved in 
the costimulatory signal essential for T-lymphocyte proliferation 
and interleukin-2 production30 and plays a vital role in anti-CTLA 
-4 blockade therapy immune response.31 The RNA-binding pro
tein RBM47 has been shown to strongly inhibit tumor progression 
and metastasis and was found to be substantially downregulated 
during the epithelial-to-mesenchymal transition in breast cancer. 
Another study demonstrated that RBM47 functions as a regulator 
of the p53/p21-signaling axis and plays an important role in 
antitumor effects. In our study, patients with mutations in 
RBM47 were associated with poor clinical outcome, probably 
due to the non-synonymous functional mutation causing gene 
expression aberration. The ligand-binding chain (alpha) of the 
gamma interferon receptor encoding gene IFNGR1, acted in IFN- 
γ pathways, and its mutation was reported to regulate the immune 
response to PD-1 treatment.13,32

Mutations patterns of signature 1 were commonly found in 
most cancer types (BRCA, LUAD, PRAD, etc.), known as 
clock-like mutational process properties, which showed 
a correlation between the number of mutations and age at 
diagnosis.6 In this meta-analysis, the age at diagnosis was also 
correlated with signature 1 mutation activity in TNBCs. 
Indeed, older patients with breast cancer harbored a less active 
immune environment than younger patients with breast 
cancer.7 Recent studies also noted a cancer type-specific 
(BRCA, PRAD) negative correlation of immune cell infiltration 
and mutational signature 1,33 and further investigation is 
required to understand how signature 1-related mutated clones 
escaped from immune recognition.

Recent advances have reported that genomic mutational sig
natures are associated with clinical prognosis and treatment 
response. Xing et al. revealed that mutational signature 18 was 
significantly enriched in tumors with cadherin 1 (CDH1) muta
tions and associated with poor prognoses in gastric cancer.34 

There is evidence that the APOBEC mutational signature is 
a potential predictive marker for PD-1 immunotherapy response 
in NSCLC.13,35 In our genomic meta-analysis, we identified that 
signature 1 was associated with shortened survival time in patients 
with TNBC and suggested a significant association with tumor 
escape from immunological surveillance. A recent study indicated 
that short-term chemotherapy (e.g., doxorubicin and cisplatin) 
may induce a more favorable tumor microenvironment and 
increase the likelihood of response to PD-1 blockade in TNBC.36 

Therefore, we speculated that patients with signature 1 after 
induction treatments of doxorubicin and cisplatin may improve 
the clinical benefit of immune checkpoint inhibitor therapy.

The main limitation of this study was the use of the public 
datasets from different cohorts, which introduced a heterogeneity 
in data processing and could have resulted in a batch effect in the 
final mutation lists. Although we utilized multiple genomic and 
transcriptomic datasets for analysis, the dataset with both WES 
and RNA sequencing was only available in TCGA and FUSCC 
cohorts. As a result, the association between mutational patterns 
and gene expression, including analysis of immune cell infiltration 
and oncogenic pathways, needs further validation. In addition, 
considering that SMG non-synonymous mutations causing 
amino acid changes in protein function are huge and complicated, 
we will focus on these areas in future studies.

To our knowledge, this is the largest number of samples of 
a genomic study that combined multiple WES and RNA-Seq 
datasets, with the ultimate goal of providing novel genomic- 
driven therapeutic strategies for TNBC. We identified 
a putative clock-like mutation signature and molecular bio
markers of response to TNBC treatment, demonstrating the 
complex interplay of host and tumor in immune surveillance. 
However, the mechanisms underlying the association between 
signature 1 and prognostic outcome remain unclear, and 
further studies are warranted.

Materials and methods

Genomic and clinical data

Somatic mutations and clinical data (a total of 93897 coding 
somatic mutations in 538 samples) of the aggregated TNBC 
cohort were curatedfrom recent publications, including 65 sam
ples from BCCRC cohort,37 13 from Broad cohort,38 14 from 
Sanger cohort,39 279 from FUSCC cohort,40 and 167 from 
TCGA (https://portal.gdc.cancer.gov). All patients were female, 
and the extracted DNA and RNA for sequencing were obtained 
from primary untreated tumor tissues. We re-annotated all pre
viously called somatic mutations using the Oncotator41 against the 
hg19 reference genomics database. Transcriptomic data were 
obtained from TCGA and FUSCC cohorts. Both peptides result
ing from wild-type and mutated sequences for predicted binding 
affinities scores below 500 nM to patient HLA are defined as 
neoantigens.42 Somatic copy number alteration was obtained 
from Davoli et al.43 The gene microarray data for 33 paired 
tumor-normal tissues were downloaded from GEO (ID: 
GSE76250) published by Jiang et al.14 Detailed clinical informa
tion, including age, histological type, lymph node status, relapse- 
free survival, and status, was also collected from these studies and 
is presented in Supplementary Table S2. The overall clinical 
characteristics with specific signature grouping are summarized 
in Supplementary Table S3.

Identification of SMGs

We identified SMGs by combining MutSigCV26 and 
OncodriveFML44 algorithms, followed by further filtering pro
cedures. MutSigCV measures the significant enrichment of non- 
silent somatic mutations in a gene by addressing mutational 
context-specific background mutation rates. OncodriveFML 
was designed to identify genes with highly clustered and non
randomly distributed functional mutations. Candidate novel 
SMGs were required to meet these criteria: statistically signifi
cance in two algorithms (MutSigCV and OncodriveFML, both 
q < 0.1) and expression in human Cancer Cell Line Encyclopedia 
(https://portals.broadinstitute.org/ccle)45 and TCGA pan-cancer 
dataset.46

Deciphering the mutational signature operative in the 
genome

We used the framework suggested by Kim et al.47 to extract 
mutational signatures from aggregated TNBC samples’ 
(n = 538) genomic data. The method was based on Bayesian 
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variant non-negative matrix factorization and can automatically 
determine the optimal number of mutational signatures. The 
mutation portrait matrix A was factorized into two nonnegative 
matrices W and H, where W represents mutational processes 
and H represents the corresponding mutational activities. 
Mutational activity in every sample refers to the number of 
somatic mutations attributed to the extracted relevant signature. 
The number of columns in matrix W is the number of muta
tional signatures. The rows of matrix A are the 96 mutational 
contexts, and its columns are the 538 TNBC samples. The 96 
mutational contexts are derived from combinations of 6 muta
tional types (i.e., C > A, C > G, C > T, T > A, T > C, and T > G) 
and their 5′- and 3′-adjacent bases. The extracted mutational 
portrait of TNBC was compared and annotated by cosine simi
larity analysis against the COSMIC.8,46

Extracted signature with TMB

The extracted mutational signatures were stratified as binary 
variables (i.e., no and yes) in the multivariate model. The 
classification method is based on the previous method, in 
which a signature was considered significant if it contributed 
to more than 100 substitutions or more than 25% of the total 
mutation activities.8 The mutational signature activities and 
designation of each tumor sample were also indicated in 
Supplementary Table S2. As mutations in BRCA1/2 and ATR 
and some mutational signatures increase mutation rates in the 
cancer genome, we recognized them as confounding factors 
and incorporated them into the generalized linear models and 
fit proportional hazards regression to analyze associations 
between mutation signatures and TMB.

GSEA and network analysis

The R package limma48 was used to evaluate the differential 
expression of each gene in TNBC samples with different sig
nature 1 activities (no vs yes). Specifically, gene expression data 
were normalized by voom and then fed to lmFit and eBayes 
functions in the R limma package. Differential expression 
statistics were used as input to perform GSEA49 based on the 
REACTOME gene set (downloaded from the MSigDB database 
version 6.3). The fast GSEA algorithm implemented in the 
Bioconductor R package fgsea was used.

Tumor infiltrating lymphocyte cell analysis

The deconvolution approach CIBERSORT (http://cibersort.stan 
ford.edu/) was used to estimate the abundance of 22 distinct 
leukocyte subsets50 with the gene expression profile in TNBC.

Tumor immunogenicity analysis

IPS was used to determine the tumor immunogenicity, which 
was based on TCIA-recommended method.25 The scoring 
scheme was developed from a panel of immune-related genes 
belonging to four classes: MHC-related molecules, checkpoints 
or immunomodulators, effector cells (activated CD8 + T cells 
and CD4 + T cells, Tem CD8+ and Tem CD4+ cells), and 
suppressor cells (Tregs and MDSCs). For each class, a sample- 

wise Z score from the gene expression data was calculated. 
Then, the weighted averaged Z score was calculated by aver
aging the Z scores within the respective category leading to 
four values and the sum of the weighted averaged Z score of the 
four categories was recognized as the IPS.

Quantifying the T cell-inflamed gene expression profiling 
(GEP) and CYT

T cell-inflamed gene expression profiling (GEP) proposed by 
Ayers et al.51 were applied to assess T cell infiltration and 
quantify the GEP scores. GEP is composed of 18 inflammatory 
genes associated with chemokine expression, antigen presenta
tion, and adaptive immune resistance. T cell-inflamed GEP 
scores were calculated as a weighted mean of normalized 
expression values for these genes. The CYT was calculated as 
the geometric mean of GZMA and PRF1 transcript levels.

MATH score

The MATH score was calculated as the median absolute devia
tion of each somatic mutation’s allelic fraction from the med
ian allelic fraction of all mutations in the tumor, divided by the 
median variant allelic fraction (VAF).10 We calculated MATH 
values for TCGA samples from mutant variant allele frequen
cies (VAF) of all genes.

Statistical analysis

The statistical analysis in this study was generated using R 3.6.1. 
Quantitative data were presented as median. Continuous vari
ables between groups were compared using the Wilcoxon rank- 
sum test or paired t-test depending on data distribution. The 
Spearman correlation coefficient was used to analyze the corre
lation between two quantitative variables. Kaplan–Meier survi
val analysis and Cox proportional hazards model were used to 
analyze the association between mutational signatures and 
prognosis using the R survival package (survminer 0.4.6). We 
used stan_lm from the R package rstanarm (version 2.19.1) to 
perform multivariate Bayesian logistic regression analyses. All 
comparisons were two-sided with an alpha level of 0.05, and the 
Benjamini–Hochberg method was applied to control the false 
discovery rate for multiple hypothesis testing.52

List of abbreviations

TCGA the Cancer Genome Atlas
HR Hazard Ratio
OR Odds Ratio
TCIA The Cancer Immunome Atlas
LUAD Lung Adenocarcinoma
PRAD Prostate Adenocarcinoma
FUSCC Fudan University Shanghai Cancer Center
BCCRC British Columbia Cancer Research Center
SMG Significantly Mutated Gene
HRD Homologous Recombination Repair Deficiency
TMB Tumor Mutation Burden
NB Neoantigen Burden
NMF Nonnegative matrix factorization
GSEA Gene Sets Enrichment Analysis
GEP T cell-inflamed Gene Expression Profiling
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CYT Cytolytic activity
IPS Immunophenoscore
SNVs Single-nucleotide Variants
MDSCs Myeloid-derived suppressor cells
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