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ABSTRACT

Cryopreservation and thawing of PBMCs are inevitable processes in expanding the scale of 
experiments in human immunology. Here, we carried out a fundamental study to investigate 
the detailed effects of PBMC cryopreservation and thawing on transcriptomes. We sorted 
Tregs from fresh and cryopreserved/thawed PBMCs from an identical donor and performed 
single-cell RNA-sequencing (scRNA-seq). We found that the cryopreservation and thawing 
process minimally affects the key molecular features of Tregs, including FOXP3. However, 
the cryopreserved and thawed sample had a specific cluster with up-regulation of genes for 
heat shock proteins. Caution may be warranted in interpreting the character of any cluster of 
cells with heat shock-related properties when cryopreserved and thawed samples are used for 
scRNA-seq.
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INTRODUCTION

No matter how sophisticated the experimental techniques of modern immunology, a batch 
effect originates from non-biological factors (1,2). The batch effect may corrupt the data 
produced by experiments, and it is difficult to correct later. A large-scale and simultaneous 
experiment under identical conditions is an effective approach to remove batch effects. 
In translational research using specimens originating from a defined cohort with human 
subjects, the cryopreservation and thawing process is inevitable in conducting a large-scale and 
simultaneous experiment (3,4). When PBMCs are tested in protein-based ex vivo techniques, 
such as enzyme-linked immune absorbent spot and flow cytometry, the cryopreservation and 
thawing protocols provide stable and reproducible immunophenotype data (5,6). However, 
significant gene expression changes are occasionally detected after the cryopreservation and 
thawing process using comprehensive methods, such as transcriptome analysis (7).

Single-cell RNA-sequencing (scRNA-seq) is a powerful experimental technique for 
characterizing heterogeneous immune cell types at the molecular level (8). In human 
immunology studies, scRNA-seq is widely applied for various specimens, including normal 
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tissues, tumor tissues, bone marrow, and PBMCs (9-12). However, current single-cell 
sequencing using a water-in-oil microdroplet platform also has a significant batch effect 
among different sets of experiments, and it has been attempted to correct the batch effect by 
a bioinformatics approach (13). To minimize the batch effect, cryopreservation and thawing 
of specimens for scRNA-seq analysis has been introduced (14). Previous studies comparing 
fresh cells and cryopreserved/thawed cells showed that DMSO based cryopreservation is a 
reliable method without significant transcriptomic changes (15).

During immune landscape analysis of Tregs, we had a chance to compare the scRNA-seq 
data of Tregs sorted from fresh and cryopreserved/thawed PBMCs from an identical human 
subject. Our results suggest that unique transcriptomic features of Tregs are conserved after 
a cryopreservation and thawing process, but a specific cluster with heat shock protein gene 
expression was found only in the cryopreserved/thawed sample.

MATERIALS AND METHODS

Study subject
Peripheral blood was obtained from a single healthy donor twice at a 1-week interval for 
preparation of cryopreserved/thawed and fresh PBMCs. PBMCs were isolated from whole blood 
via standard Ficoll-Paque (GE Healthcare, Uppsala, Sweden) density gradient centrifugation. 
PBMCs were cryopreserved and thawed using a standard protocol (15). The freezing media 
comprised 70% FBS, 20% Roswell Park Memorial Institute (RPMI) 1640 media, and 10% 
DMSO. This study protocol was reviewed and approved by the Institutional Review Boards 
(KH2018-118). Written informed consent was obtained from the subject prior to the study.

Isolation of Tregs from PBMCs
Untouched CD4+CD25+CD127- Tregs were isolated from PBMCs using the EasySep Human 
CD4+CD127lowCD25+ Treg Isolation Kit (STEMCELL Technologies, Vancouver, Canada) 
according to the manufacturer's instructions.

scRNA-seq
We generated scRNA-seq libraries using the Chromium Single Cell 3′ Library & Gel Bead 
Kit v2 (10X Genomics, Pleasanton, CA, USA) according to the manufacturer's instructions. 
Briefly, thousands of cells were separated into nanoliter-scale droplets. In each droplet, 
cDNA was produced by reverse transcription, adding a cell barcoding sequence and 
unique molecular identifier (UMI) to each cDNA molecule. Libraries were constructed and 
sequenced at a depth of approximately 50,000 reads per cell by the Novaseq 6000 platform 
(Illumina, San Diego, CA, USA).

scRNA-seq data processing
The sequenced data were de-multiplexed using mkfastq (Cellranger, v3.0.2; 10X Genomics) 
to generate fastq files. After de-multiplexing, the reads were aligned to the human 
reference genome (GRCh38; 10X Cellranger reference GRCh38 v3.0.0) and feature-barcode 
matrices generated using the cellranger count, and then aggregated by cellranger aggr 
using default parameters. Subsequent analysis was performed using Seurat R package 
v3.1.5 (R Foundation, Vienna, Austria). Mitochondrial read counts were collected using 
PercentageFeatureSet function with the following option: pattern = ‘^MT-’. In each cell, the 
gene expression was normalized based on the total read count and log-transformed. After 
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log-transformation, principal component analysis was performed and PC1 to PC6 applied 
following clustering and uniform manifold approximation and projection (UMAP).

Identification of differentially expressed genes (DEGs)
To identify DEGs for any 2 transcriptome profiles, we utilized the Wilcoxon rank sum test and 
receiver operating characteristics method in Seurat's implementation based on a Bonferroni-
adjusted p<0.05 and log2 fold change >0.25.

Gene Ontology analysis for biological pathways (GO-BP)
The Gene Ontology analysis was performed using Enrichr (https://amp.pharm.mssm.edu/
Enrichr/).

RESULTS AND DISCUSSION

Single-cell transcriptomes of fresh and cryopreserved/thawed cells
Applying a 10X Genomics scRNA-seq platform, we analyzed 4,990 cells from the fresh 
sample and 4,495 cells from the cryopreserved/thawed sample. The fresh sample had 18,449 
median genes per cell, and the cryopreserved/thawed sample had 17,227 median genes per 
cell. Captured UMI, which represents the number of genes per cell, was relatively higher in 
the fresh sample (median 986; 1st–3rd quartile, 518–691) than the cryopreserved/thawed 
sample (median 600; 1st–3rd quartile, 858–1,131; Fig. 1A). The number of gene species was 
also relatively higher in the fresh sample (median, 3,503; 1st–3rd quartile, 3,011–4,019) than 
the cryopreserved/thawed sample (median 1,435; 1st–3rd quartile, 1,229–1,674; Fig. 1A). 
The proportion of mitochondrial transcripts, which represents contamination by dead or 
dying cells, was similar in the fresh sample (median 2.1; 1st–3rd quartile, 1.7–2.5) and the 
cryopreserved/thawed sample (median 2.3; 1st–3rd quartile, 1.8–2.4; Fig. 1A).

Next, we subjected all cells in each group to UMAP using the highly variable genes in each 
group and the Seurat package (16). We found six different clusters for the fresh sample 
(clusters 0–5) and seven different clusters for the cryopreserved/thawed sample (clusters 
0–6; Fig. 1B). Cell cycle-associated gene expression was uniformly distributed among 
clusters (Fig. 1C). Moreover, the expression levels of key molecules defining Tregs, including 
CD3E (CD3), CD4, IL2RA (CD25), and FOXP3 were homogenous and not polarized to specific 
clusters in both the fresh and cryopreserved/thawed samples (Fig. 1D-G). This result indicates 
that the molecular identity of Tregs is still conserved across the different clusters after a 
cryopreservation and thawing process at the single-cell transcriptome level, even though the 
amount and variability of gene expression are reduced after cryopreservation and thawing.

Cluster-specific up-regulated genes in fresh and cryopreserved/thawed cells
To characterize each cluster identified in the fresh and cryopreserved/thawed samples, we 
investigated DEGs among different clusters in the fresh and cryopreserved/thawed samples. 
Representative up-regulated genes from each cluster were noted on a heatmap for the fresh 
sample (Fig. 2A) and the cryopreserved/thawed sample (Fig. 2B). A detailed list of genes up-
regulated in each cluster is given in Supplementary Tables 1 and 2.

Immunologically well-known genes were found among representative up-regulated genes 
in each Treg cluster. For example, CCR7, a marker of naïve or central memory T cells, was 
significantly up-regulated in clusters 0 and 2 in the fresh sample and in clusters 0 and 3 in 
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the cryopreserved/thawed sample (Fig. 2A and B, red arrows). KLRB1 and TNFRSF18 were 
commonly up-regulated in cluster 5 in the fresh sample and cluster 6 in the cryopreserved/
thawed sample (Fig. 2A and B, blue arrows), which are the genes for surface protein CD161 
and glucocorticoid-induced TNF receptor, respectively. Intriguingly, the genes associated 
with heat shock proteins, such as HSPA1A, HSPA1B, HSPA6, HSPB1, HSPE1, HSPH1, and 
HSP90AA1, were exclusively up-regulated in cluster 4 in the cryopreserved/thawed sample 
(Fig. 2B, pink box). When we plotted the variable genes in the fresh and cryopreserved/
thawed samples, genes for heat shock proteins, including HSPA1A, were specifically variable 
in the cryopreserved/thawed samples (Fig. 2C). This cryopreservation/thawing-specific gene 
expression pattern was exemplified at single-cell resolution by HSPA1A and confirmed that 
cluster 4 was specifically found in Tregs from the cryopreserved/thawed sample (Fig. 2D).
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Figure 1. Single-cell transcriptome of Tregs from fresh and cryopreserved/thawed PBMCs. (A) Assessment of the quality of scRNA-seq results. Captured UMI 
(left), number of gene species (middle), and proportion of mitochondrial transcript (right) in the fresh sample and cryopreserved/thawed sample. Data are given 
as the median value and 1st–3rd quartile range for each parameter. (B) UMAPs of 4,990 cells for the fresh sample and 4,495 cells for the cryopreserved/thawed 
sample, colored by cluster. (C) Normalized expression of cell cycle genes on UMAP plots, colored by stage of the cell cycle. (D-G) Normalized expression of 
representative marker genes from Tregs on UMAP plots. CD3E (CD3) (D), CD4 (E), IL2RA (CD25) (F), and FOXP3 (FoxP3) (G).
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Figure 2. Cluster-specific up-regulated genes in fresh and cryopreserved/thawed cells. (A) Heatmaps presenting up-regulated genes from each cluster 
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Identification of unique transcriptional signatures in cryopreserved/thawed 
cells
To further evaluate the gene expression changes associated with the cryopreservation and 
thawing process, we investigated the variably expressed genes in fresh and cryopreserved/
thawed samples. Among 910 genes up-regulated in any cluster from the cryopreserved/
thawed sample, 561 (61.6%) genes overlapped with the genes up-regulated in the clusters in 
the fresh sample (Fig. 3A). When we analyzed the gene lists for each cluster in GO-BP, 228 of 
391 (58.3%) pathways in the cryopreserved/thawed sample overlapped with the pathways up-
regulated in the clusters n the fresh sample (Fig. 3A; Supplementary Tables 3 and 4).

Next, we analyzed the similarity of each cluster between the fresh and cryopreserved/thawed 
samples based on GO-BP. Cluster 0 in the fresh sample had 27 enriched pathways and was 
most similar to cluster 5 in the cryopreserved/thawed sample, with 26 overlapping pathways 
(96.3%; Fig. 3B). Cluster 3 in the fresh sample had 188 enriched pathways and was most 
similar to cluster 1 in the cryopreserved/thawed sample, with 130 overlapping pathways 
(69.1%; Fig. 3B).

We evaluated the DEGs specifically up-regulated in cluster 4 in the cryopreserved/thawed 
sample, which demonstrated up-regulation of heat shock protein genes. T-cell activation-
related genes, including CD69, JUN, DUSP1, and DUSP2, were commonly up-regulated in 
cluster 6 in the cryopreserved/thawed sample (Fig. 3C). Commonly up-regulated genes 
between clusters 4 and 6 (n=24) were analyzed by GO-BP, finding that pathways related 
to ER stress, apoptosis, cell cycle arrest, and DNA damage were significantly enriched 
(Fig. 3D; Supplementary Table 5). These data indicate that cluster 4 resembles cluster 6 
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in gene expression signatures, but acquires expression of heat shock protein genes in the 
cryopreservation and thawing process.

In conclusion, we show that cryopreservation and thawing minimally affect the key molecular 
features of Tregs although cell clustering results were not identical. However, the cells with 
up-regulated heat shock protein genes were clearly clustered in Tregs after cryopreservation 
and thawing, and this cluster may represent the signature of recent heat exposure applied 
during a cryopreservation and thawing process. Although cryopreserved and thawed samples 
can be used for scRNA-seq, caution might be warranted in interpreting the character of any 
cluster of cells with heat shock-related properties.
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