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Abstract

Preclinical studies in models of neurologic injury and disease rely on behavioral outcomes to measure interven-
tion efficacy. For spinal cord injury, the CatWalk system provides unbiased quantitative assessment of subtle as-
pects of locomotor function in rodents and so can powerfully detect significant differences between
experimental and control groups. Although clearly of key importance, summary group-level data can obscure
the variability within and between individual subjects and therefore make it difficult to understand the magnitude
of effect in individual animals and the proportion of a group that may show benefit. Here, we calculate reference
change intervals (RCls) that define boundaries of normal variability for measures of rat locomotion on the
CatWalk. Our results indicate that many commonly-used outcome measures are highly variable, such that differ-
ences of up to 70% from baseline value must be considered normal variation. Many CatWalk outcome variables
are also highly correlated and dependent on run speed. Application of calculated RCls to open access data
(https://scicrunch.org/odc-sci) on hindlimb stride length in spinal cord-injured rats illustrates the complementarity
between group-level (16 mm change; p=0.0009) and individual-level (5/32 animals show change outside RCI
boundaries) analysis between week 3 and week 6 after injury. We also conclude that interdependence among
CatWalk variables implies that test “batteries” require careful composition to ensure that different aspects of de-
fective gait are analyzed. Calculation of RCls aids in experimental design by quantifying variability and enriches
overall data analysis by providing details of change at an individual level that complement group-level analysis.
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Selection of robust candidate interventions for translation from experimental animals into the neurology clinic re-
quires meticulous examination of behavioral effects observed in the laboratory. Although analysis of group-level
data, the current mainstay, is critically important, analysis of individual-level data provides a complementary
viewpoint that, bearing in mind the immense variability in neurologic deficits in people with spinal cord injury,
has high relevance to the interpretation of studies on putative therapies. Here, we describe the derivation of spe-
cific reference change intervals (RCls) and, using example data, show how these augment interpretation of over-
all effect and can aid in effective experimental design. The combination of group-level and individual-level
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Introduction

Spinal cord injury research has two broad goals: to
understand mechanisms by which injury causes tissue
and functional loss and to develop methods of treatment
that can be translated into the clinic. While the past three
decades have seen substantial progress in achieving the
first goal (Alizadeh et al., 2019), the second remains
largely unfulfilled (Garner, 2014; Siddiqui et al., 2015;
Eckert and Martin, 2017).

Depending on the functional target, there are many
ways to define a successful experimental therapy, but, es-
pecially in view of the high costs, it is essential to identify
truly effective interventions to carry forward to clinical tri-
als. Standard analysis of outcome after an intervention
designed to ameliorate the functional deficits caused by
spinal cord injury relies on comparisons between groups
of experimental animals and defines the population-level
effect of an intervention. In contrast, the questions asked
by a patient in the clinic are: “How likely am |, as an indi-
vidual, to get benefit from this intervention?” and “How
much benefit will | get?” Neither of these questions can
be answered by group-level analysis, nor are benefits at
an individual level guaranteed by detection of group-level
efficacy (Rousselet et al., 2016).

Individual-level analysis has many complementary bene-
fits. Importantly, it can reveal intraindividual and interindi-
vidual variability and thereby differentiate an intervention
that produces an apparent difference between groups that
is dependent on a large change in a small number of indi-
viduals from one that produces more widespread benefit
throughout the group (Weissgerber et al., 2015; Rousselet
et al., 2016). In addition, it can aid in quantifying benefits by
putting the magnitude of the intervention effect into context
through comparison with changes in outcome that can
arise through spontaneous variability alone. This is most
important at an individual level: spinal cord-injured people
seek an intervention that will have substantial impact on
their everyday lives and, to do so, such an intervention
must have an effect that is greater than might arise through
day-to-day variability alone. Interventions that produce re-
producible benefits at both group and individual level can
then be unequivocally recognized as appropriate candi-
dates for translation.

Assessment of function following experimental spinal
cord injury in animals has traditionally relied on observa-
tions of gait (Tarlov and Klinger, 1954), and nowadays
most frequently through the BBB scale (Basso et al,
1995). Concerns about the nature of the BBB scale and
its sensitivity in detecting non-stereotypical patterns of lo-
comotor recovery, both of which could affect the reprodu-
cibility of outcomes (Steward et al., 2012), spurred the
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development of the CatWalk apparatus (Hamers et al.,
2001; Koopmans et al., 2005). Its main advantage is that,
through computerized analysis of locomotion on a walk-
way, it provides unbiased, quantitative data on multiple
components of gait and paw placement. CatWalk analysis
is now widely used to objectively quantify outcomes in
spinal cord-injured rodents and control and intervention
groups can be compared to assess efficacy of proposed
novel therapeutics. To date, it been used to detect differ-
ences between groups of animals, but, in line with the ob-
jectives outlined above, it also provides data that are
amenable to analysis of individual responses.

All measurement methods are susceptible to variability,
which arises from factors both within and external to each
individual. A key component of individual-level analysis is
partitioning sources of variability; appropriate methods
have been developed in hospital clinical laboratories so
that an individual’s disease progress or response to ther-
apy can be monitored. Sources of variability must be ana-
lyzed in individuals at a plateau of health or disease and
can be appropriately allocated through repeated meas-
ures on small numbers (approximately eight or more) of
normal individuals (Fraser and Harris, 1989; Braga and
Panteghini, 2016). In this study, we used the same ap-
proach to define expected boundaries for individual vari-
ability of behavioral function on the CatWalk. We also
aimed to define clearly the exact methods that were used
for obtaining the data, with a view to simplifying compari-
son of data between and within laboratories, thereby en-
hancing reliability and reproducibility. Because CatWalk
produces a large range of outcomes, we initially used
PubMed to survey recent publications to identify fre-
quently reported outcomes after spinal cord injury. The
variability in these commonly-used outcomes was then
quantified in a group of young adult rats by making repeat
measures of their function over an eight-week period.
Finally, we examined correlation among outcome meas-
ures to identify combinations of measures that are most
likely to provide independent outcome data.

Materials and Methods

All animal procedures were performed in accordance
with the Texas A&M University institutional animal care
and use committee’s regulations.

Subjects

The subjects were male Sprague Dawley rats (N = 16)
obtained from Envigo. Upon arrival they were approxi-
mately nine weeks old (250-275 g) and were pair-housed
in standard Plexiglas cages with a 12/12 h light/dark cycle
(changing at 7 A.M. and 7 P.M.) and food and water pro-
vided ad libitum. Subjects remained uninjured for the du-
ration of the experiment, which consisted of a 5-d training
period before weekly testing over a total period of
eight weeks.

CatWalk settings
We used CatWalk XT version 10.6 (Noldus) for this
study. The glass walkway was adjusted so that it was
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Table 1: CatWalk detection settings
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Camera detection settings Results

Auto detection settings

Camera gain (dB): 12.00
Green intensity threshold: 0.14
Red ceiling light (V): 17.70
Green walkway light (V): 16.0

Range: -256

Maximum green intensity: 0
Minimum green intensity: 256

Maximum range from 197 to 203
Frames before Delta: 5
Intensity minimum: 85

slightly >8cm wide and the camera was positioned
75 cm below it, allowing the virtual walkway size to be set
at 70cm long by 8 cm wide. Before beginning the experi-
ment, camera detection settings were adjusted using the
Auto Detect function in the program. The system was cali-
brated each time the camera position was adjusted using
a 20 x 10 cm rectangular calibration sheet. Table 1 shows
the values used throughout the experiment.

Behavioral testing

First, to facilitate training and testing on the CatWalk,
subjects were acclimated to a food reward (FrootLoops)
placed in the home cage for three consecutive days, with
no other activity. Training commenced immediately after
food acclimation and for a total of 5 d. All training and test-
ing sessions were conducted by the same researcher
(M.A.) in a dark room at a consistent time of day (begin-
ning at 9 A.M.). Before each session, animals were habitu-
ated to the testing room for 30 min.

On the first day of training, the rats were introduced to
the testing environment and CatWalk apparatus. First,
they were moved to the testing room in their home cages
and left undisturbed for 30 min. Then they were placed on
the CatWalk individually and allowed to explore freely for
a period of 10 min. Care was taken to ensure that the
walkway was cleaned thoroughly before and after each
subject. At the end of the session, the rats were returned
in their home cages to the vivarium. On each of the follow-
ing 4 d, the rats were trained to cross the CatWalk: follow-
ing a 30-min acclimation to the room, they were placed at
one end of the walkway and encouraged to walk across to
the other end for a food reward. The training session was
terminated once the animal successfully completed three
full runs across the walkway or reached a maximum time
of 10 min on the CatWalk.

Baseline test data were acquired on the day immedi-
ately following the training period and then once weekly
for the next sevenweeks. During each testing session,
subjects were required to complete three compliant runs,
which, for this study, were defined by continuous, uninter-
rupted locomotion that traversed the entire walkway in ei-
ther direction. Further criteria were also specified using
the CatWalk program, as described in Table 2.

Selection of popular CatWalk outcome measures

A previous publication (Kappos et al., 2017) identified
four variables as being most commonly used in CatWalk
analysis (albeit for analysis of hindlimb nerve function):
swing duration, (paw) print size, stride length, and maxi-
mum (paw) contact area. In this study, we conducted a
similar search in PubMed but limited the search to only
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include studies on spinal cord injury in rats; our search
terms were: “rat,” “spinal cord injury,” “Catwalk.” The
search hits were then examined to extract the most com-
monly analyzed outcomes.

Analysis of example data

As an illustration of the value that can be added by
using this new method we analyzed open source material
available at odc-sci.org (https://scicrunch.org/odc-sci/
lab/view-dataset?labid=51&datasetid=26). These data were
collected as part of an experiment to examine the relation-
ships between different behavioral outcome measures
following spinal cord injury (Ferguson et al., 2013) and the
raw data made publicly available. Our analysis here is
simply to demonstrate how the method can be applied to
an experimental dataset that is available for readers to in-
vestigate for themselves and not to provide alternative in-
terpretations of the data. The rats in that experiment were
trained to cross the CatWalk before induction of a cervical
spinal cord injury using the MASCIS/NYU 10g impactor
dropped from 12.5 mm (Gruner, 1992; Young, 2009).
Behavioral function was then tested at weeks 1, 3, and 6
(although data from week 1 are unavailable; Ferguson et
al., 2013).

Since our analysis here is illustrative only, we focused
on one variable only; we selected hindlimb stride length
because it is a widely-used outcome after spinal cord in-
jury. We used the week 3 data as baseline, then calcu-
lated the boundary value that would need to be breached
to indicate a change in stride length that was “meaningful”
(i.e., exceeded that which might occur spontaneously be-
cause of physiological and analytical variation). We then
compared the recorded value at week 6 for each rat with
the previously calculated boundary value for improvement
(in this example an increase in stride length) to determine
in how many rats stride length was meaningfully in-
creased. These comparisons were presented in tables.

Statistics

For each outcome variable, the pooled data from all
time points in all animals were evaluated for normality
using histograms and g-q plots and then analyzed using
standard methods to partition the interindividual and

Table 2: Limits used to define a compliant run

Run criteria

Minimum run duration: 0.5 s

Maximum run duration: 5.00 s

Minimum number of compliant runs to acquire: 3

Use maximum allowed speed variation (left unchecked)
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intraindividual variation (Fraser, 2001). In this type of investi-
gation, the “analytical variation” relating to variation in equip-
ment function cannot be estimated separately and so
becomes included within the intraindividual variation. For
most variables (those with a normal distribution), the raw
data were entered into a mixed linear regression model with
each animal entered as a random effect (Stata 14, StataCorp
Ltd). The intraindividual coefficient of variation was derived
as usual (i.e., SD/mean) and then used to derive the refer-
ence change interval (RCI), which defines the upper and
lower boundaries within which sequential measurements of
the same variable may spontaneously vary within an individ-
ual, by using the previously described (Harris and Yasaka,
1983) formula of:

RCI = baseline +/ — (baseline = RCV),

where RCV (reference change value) = CV, * 2°5 x Z,,
and CV; is the intraindividual coefficient of variation; Z, is
the z score selected to set the desired stringency of the in-
terval and conventionally is set to consider a 5% false
positive rate acceptable, which corresponds to a z score
of 1.96. (Although very widely used in biomedicine, the
5% false positive rate is arbitrary and could be set more
stringently by altering the z score in the formula; doing
this will reduce proportion of individuals flagged as show-
ing intervention effects.)

For those variables with a non-normal distribution, the log-
normal method was used (Fokkema et al., 2006), in which the
upper and lower boundaries are calculated separately.

For our illustrative example on use of the RCI, we com-
pared stride length at week 3 and week 6 in the odc-sci.
org SciCrunch database using a paired Student’s t test.

It is evident, and previously documented (Batka et al.,
2014), that many commonly used CatWalk outcome varia-
bles may be correlated with each other (for instance, run du-
ration and stride length), or with the time to cross the
walkway, and so we determined the Pearson correlation
coefficients for these interrelationships. We also wished to
determine the variability in other, less commonly-used,
methods of analyzing outcome after spinal cord injury that
might be considered to provide evidence of the coordination
between different limbs. Finally, we examined whether these
other measures of coordination were correlated with run du-
ration or run speed. Sample size decisions for calculation of
RCls are not well defined, partly because different variables
have different ratios between analytical and within-individual
variability (Reraas et al., 2012), but repeated measurements
on relatively small numbers of individuals are known to pro-
vide satisfactory precision (Fraser and Harris, 1989; Braga
and Panteghini, 2016). Specifically, it is recognized that in-
creasing repeat testing on individuals is preferable to enroll-
ing more individuals (Reraas et al., 2012). In this experiment,
we analyzed three runs of 16 rats (therefore all were pair-
housed) on each of eight occasions, following a period of
training to competency.

Results
We recorded data on three runs at each of eight weekly
time points from all 16 rats included in this study, resulting
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Table 3: RCVs
Test Mean RCV (%)
Overall measures of hindlimb
function
Run duration 3.29s 69.3
Average speed 36.87 cm/s 72.5
Base of support 2.71cm 34.4
Coupling RHRF 45.12% 31.6
Coupling LHLF 45.40% 30.8
Hindlimb function, right
Stride length 17.68 cm 29.1
Print area 1.82 cm? 65.0
Swing duration 0.16's 25.7
Swing speed 112.52 cm/s 34.8
Stance duration 0.23"s Up: 121.5;
down: 54.9
Max contact area 1.39 cm? 73.2
Mean intensity 103.61 AU 19.6
Duty cycle 58.60% 24.2
Hindlimb function, left
Stride length 17.71 cm 271
Print area 1.83 cm? 66.1
Swing duration 0.16s 27.2
Swing speed 112.45 cm/s 31.0
Stance duration 0.23"s Up: 136.6;
down: 57.7
Max contact area 1.41 cm? 715
Mean intensity 103.63 AU 20.4
Duty cycle 58.33% 24.9

RHRF, right hind/right fore; LHLF, left hind/left fore; AU, arbitrary units.
“indicates median value, not mean.

in a pooled dataset of 384 measurements for each vari-
able; the complete results are available online at odc-sci.
org (doi:10.34945/F54S3W). In the data as a whole, there
was evidence of considerable variability, as might be ex-
pected, and this can be summarized by describing
means, ranges, etc. However, such analysis fails to take
account of the auto-correlation between repeated meas-
urements made on the same individual. The mixed model
repeated measures analysis used in this experiment ex-
tracts this information and partitions variability into that
within and that between individuals. The PubMed search
using the terms listed above detected 57 hits; from these,
the most commonly-used outcome measures were the
following: base of support, stride length, regularity index,
print area, duty cycle, swing duration, swing speed, maxi-
mum contact area, stance duration, and mean intensity;
in addition, we examined run duration and average speed
because of their relationship with many of these other var-
iables. Each of these variables was then analyzed to de-
rive a RCV.

For these commonly-reported outcomes (not including
the regularity index), the RCV, the amount by which a nor-
mal individual might vary between repeated measure-
ments, varied between 20% and 137 % of baseline values
(Table 3). Data from both hindlimbs were analyzed to as-
sess repeatability, and, as would be expected, the RCVs
were similar between limbs (Table 3). We could not assess
the regularity index using this method because it is a per-
centage outcome with 100% being regarded as normal.
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Table 4: Pearson correlation matrix for commonly measured variables, RH
Run Stride Base of  Print Swing Swing  Max Stance Run Mean Duty
duration  length support area duration speed contact time speed intensity cycle

Run duration 1

Stride length -0.454 1

Base of support 0.090 -0.268 1

Print area 0.219 -0.140 0.098 1

Swing duration 0.218 0.0207 0.046 -0.004 1

Swing speed -0.487 0.720 -0.223 -0.071  -0.660 1

Max contact 0.183 -0.107 0.062 0.97 -0.021 -0.039 1

Stance time 0.568 -0.558 0.260 0.202 0.202 -0.546 0.354 1

Run speed -0.770 0.588 -0.161 -0.326 -0.326 0.660 -0.305 -0.716 1

Mean intensity 0.057 0.123 0.115 0.509 0.016 0.090 0.579 0.079 -0.060 1

Duty cycle 0.437 -0.673 0.235 0.515 -0.176 -0.361 0.458 0.773 -0.617 0.114 1

Bold indicates p < 0.05.

The definition of 100% as normal implies a ceiling effect
that creates an obstacle to quantifying variability.

There was strong and significant correlation between
most popular outcomes and the run duration, the excep-
tions were base of support and mean intensity (Table 4),
both of which quantify aspects of paw placement. As ex-
pected, and previously reported (Batka et al., 2014), varia-
bles such as run duration, (limb) swing speed and stance
time, were strongly correlated with run speed. Most of the
popular outcome measures were closely intercorrelated.
Important exceptions were the poor correlations between
base of support and print area with swing duration and
that between most measures of limb motion (except stride
length) and mean intensity.

Kinematic data can be used to examine the strength of
temporal relationships between movements in different
pairs of limbs (Diogo et al., 2019), and there are similar
data available from CatWalk that might be helpful in ana-
lyzing outcome following thoracolumbar spinal cord in-
jury. In particular, CatWalk produces many measures of
the temporal relationship between placement of two spe-
cific paws (see Batka et al., 2014), and which can be ex-
pressed as a percentage of contact time of one paw
during the step cycle period of another. Some of these re-
lationships are summarized as circular statistics (e.g.,
“CStat mean”; Fig. 1) and can take values between 0 and
100. As an example, we determined that coupling be-
tween right hindlimb (RH) and right forelimb (RF) had a
similar RCV to other popular variables: 31%. There was
no apparent correlation between run speed and RH-RF
coupling interval (r= —0.012; p =0.885; Fig. 1).

lllustrative example

In order to provide a more concrete example of the use
of individual analysis, we applied our results to open
source data provided on the odc-sci.org SciCrunch data-
base (https://scicrunch.org/odc-sci/lab/view-dataset?
labid=51&datasetid=131). These data are derived from
rats that had unilateral C5 level spinal cord injuries and
were then tested on the Catwalk at weeks 3 and 6 after in-
jury (week 1 data were not available for logistic reasons
during the original experiment). Rats in this database did
not receive any test intervention. In the specific example
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we show below, the data are those for RH stride length
following NYU impactor injury (Gruner, 1992; Young,
2009) with a weight drop of 12.5 mm.

The analysis of our normal rats defined that, for animals
at a functional plateau, the RCV for hindlimb stride length
is 28%, implying that a change of 28% or more from
baseline value is necessary to indicate a meaningful
change. As can be seen in Table 5, this difference is at-
tained by five of 32 rats within the tested group.
Conventional analysis by paired sample Student’s t test
shows that there is a significant difference (means: week
3, 150.4 mm; week 6, 166.8 mm; p =0.0009) between the
two time points (Fig. 2). A meaningful change (i.e., more
than would be expected from analytical and physiological
fluctuations alone) in 16% (5/32) of animals is more than
would be expected by chance [the RCI boundaries are set
with a 95% confidence interval (two tails of z score of
1.96) implying that, on average, values for only 2.5% of
the population would exceed the upper boundary].
Nevertheless, the change in function between week 3 and
week 6 is not meaningful for 84% of animals, consistent
with the majority of rats reaching a functional plateau on

80+
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Figure 1. Scatter plot between run speed and right hind/right fore
(RH/RF) coupling in normal rats on the CatWalk. There is no appa-
rent correlation between these variables (- = —0.012; p =0.885).
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Table 5: Application of RCI analysis to previously published data on RH stride length following unilateral 12.5-mm NYU im-

pactor injury at C5

Week 3 Week 6 Upper RCI Lower RCI Week 6 exceeds  Week 6 less

Rat Stride Stride RCV (from  boundary boundary upper RCI than lower RCI
number length (mm) length (mm) ourstudy) (=week3+RCV) (=week3-RCV) boundary? boundary?
1 150.70 158.39 42.20 192.90 108.50 No No
2 159.17 184.74 44.57 203.74 114.60 No No
3 138.41 176.61 38.76 17717 99.66 No No
4 150.63 161.65 42.18 192.81 108.46 No No
5 146.08 148.88 40.90 186.98 105.18 No No
6 143.36 143.85 40.14 183.50 103.22 No No
7 169.21 169.29 47.38 216.58 121.83 No No
8 168.78 188.33 47.26 216.04 121.52 No No
9 169.94 154.81 47.58 217.52 122.36 No No
10 197.48 169.24 55.29 252.77 142.19 No No
11 190.84 193.31 53.43 244.27 137.40 No No
12 128.59 145.83 36.00 164.59 92.58 No No
13 172.51 180.00 48.30 220.81 124.21 No No
14 137.35 179.32 38.46 175.80 98.89 Yes No
15 122.18 175.32 34.21 156.39 87.97 Yes No
16 110.61 198.19 30.97 141.58 79.64 Yes No
17 117.51 192.55 32.90 150.41 84.61 Yes No
18 125.85 135.39 35.24 161.09 90.61 No No
19 142.68 150.32 39.95 182.63 102.73 No No
20 153.95 147.86 43.11 197.06 110.85 No No
21 153.02 170.64 42.85 195.87 110.18 No No
22 154.96 166.54 43.39 198.34 111.57 No No
23 154.82 189.25 43.35 198.18 111.47 No No
24 149.06 176.97 41.74 190.79 107.32 No No
25 126.54 140.62 35.43 161.97 91.11 No No
26 156.21 183.76 43.74 199.95 112.47 No No
27 163.30 170.99 45.72 209.02 117.57 No No
28 130.30 172.69 36.49 166.79 93.82 Yes No
29 150.85 132.10 42.24 193.09 108.61 No No
30 164.72 153.03 46.12 210.85 118.60 No No
31 172.34 167.85 48.26 220.60 124.09 No No
32 141.57 158.13 39.64 181.21 101.93 No No

this outcome measure between three and six weeks after
injury.

In this example, change in function was generated by
time alone, but the same principle could be used in other
experiments to determine the proportion of individuals
that exceed boundary levels of function following an
intervention.

Discussion

This analysis of widely-used CatWalk outcome meas-
ures can enrich interpretation of experiments through pro-
vision of additional viewpoints on the data, therefore
increasing robustness of analysis. In this experiment, we
defined boundary limits of spontaneous variability in out-
come measures within individual animals as they com-
plete the CatWalk test. These boundary limits can then be
applied, as we demonstrate in our example, to determine
how many animals within an experimental group achieve
meaningful change from baseline function and provides
context to interpret the magnitude of that change. The
ability to define outcomes in specific individuals and to
define the proportion of individuals that have exceptional
outcomes that is provided by this method complements
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standard analysis of group-level outcomes. Using the same
dataset an investigator acquires two lines of evidence re-
garding intervention effect: the overall group effect and the
proportion of individuals that show exceptionally good (or
bad) outcomes.

First, the large RCls associated with many of the investi-
gated CatWalk outcome measurements implies that only
substantial changes from baseline would provide evidence
for an intervention effect in any specific test individual. As
we show in our illustrative example, this interpretation may,
at first sight, seem at odds with the interpretation derived
from routine examination of group-level data. The explana-
tion of this difference is that, while there may be an improve-
ment in measured function in many subjects in a group that
is associated with a significant change on a standard statis-
tical test, in contrast, at an individual level each subject may
improve by less than that which occurs spontaneously as
natural variability in function. This is not to say that the
group-level difference should be ignored, just that the indi-
vidual-level analysis provides additional information; in our
example, for instance, it demonstrates that only a small pro-
portion of the subjects make improvements beyond that
which might be anticipated because of stochastic behav-
ioral variation. The realization that only substantial changes
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Figure 2. RH stride length at week 3 and week 6 after rats had

received a unilateral C5 spinal cord impact injury (SciCrunch
data).

in individual function are meaningful for many of these out-
comes also aids in interpreting the magnitude of effect ob-
served throughout the group as a whole. For instance, the
group effect we detected in the illustrative example was a
change in mean stride length of ~15 mm, which amounts to
~10% of the baseline (week 3) stride length. Comparison
with the RCV of 28% implies that the detected group level
change is small when viewed in the context of the variability
of an individual’s limb function.

RCI analysis of this type may be helpful for many experi-
ments that are designed with an eye on translation to the
clinic. To be therapeutically successful, clinical interven-
tions (most relevantly here for spinal cord injury) need to
have a noticeable benefit on individual patients (although
this might also depend on cost-benefit ratio; Steeves et
al., 2012). For instance, a patient who is asked to consider
receiving an intraspinal allograft cell transplant (that
would carry considerable potential risk) would be likely to
want to receive greater functional improvement than
might be the current difference between their disability on
a “good” versus a “bad” day. Therefore, this individual-
level analysis can aid in increasing the rigor with which
putative therapeutic interventions are selected to go for-
ward to clinical trials. Use of CatWalk outcome measures
in this context might be questioned, because only rats
that have reasonable ability to walk can complete the
CatWalk test, and, as such, these animals may not appro-
priately model severe spinal cord injury in humans. For
that reason, intervention benefit detected by CatWalk
might not imply similar benefits would accrue in severely
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spinal cord-injured individuals (including people). On the
other hand, analysis using the RCI as described here can
provide greater confidence in intervention effect and such
reliable identification of an effect in any incomplete injury
could be used as a first step to suggest similar benefit in
incompletely injured humans.

A second major benefit of using the individual-level
analysis is to aid in designing efficient experiments,
through two main routes. First, in the example dataset, we
can identify specific rats in which there was a meaningful
change in stride length between week 3 and week 6.
Examining the data suggests that those individuals had
relatively short stride lengths at week 3, and this informa-
tion could be used to make future experiments more effi-
cient. So, if spontaneous increase in stride length was
largest in those with short strides at week 3, it would be
advantageous to exclude such animals if the test inter-
vention was thought likely to increase stride length: the in-
dividuals most likely to show spontaneous improvement
will only add noise to the expected intervention signal. An
alternative explanation might be that there is a ceiling ef-
fect in this dataset, such that many animals have already
attained a “normal,” or near-normal, stride length by week
3 after injury and that there is little scope for improvement
by week 6. If this were the case, which could be confirmed
by testing animals at later time points, then it would sug-
gest that the experiment would be more efficient if a more
severe injury model was used.

We are aware that our analysis of the illustrative exam-
ple assumes that we can apply the RCls derived in our
laboratory to data derived elsewhere and stress that we
are simply using it as an example. Ideally, all laboratories
would derive their own RCls, because the precise condi-
tions in which rats are tested may vary and so measure-
ment variability within and between individuals might also
consequently vary. However, this might not always be
practical and an alternative approach is for training and
testing methods to be standardized as much as possible
between laboratories to facilitate comparison. Even so,
there are many reasons to consider that RCls are largely
an inherent property of the parameters that are measured,
a well-recognized feature in clinical medicine (Ricos et al.,
2004), and are relatively robust. First, the RCI is derived
from coefficient of variation, which standardizes variation
against the mean within the same dataset, meaning that
small changes in mean values will have little effect.
Second, variability in sick individuals at a plateau is recog-
nized to be generally similar to that in healthy individuals
(Fraser and Harris, 1989), and, in human medicine, it is
not generally necessary to construct individual RCls for
different groups of people (e.g., by age, ethnicity, etc.) be-
cause they are associated with minimal effects (Jones,
2019). It is recognized that in acute sickness, some meas-
ured values are more variable than they are in health
(Ricos et al., 2017), but the effects on decision-making
would be to make this individual-level analysis more
(rather than less) sensitive than it should be (i.e., it will
falsely identify too many individuals as exceptional).
Finally, as others have noted (Ricds et al., 2004), a
breached reference change boundary should be inter-
preted in combination with other factors, such as, in this

eNeuro.org



eMeuro

context, group-level analysis, rather than as a brightline
delineation between “abnormal” and “normal.”

When considering the future implications of our analysis
of CatWalk data, an “ideal” outcome measure would un-
equivocally quantify an aspect of spinal cord function and
have a high level of precision and low intraanimal and in-
teranimal variation, meaning that any changes in function
induced by an intervention would be easily detected.
Furthermore, if a battery of tests is to be used, it is impor-
tant that each item should be independent. In this experi-
ment we examined many of the most popular CatWalk
outcomes and few meet all these criteria. First, many of
these measures have high intraanimal variability, many
have RCVs >50%, indicating a need for substantial
change from baseline to define an effect greater than
could be attributed to spontaneous variation. Those out-
come measures with high RCVs are likely to prove insen-
sitive to intervention effects. It is noteworthy that the
variability in many outcomes was large despite us setting
reasonably stringent rules about “compliant” walkway
traverses.

Another difficulty is that many of the most popular
CatWalk outcomes are correlated with each other, pre-
sumably through a mutual dependence on run duration or
run speed. Although this is not necessarily a problem if
just one of these variables is used alone, it does become
more problematic if several are used in a battery of tests
since, essentially, they are all providing similar informa-
tion. On the other hand, we have found that some of the
kinematic-like measures, such as the coupling between
specific pairs of limbs, have reasonably low RCVs and so
might be relatively sensitive in detecting effects of lesions
of interventions. Furthermore, measures of limb coupling
across the lesion site (i.e., fore and hind coupling) have
the advantage that they are likely to measure aspects of
spinal cord function that are susceptible to disruption by a
thoracic lesion (Diogo et al., 2019). As we demonstrate
here, they also have the merit of not being susceptible to
changes in run duration/run speed.

An important aspect of designing experiments is having
predefined outcome measures, as would be standard
practice in clinical trials (Kendall, 2003), although in labo-
ratory studies, it is also necessary to consider the balance
between exploratory and confirmatory intent (Kimmelman
et al., 2014). CatWalk offers a plethora of variables to
choose from, and if outcome measures are not prede-
fined, there is the risk that detected positive results might
reflect random effects selected by the researcher after
data generation (Wicherts et al., 2016). For this reason, it
is essential for CatWalk experiments that the variables
that will be used to determine the efficacy of an interven-
tion are defined before the study commences and, also, if
possible, the magnitude of change that can be defined as
meaningful is also predefined. Based on our analysis pre-
sented here, it would seem prudent to select outcomes
that have minimal intraanimal variability and also not to re-
strict analysis only to outcomes that are inevitably corre-
lated by their dependence on run speed (or duration).

Therefore, based on our results, we would suggest
using stride length or swing duration and base of support
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or duty cycle as appropriate measures of hindlimb use fol-
lowing thoracic spinal cord injury, plus using hindlimb-
forelimb coupling as a kinematic outcome that might be
expected to quantify coordination mediated by the injured
region of the spinal cord. The results we present here
might also be helpful for defining minimum difference be-
tween groups in sample size calculations for future ex-
periments using these outcome variables.

Finally, as a limitation to this form of analysis, it is impor-
tant to note that the derivation of RCls is dependent on
calculation of the within-individual coefficient of variation
that, in turn, depends on calculation of standard devia-
tion. This implies a need for continuous numerical data
and a range of values in normal individuals that does not
include a floor or ceiling. Thus, commonly-used behav-
ioral outcomes used in spinal cord or brain injury models
that quantify times, distances, angles, or forces, such as
the rotarod, water mazes, open field maze, joint or limb
position or kinematics, grip strength, and sticky label re-
moval, are clearly amenable to this analysis of variability.
Non-behavioral tests such as electrophysiological meas-
ures and quantification of components of body fluids can
also be analyzed by this method, although there is a re-
quirement for repeated measures on normal animals,
which must not in themselves be a cause of variation
(e.g., repeated CSF sampling). Count data are less ame-
nable, because outcomes are integers, but they can often
be easily converted into counts per unit time or distance,
and so the method may be adapted for the forepaw
reaching, cylinder (rearing) and beam walking tests. It is
also important to highlight that, although it is most
straightforward to derive RCVs from normally distributed
data, the method can be applied to non-normal data by
using the log-normal method (Fokkema et al., 2006).

However, for two reasons, analysis of individual vari-
ability by calculation of a RCV is not appropriate for out-
comes that are derived from a scoring scale, such as the
“BBB scale” (Basso et al., 1995), the (modified) neurologic
severity scale or the Bederson scale (Bederson et al.,
1986). First, by definition, normal animals almost invaria-
bly score at the floor or ceiling of these scales meaning
that it is not possible to determine “expected” variability
and, second, the attributed scores are not truly numeric
and so the standard deviation has an uncertain meaning.
Instead, for this type of outcome measure, population-
based reference intervals can be used to define bounda-
ries within which defined proportions of the outcome val-
ues will fall at specific times after specific injuries (Jeffery
et al., 2020), although such methods require much larger
sample cohorts.
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