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Bile acids (BAs) comprise heterogenous amphipathic choles-
terol-derived molecules that carry out physicochemical and sig-
naling functions. A major site of BA action is the terminal
ileum, where enterocytes actively reuptake BAs and express
high levels of BA-sensitive nuclear receptors. BA pool size and
composition are affected by changes in metabolic health, and
vice versa. One of several factors that differentiate BAs is the
presence of a hydroxyl group on C12 of the steroid ring. 12a-
Hydroxylated BAs (12HBAs) are altered in multiple disease set-
tings, but the consequences of 12HBA abundance are incom-
pletely understood. We employed mouse primary ileum
organoids to investigate the transcriptional effects of varying
12HBA abundance in BA pools. We identified Slc30a10 as one
of the top genes differentially induced by BA pools with varying
12HBA abundance. SLC30A10 is amanganese efflux transporter
critical for whole-body manganese excretion. We found that BA
pools, especially those low in 12HBAs, induce cellular manga-
nese efflux and that Slc30a10 induction by BA pools is driven
primarily by lithocholic acid signaling via the vitamin D recep-
tor. Administration of lithocholic acid or a vitamin D receptor
agonist resulted in increased Slc30a10 expression in mouse il-
eum epithelia. These data demonstrate a previously unknown
role for BAs in intestinal control ofmanganese homeostasis.

Bile acids (BAs) are cholesterol catabolites that regulate
many biological functions, includingmultiple aspects of macro-
nutrient metabolism. One of the mechanisms by which they do
so is by promoting lipid emulsification and absorption (1–3). A
second mechanism is by acting as a ligand for BA receptors,
which can regulate lipid and glucose metabolism (1–4). It is
underappreciated that there is structural diversity among BAs
that results in variable capacities to activate BA receptors (5–
10). This structural diversity arises from the number and posi-
tion of hydroxyl groups and the conjugation of the molecule to
glycine, taurine, or neither (11, 12). Thus, the composition of
the BA pool may affect the activity of BA receptors. However,
the biological consequences of altered BA pool composition are
not fully known.
One key determinant of BA composition is the hepatic

enzyme sterol 12a-hydroxylase (encoded by CYP8B1). By add-
ing a 12a-hydroxylation to an intermediate of the BA synthesis
pathway, CYP8B1 determines the hepatic synthesis of cholic

acid (CA) instead of chenodeoxycholic acid (CDCA) (Fig. 1A)
(12, 13). In settings of insulin resistance, there is an increased
proportion of CA, its bacterial metabolite deoxycholic acid
(DCA), and their conjugates—collectively termed 12a-hydroxy-
lated BAs (12HBAs) in the BA pool (14, 15). Rates of 12HBA
synthesis and CA conversion to DCA are also higher in insulin
resistance and type 2 diabetes (16, 17). Moreover, even in
healthy subjects, increases in 12HBAs are correlated with the
characteristic metabolic abnormalities of insulin resistance
(14). In contrast, Cyp8b1–/– mice, which lack 12HBAs, are
protected from Western-type diet–induced weight gain and
atherosclerosis compared with WT mice (18–20). Cyp8b1–/–

mice also show improved glucose tolerance, which has been
proposed to be due to increased secretion of glucagon-like
peptide-1 (GLP-1) (21). Mice subjected to vertical sleeve gas-
trectomy, a common weight loss surgery, exhibit reduced
Cyp8b1 mRNA expression as well as lower ratios of 12HBAs:
non-12HBAs in circulation (22). Furthermore, siRNA against
Cyp8b1 improved nonalcoholic steatohepatitis in mice (23).
Thus, CYP8B1 inhibition is a potential therapeutic target for
metabolic diseases. However, the biological processes that
are regulated by 12HBAs are incompletely understood.
A major site of BA signaling is the intestine, which encoun-

ters high BA concentrations, ;2–12 mM after a meal (24, 25).
The intestine epithelium expresses at least three BA receptors.
The transcription factor FXR regulates BA transport and feed-
back suppression of hepatic BA synthesis and also modulates
lipid and glucose metabolism (1). The membrane receptor
TGR5 regulates glucose homeostasis and colonic motility by
promoting the secretion of GLP-1 and serotonin (26–28).
Another intestinal receptor responsive to certain BAs is the
vitamin D receptor (VDR), whose canonical role is to promote
calcium and phosphate absorption (29). For each of these
receptors, the best reported endogenous BA agonists are non-
12HBAs. For FXR, it is CDCA (5, 6, 9), and for TGR5 and VDR,
it is lithocholic acid (LCA) (7, 8, 10). LCA is formed by 7a-
dehydroxylation of CDCA by bacterial enzymes in the gut.
Thus, BA composition is predicted to impact signaling through
multiple receptors in the intestine.
Investigating the effects of BA composition on intestinal

BA signaling in vivo is challenging because of the continued
presence of endogenous BAs. This is particularly important
for experiments in mice, as mice contain a class of BAs—
muricholic acids, which are non-12HBAs—that are not found
in healthy adult humans (although we note that, conversely, all
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known BAs in the human BA pool are also present in mice
and are transported through the mouse intestinal epithe-
lium to undergo enterohepatic circulation). To fill the gap,
we used primary murine intestinal organoids, also called
enteroids. These organoids are generated from stem cells of
the intestinal crypts and contain all known cell types of the
intestinal epithelium (30). We investigated the effects of BA
pools of different compositions on ileal organoids, with a
particular focus on the effects of lowering 12HBAs (to

mimic CYP8B1 inhibition). Furthermore, we addressed the
interspecies differences in BAs by using BA pools that we
designed to mimic the effects of CYP8B1 inhibition in
humans and mice.
We unexpectedly found that varying 12HBA proportions

modulates expression of Slc30a10, a manganese efflux trans-
porter critical for whole-body Mn excretion. Cellular Mn levels
are tightly regulated, as Mn is essential for numerous cellular
processes, yet its excess is toxic (31). Our data demonstrate a

Figure 1. Differential regulation of gene expression by BA pool composition. A, simplified BA synthesis pathway. B, composition of BA pools used in this
study. Glycine-conjugated BAs were used in human pools, whereas taurine-conjugated BAs were used in mouse pools, except LCA, which was unconjugated.
C, expression of FXR target genes measured by qPCR. n = 3–4 wells of organoids/condition. D, genes preferentially induced by H10 and M10 compared with
H90 and M90 identified by RNA-Seq (log2 -fold change . 1 and padj , 0.05). n = 3/condition. E, expression of VDR target genes measured by qPCR (n = 3–4
wells/condition). Full result tables for one-way ANOVA (C and E) and post hoc pairwise comparisons are shown in Table S4. *, p, 0.05; **, p, 0.01; ***, p,
0.001; ns, not significant. Error bars, S.D.
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previously unknown role of BAs in intestinal control of metal
homeostasis.

Results

Distinct BA pool compositions differentially induce gene
expression

To test the effects of a low-12HBA pool on intestinal gene
expression, we designed four distinct BA pools with which to
stimulate primary murine ileal organoids. The differences
between the pools were due to two key features: (i) the propor-
tion of 12HBAs, either 10% (low) or 90% (high), and (ii) the BA
pool of the species we modeled, either human or mouse (Table
1 and Fig. 1B). In the human pools, there was a larger propor-
tion of DCA, and the BAs were glycine-conjugated, whereas in
the mouse pools, BAs were taurine-conjugated, to mimic the
natural abundance in those species (4, 32, 33). Mouse BA pools
containedmuricholic acids, whereas these were not included in
the human pools. Thus, the four BA pools are labeled human
low 12HBA (H10), human high 12HBA (H90), mouse low
12HBA (M10), and mouse high 12HBA (M90). Importantly,
the total BA pool concentration was the same across all treat-
ment groups. We prepared the four BA pools in mixed micelles
containing oleic acid, 2-palmitoyl glycerol, phosphatidylcho-
line, and free cholesterol to mimic conditions of the intestinal
lumen. We used the four lipid-emulsified BA pools to treat pri-
mary murine ileal organoids. The vehicle control contained all
micelle components except BAs. We performed bulk RNA-Seq
after 24 h of treatment.
We focused on the effects of the low-12HBA pools, as this

would mimic the effects of CYP8B1 inhibition. We examined
all genes that were significantly induced compared with vehicle,
setting thresholds of log2FC. 1.0 and padj , 0.05 for differen-
tial expression. The low-12HBA pools collectively induced
1361 genes. Of these, 516 reached those thresholds for both
H10 and M10 pools, 95 reached those thresholds for H10 only,
and 750 reached the thresholds for M10 only (Fig. S1A). Path-
way analysis indicates enrichment of genes involved in lipid
metabolism, consistent with known effects of BAs (Table 2).
Next, we focused on the subset of these genes that are differ-

entially regulated by low- versus high-12HBA pools, with a par-
ticular focus on those for which the effects were shared
between human and mouse pools. We used a threshold of
log2FC . 1.0 and padj , 0.05 for differential expression. The
majority of genes did not reach this threshold, indicating that
they are similarly regulated by both low- and high-12HBA

pools or are differentially regulated by low versus high 12HBAs
in human pools only or in mouse pools only (Fig. S1B). These
genes included canonical FXR targets such as Fgf15, Fabp6
(encoding the ileal bile acid–binding protein, Ibabp), and
Slc51b (encoding the basolateral BA efflux transporter Ostb),
and we validated these by qPCR (Fig. 1C).
There were 44 genes that were preferentially induced by H10

and M10 compared with H90 and M90, respectively (Fig. 1D).
Among these, we noted that several are known transcriptional
targets of VDR. These included Cyp24a1, S100g, and Cyp3a11,
and we validated these by qPCR (Fig. 1E). This is consistent
with the concepts that (i) certain BAs, especially the non-
12HBA LCA and its conjugates, can activate VDR in themicro-
molar range (10), and (ii) the low-12HBA pools (i.e. H10 and
M10) contain more LCA (9mM, as opposed to 1 mM in the high-
12HBA pools).
Next, we validated the RNA-Seq findings in multiple experi-

mental systems. Using organoids derived from multiple mice,
we confirmed that all BA pools induced expression of FXR tar-
gets Fgf15 and Fabp6 (Supp. Fig. S1C). We also confirmed that
VDR targetsCyp24a1 and S100gwere preferentially induced by
low-12HBA pools (Fig. S1D). We found that delivery in
micelles was not required and that BAs per se were sufficient to
induce Fgf15, Fabp6, and S100g (Fig. S1E). Last, to determine
whether differential responses to BA pools also occur in human
cells, we performed experiments in Caco-2 cells, which are
enterocyte-like cells derived from a human epithelial colorectal
tumor. We observed that FXR and VDR targets were robustly
induced by H10, but not H90 (Fig. S1, F andG).

BA composition regulates Slc30a10 expression and cellular
Mn efflux

Among the genes identified to be differentially expressed
between BA pools with varying 12HBA abundance, one of the
most robust was Slc30a10 (Fig. 1D). This gene encodes a Mn
efflux transporter critical for whole-body Mn excretion (34–
41). Humans with mutations in SLC30A10 develop hyperman-
ganesemia, accompanied by parkinsonism and cirrhosis (34, 35,
42–44).
In gut organoids, low-12HBA pools were superior to high-

12HBA pools in inducing Slc30a10 (Fig. 2, A and B). This pref-
erential induction was consistent across multiple independent
batches of organoids (Fig. 2, C and D). This differential expres-
sion of Slc30a10 was also observed when BA pools were deliv-
ered without micelles (Fig. 2E), indicating a direct effect of BAs.
We also validated that the H10 pool induces SLC30A10 in
human Caco-2 cells (Fig. 2F).
Next, we sought to determine whether BA-induced changes

in Slc30a10 transcript levels yield functional cellular conse-
quences. We predicted that the induction of Slc30a10 expres-
sion by low-12HBA pools would increase Mn efflux from
organoids. To test this, we carried out Mn efflux assays,
where we preloaded cells with Mn, washed away unabsorbed
Mn, then treated the cells with vehicle or BA pools, and meas-
ured Mn levels in efflux media. Organoids treated with H10
had higher Mn in their efflux media compared with organoids
treated with vehicle or H90 (Fig. 2G). Consistently, Caco-2

Table 1
Composition of BA pools. BAs were in their glycine-conjugated
forms for human BA pools and taurine-conjugated forms for mouse
BA pools, except LCA, which was unconjugated

BA group BA species In H10 In H90 In M10 In M90

mol % mol % mol % mol %
12HBA Cholic acid 7 63 9.0 81.0
12HBA Deoxycholic acid 3 27 1.0 9.0
Non-12HBA Chenodeoxycholic acid 86.85 9.65 13.5 1.5
Non-12HBA Ursodeoxycholic acid 2.25 0.25 8.1 0.9
Non-12HBA Lithocholic acid 0.90 0.10 0.9 0.1
Non-12HBA a-Muricholic acid 22.5 2.5
Non-12HBA b-Muricholic acid 45.0 5.0
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cells receiving H10 also showed higher Mn efflux compared
with vehicle- and H90-treated cells (Fig. 2H). Altogether,
these data show that BAs, particularly pools low in 12HBAs,
induce cellular Mn efflux, consistent with their induction of
Slc30a10.

Slc30a10 expression is driven by LCA-to-VDR signaling

Recently, SLC30A10 mRNA expression was found to be
induced by the VDR agonist 1a,25-dihydroxyvitamin D3 in
Caco-2 cells (45). LCA is a potent VDR ligand, with an EC50

comparable with CDCA’s EC50 for human FXR (10). Although
LCA made up ,1% of the BA pools in our studies, the LCA
concentration in the low-12HBA pools was 9 mM. As a point of
reference, in the duodenum of healthy adult humans, the total
bile acid concentration is 20 mM, and LCA makes up 1–3% of
the pool,;200-600mM (25, 46, 47). Although LCA is partly sul-
fated and excreted, a portion is taken up into enterocytes (48,
49). Thus, we investigated whether the differential Slc30a10
induction by low-12HBA pools was due to LCA-to-VDR
signaling.
To test whether LCA is the differentiating factor between

H10 and H90 in their induction of Slc30a10, we treated ileal
organoids with H10 and H90 pools lacking LCA (Table S1). In
pools lacking LCA, we compensated for its removal by increas-
ing other non-12HBAs such that the total BA pool concentra-
tions matched. Without LCA, H10 induction of Slc30a10 was
significantly blunted (Fig. 3A). This pattern was similar to that
of VDR targets Cyp24a1 and S100g (Fig. 3B). On the other

hand, the presence or absence of LCA had no effect on FXR tar-
gets Fgf15 and Fabp6, consistent with the observation that LCA
is not a potent FXR agonist (Fig. 3C).
To test whether CDCA contributes to differential Slc30a10

induction between low- and high-12HBA pools, we treated gut
organoids with M10 and M90 pools containing or lacking T-
CDCA (Table S2). In pools lacking T-CDCA, we compensated
for its removal by increasing other non-12HBAs such that the
total BA pool concentrations matched. Removing T-CDCA
had no significant effect on Slc30a10 mRNA levels (Fig. 3D),
suggesting that CDCA is dispensable for Slc30a10 induction.
Similarly, there was no effect of removing T-CDCA on
Cyp24a1 or S100g expression (Fig. 3E). CDCA and its conju-
gates are potent agonists of FXR (5, 6, 9). Consistent with this,
removing T-CDCA from M10 and M90 pools resulted in
blunted Fgf15 and Fabp6 induction (Fig. 3F). Together, these
findings indicate that LCA, but not CDCA, is the BA primarily
responsible for the differential expression of Slc30a10 between
low- versus high-12HBA pools.
To directly test the requirement of VDR for BA-induced

Slc30a10mRNA expression, we carried out experiments on gut
organoids derived from VDR1/1, VDR1/2, and VDR–/– litter-
mate mice. Strikingly, VDR–/– gut organoids showed substan-
tially blunted Slc30a10 mRNA expression in response to H10
pool (Fig. 3G). Furthermore, VDR1/– gut organoids increased
Slc30a10 mRNA expression to intermediate levels between
that in VDR1/1 and VDR–/– organoids, suggesting a gene dos-
age effect. As expected, ablating VDR diminished the induction
of Cyp24a1 and S100g (Fig. 3H) but had little effect on Fgf15

Figure 2. Low-12HBA pools regulate Slc30a10 expression andMn efflux. Shown are Slc30a10mRNA levels in gut organoids treated with human BA pools
(A) and mouse BA pools (B); n = 4–6 wells of organoids/condition. C and D, aggregate -fold change differences in Slc30a10 induction across different batches
of organoids. Each point represents the data derived from a different mouse (n = 8–18). The data point plotted is the ratio of (average mRNA levels in low-
12HBA–treated organoids (n = 3–8 well))/(average mRNA levels in high-12HBA–treated organoids (n = 3–8 wells)). Ratios.1 signify higher expression in the
low-12HBA–treated group, ratios,1 signify higher expression in the high-12HBA–treated group, and ratios = 1 signify no difference between low- and high-
12HBA–treated groups. The gray dotted linemarks ratio = 1. *, p, 0.05; **, p, 0.01, one-sample t test with m = 1 (expected ratio for no preferential induction).
E, Slc30a10mRNA levels in ileal organoids treated with human BA pools delivered without or with micelles. n = 8 wells/condition. F, SLC30A10mRNA levels in
Caco-2 treated with human BA pools; n = 3–4 wells of cells/condition. G andH, Mn concentrations in effluxmedia of organoids (G) and Caco-2 cells (H); n = 3–4
wells/condition. Full result tables for one-way ANOVA (A, B, and F), two-way ANOVA (E and G), one-sample t tests (C and D), and pairwise comparisons are pro-
vided in Table S5. *, p, 0.05; **, p, 0.01; ***, p, 0.001. Error bars, S.D.
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and Fabp6 (Fig. 3I). We noted that VDR–/– gut organoids still
showed a small but significant increase in Slc30a10 upon H10
and H90 treatment, suggesting possible residual activation by

another transcription factor. Thus, we conclude that the
induction of Slc30a10 by low-12HBA pools is largely medi-
ated by VDR.

Figure 3. Slc30a10 expression is regulated by LCA–VDR signaling. A–F, mRNA levels of Slc30a10, VDR targets, and FXR targets in WT ileal organoids after
treatment with human BA pools containing or lacking LCA (A–C) or mouse BA pools containing or lacking CDCA (D–F); n = 3–4 wells of organoids/condition.
G–I, expression of Slc30a10, VDR targets, and FXR targets in organoids derived from Vdr1/1, Vdr1/–, and Vdr–/– littermates after exposure to vehicle or human
BA pools; n = 6 wells of organoids/condition. Full result tables for two-way ANOVA (A–F), one-way ANOVA (G–I), and pairwise comparisons are provided in
Table S6. *, p, 0.05; ***, p, 0.001; ns, not significant. Error bars, S.D.
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Effects of BA composition on other Mn transporters

In addition to SLC30A10, enterocytes express at least two
other Mn transporters. The divalent metal transporter 1
(DMT1, encoded by SLC11A2) transports Mn from the intesti-
nal lumen into enterocytes (31). SLC39A14 takes up Mn from
the basolateral side of enterocytes (50), and it has been reported
that SLC39A14 acts synergistically with SLC30A10 to mediate
whole-bodyMn excretion (50–52). However, we found that BA
treatments had no effects on Slc11a2 or Slc39a14 expression in
murine organoids (Fig. 4A) and no effects on SLC11A2 or
SLC39A14 in Caco-2 cells (Fig. 4B).
Another Mn transporter is SLC39A8. This protein is highly

expressed in the liver, where it is critical for Mn uptake from
bile into hepatocytes (53). The localization and physiological
relevance of SLC39A8 in the intestine has not been reported.
We found that gut organoids treated with H10 and M10 pools
up-regulated Slc39a8 mRNA expression more strongly than

H90 and M90 pools (Fig. 4C). Caco-2 cells also showed
increased SLC39A8 expression upon H10, but not H90, treat-
ment (Fig. 4D). Further analyses showed that, similar to
Slc30a10, Slc39a8 mRNA expression was blunted upon re-
moval of LCA from BA pools and in gut organoids from VDR–/–

mice, whereas removal of CDCA from BA pools had no effect
(Fig. 4, E–G). These data support the possibility that both
Slc30a10 and Slc39a8 are regulated by LCA-to-VDR signaling.

LCA and vitamin D induce Slc30a10 expression in mouse
ileum

To determine the distribution of Slc30a10 and Slc39a8
expression in vivo, we quantified mRNA expression in murine
enterohepatic tissues. We found that all segments of the small
intestine expressed Slc30a10 mRNA at levels higher than the
liver (Fig. 5A). We also detected Slc39a8 expression in the small
intestine, at levels;10–30% of those in the liver (Fig. 5B).

Figure 4. BA effects on additional Mn transporters. A–D, expression of Slc11a2 and Slc39a14 (A), Slc39a8 in organoids (C), and their corresponding human
genes in Caco-2 cells (B and D) (n = 4–8 wells of cells or organoids per group). E and F, Slc39a8 expression in organoids exposed to human BA pools with or
without LCA (E) and mouse BA pools with or without CDCA (n = 4 wells of organoids/group) (F). G, Slc39a8 expression in organoids generated from Vdr1/1,
Vdr1/–, and Vdr–/– littermates after exposure to human BA pools (n = 6 wells of organoids/group). Full result tables for one-way ANOVA (A–D and G) and two-
way ANOVA (E and F) and post hoc pairwise comparisons are shown in Table S7. *, p, 0.05; **, p, 0.01; ***, p, 0.001; ns, not significant. Error bars, S.D.
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Next, we tested whether LCA and VDR signaling induces
expression of Mn transporters in vivo. We administered (i) ve-
hicle, (ii) LCA, (iii) the VDR agonist calcitriol, or (iv) the
12HBA CA to C57BL/6 mice by oral gavage and analyzed
mRNA expression in ileal epithelia. Mice receiving LCA and
calcitriol showed on average 4–6-fold increases in Slc30a10
expression in the ileum (Fig. 5C). The increase in Slc30a10
expression was accompanied by increased Cyp24a1 and S100g
(Fig. 5D), consistent with activation of VDR. Notably, CA did
not induce Slc30a10, Cyp24a1, or S100g (Fig. 5, C and D). In
contrast to the results of ex vivo and in vitro experiments,
Slc39a8 was not induced by any of the treatments (Fig. 5E).
Interestingly, Slc30a10 was also induced by LCA in the jeju-
num, but not in the duodenum or liver (Fig. 5F). These data
show that in vivo, LCA promotes Slc30a10 expression in the il-
eum and jejunum.

Discussion

Our analyses reveal that BA composition regulates the
expression of Slc30a10 and cellular Mn efflux. SLC30A10 is
one of three transporters identified thus far to be critical for
whole-body Mn homeostasis in humans and mice (34, 35, 39,
40, 52, 54–56). We found that BA pools low in 12HBAs, which
have increased abundance of the non-12HBA LCA, act primar-
ily via VDR to promote Slc30a10 expression. We also found
that ileal Slc30a10 was inducible by LCA and the VDR agonist

calcitriol, indicating that LCA and VDR signaling modulate in-
testinalMn transport. Amodel is shown in Fig. 6
Similar to BAs, a significant portion ofMn undergoes entero-

hepatic cycling (57, 58). Thus, enterocytes are exposed to lumi-
nal Mn from two sources: bile and diet. In adult humans, only
about 3–5% of ingested Mn is absorbed (31), indicating robust
regulation of intestinal Mn absorption. Obstructing the bile
duct results in reduced excretion rates of intravenously admin-
istered 54Mn in rats (59), highlighting the importance of Mn
clearance by the liver and final excretion in the feces. But the
intestine appears to play an important role in Mn homeostasis
as well, especially when liver excretion has been saturated (60).
Whereas deletion of Slc30a10 only in hepatocytes is insufficient
to cause hypermanganesemia, combined deletion in the liver
and gastrointestinal tract causes severe hypermanganesemia
and neurotoxicity (39, 41), mimicking the whole-body Slc30a10
knockout mice, although less severe (39, 40). These findings
support the notion that intestine and hepatobiliary excretion
systems both participate inMn homeostasis.
Mn is a cofactor for numerous metalloproteins involved in

many cellular processes (31, 61). However, Mn in excess
amounts is toxic. Hypermanganesemia results in dystonia, par-
kinsonism, polycythemia, and cirrhosis (31, 34, 35, 42, 52, 62,
63).Most cases ofMn toxicity are due to occupational and envi-
ronmental exposures (31, 62). Mn toxicity has also been
reported in cases of severe liver diseases, in patients receiving

Figure 5. VDR activation increases Slc30a10mRNA levels in vivo. A and B, expression of Slc30a10 (A) and Slc39a8 (B) in the liver and gastrointestinal tissues
in C57BL/6 mice (n = 7). The liver was used as a reference tissue. C–E, ileal expression of Slc30a10 (C), VDR targets Cyp24a1 and S100g (D), and Slc39a8 (E) after
oral gavage with corn oil supplemented with vehicle, LCA, calcitriol, or CA. n = 5–7 mice/group. F, Slc30a10 expression in the liver, duodenum, and jeju-
num after gavage experiment. Full result tables of one-way ANOVA and post-hoc pairwise comparisons are shown in Table S8. *, p, 0.05; ***, p, 0.001.
Error bars, S.D.
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total parenteral nutrition, and in rare genetic loss-of-function
mutations (34, 35, 44, 64–67). Current treatment for Mn toxic-
ity is with chelation therapy, which increases urinaryMn excre-
tion (44) but is nonspecific. Since the identification of disease-
causing mutations of SLC30A10, there has been considerable
progress in understanding how the transporter works and
where it is localized in cells (36, 68). However, the regulation of
the transporter is incompletely understood.
We identified BA composition, especially LCA abundance,

as a modulator of Slc30a10 expression in vitro, ex vivo, and in
the mouse ileum.We also showed that VDR is the primary me-
diator of this signaling pathway. This is consistent with a previ-
ous report showing VDR activation inducing SLC30A10 in
Caco-2 cells and that this requires the VDR element in
SLC30A10’s promoter region (45). Claro da Silva et al. (45) pre-
viously reported increased SLC30A10 mRNA levels in half of
duodenal biopsies from volunteers administered oral calcitriol
(0.5 mg for 10 days). However, ileal biopsies were not reported,
and the ileum is expected to be the primary site of uptake of
bile acids into enterocytes (49). Our data show that Slc30a10
expression is induced by LCA and calcitriol in vivo in themouse
ileum. Published data from in vitro studies using Caco-2 cells
and the neuroblastoma cell line SH-SY5Y have also proposed
that the ER stress response factor ATF4 and the zinc-sensitive
transcription factor ZNF658 contribute to SLC30A10 regula-
tion (69–71). The identification of this new BA-sensitive path-
way may shed light on a known phenomenon: Mn poisoning
has been reported in patients on total parenteral nutrition (65–
67), suggesting that the lack of intestinal BA signaling leads to
reduced SLC30A10 and impaired efflux of Mn from entero-
cytes into the intestinal lumen, consequently reducing Mn
excretion.
In our experiments, Slc30a10 induction was not completely

abrogated upon removal of LCA from BA pools or deletion of
VDR. Thus, other BAs and nuclear receptors might also con-
tribute to BA-dependent induction of Slc30a10. A published
ChIP-Seq data set identified two potential FXR-binding sites
within 1 kb of the first exon of mouse Slc3010 and another
potential site within 5 kb (72). Although these binding peaks
are approximately an order of magnitude smaller than those
seen for classical intestinal FXR targets Fgf15 and Slc51a (72), it

is possible that FXR participates in Slc30a10 regulation at low
levels or under certain conditions. Consistently, analysis of the
human SLC30A10 promoter region revealed potential FXR and
FXR::RXRA binding sites at four sites within 2 kb upstream of
the transcription start site (Fig. S2). Another BA receptor that
could modulate Slc30a10 induction is TGR5, although its
effects might be indirect (e.g. through increasing cAMP and
facilitating recruitment of transcription factors to cAMP
response elements), as the receptor is largely membrane-bound
(7, 8).
Does BA-dependent regulation of Mn homeostasis have any

impact on cardiometabolic disease? Some researchers have
reported that patients with type 2 diabetes have plasma or se-
rum Mn at levels higher than controls, whereas others have
reported the opposite (73–76). Because Mn levels must be
maintained within a small range (31, 44), it makes sense that
both deficiency and excess of Mn would lead to negative conse-
quences. Accordingly, a recent report showed a U-shaped rela-
tionship between plasma Mn and the odds ratio for type 2 dia-
betes (77). When interpreting the previous findings, it should
be noted that the most accurate circulating Mn levels are
obtained from whole blood, not serum or plasma, because over
60% of bloodMn is found in erythrocytes (78). Interestingly, in-
travenous glucose tolerance tests in individuals with chronic
manganism revealed reactionary hypoglycemia, which was pro-
posed to be due to dysregulation of the hypothalamus-pitui-
tary-adrenal axis (79). Human genetic variants in SLC39A8 are
linked to bloodMn levels as well as body mass index, total cho-
lesterol, and high-density lipoprotein cholesterol (80–83). In an
unusual case of diabetes, a patient showed hypoglycemia in
response to oral MnCl2, which was abolished upon a partial
pancreatectomy (84). Thus, although severe Mn deficiency and
toxicity lead to overt neurological and liver disorders, the role
of Mn in common cardiometabolic diseases might be more
nuanced.
It has been well-established that BAs and BA pool composi-

tion regulate macronutrient metabolism. This work demon-
strates that BAs and BA pool composition also regulate metal
homeostasis, whichmay be relevant for health and disease.

Experimental procedures

Reagents

Taurine-conjugated a- and b-muricholic acids were pur-
chased from Cayman Chemical. All other BAs, micelle compo-
nents, corn oil, and MnCl2 were obtained from Sigma. Calci-
triol was obtained from Selleck Chemicals. Unless noted
otherwise, all cell culture media and supplements were pur-
chased fromGibco.

Crypt isolation and gut organoid culture

Mouse ileal crypts were isolated following methods devel-
oped by the Clevers Laboratory(30), with minor modifications.
We euthanized adult (6–12-week-old) mice using CO2 inhala-
tion followed by cervical dislocation. With the exception of the
growth medium, all solutions and Matrigel were kept ice-cold
during handling of crypts and organoids. We divided the small
intestine into three parts of equal length and collected the last

Figure 6. Low-12HBA pools promote expression of Slc30a10mRNA and
Mn efflux. Induction of Slc30a10 expression is driven by LCA-to-VDR
signaling.
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segment, adjacent to the cecum. We cut open the ileum longi-
tudinally and rinsed it in PBS. We minced the tissue and
washed the pieces by vigorously pipetting in PBS, allowing the
pieces to settle, and removing the cloudy supernatant. We
repeated this wash step until the supernatant was clear, 4–6
times. We then transferred the pieces into PBS containing 2
mM EDTA and incubated the mixture at 4 °C for 30–60 min
with gentle shaking. Next, we removed the EDTA-PBS and
replaced it with PBS containing 10% fetal bovine serum (FBS).
We harvested crypts by vigorously pipetting, allowing the seg-
ments to settle, and collected the supernatant in a new tube.
We repeated this harvesting procedure with additional FBS-
PBS mixture, 3–4 times, pooling the supernatant from the
same mouse. We then pelleted the crypts by centrifuging the
crypts-FBS-PBS mixture at 900 rpm, 4 °C for 5 min. We dis-
carded the supernatant, resuspended the crypts in base me-
dium (Advanced DMEM/F-12 supplemented with 2 mMGluta-
Max, 100 units/ml penicillin-streptomycin, and 10 mM HEPES),
and pelleted the crypts by centrifuging at 720 rpm at 4 °C for
5 min. We discarded the supernatant, resuspended the crypts
in base medium, passed the crypts-medium mixture through
a 70-mm cell strainer, and centrifuged the crypts-medium
mixture at 900 rpm at 4 °C for 5 min. Finally, we resuspended
the crypts in Matrigel and seeded them on prewarmed 24-
well Nunclon Delta surface-treated plates. After a 15–20-min
incubation at 37 °C, we added IntestiCult Mouse Organoid
Growth Medium (STEMCELL Technologies) to the wells.
Medium was replaced twice weekly. Mature organoids were
passaged every 7–10 days by dissolving the Matrigel dome
with vigorous pipetting in PBS, passing the organoids-Matri-
gel-PBS mixture through a 27½-gauge needle, centrifuging
to pellet the organoid pieces, resuspending them in new
Matrigel, and distributing the organoid-Matrigel mixture
into new prewarmedmultiwell plates.

Caco-2 cell culture

Cells were cultured in DMEM containing GlutaMAX and
high glucose, supplemented with 10% FBS and 100 units/ml
penicillin-streptomycin, and incubated in a 37 °C, 5% CO2

chamber. Medium was replenished 3 times/week, and cells
were passaged by trypsinization every 5–7 days. After conflu-
ence was achieved, cells were matured for an additional 5–7
days prior to treatment, a time point at which we validated that
FXR, VDR, and their targets were expressed and that estab-
lished FXR targets were induced by BAs (see Fig. S1F).

Preparation of micelles

We prepared micelles as described previously (85) with
minor modifications. Individual stock solutions of oleic
acid, 2-palmitoyl glycerol, phosphatidylcholine, cholesterol,
glycoursodeoxycholic acid, and LCA were prepared in chlo-
roform. Individual stock solutions of all other BAs were pre-
pared in PBS. We mixed lipophilic components (those in
chloroform stocks) in a glass vial and allowed them to dry
under an N2 stream. We mixed BAs to prepare four distinct
BA pools: human low (10%) 12HBA (H10), human high
(90%) 12HBA (H90), mouse low (10%) 12HBA (M10), and

mouse high (90%) 12HBA (M90). After the lipophilic com-
ponents dried, we added BA pools to the vials and vortexed
the mixture. We further diluted the mixture with DMEM
containing 0.2% BSA (base medium), yielding final concen-
trations of 0.6 mM oleic acid, 0.2 mM 2-palmitoyl glycerol,
0.2 mM phosphatidylcholine, 0.05 mM cholesterol, and 1 mM

total BAs. Compositions of BA pools are detailed in Table 1
and illustrated in Fig. 1B.

BA treatments of organoids and cells

We removed gut organoids from Matrigel and exposed the
lumens by pipetting in ice-cold PBS followed by centrifugation
at 1503 g at 4 °C for 10 min. Following a second PBS wash, we
placed exposed gut organoids to micelle components without
BAs (vehicle), or mixed micelles containing BAs (H10, H90,
M10, or M90) in base medium (DMEM, 0.2% BSA) for 24 h.
For BA treatments in the absence of micelles, BA pools were
prepared in PBS and diluted in base medium for a final concen-
tration of 1 mM, to match the concentration in the mixed mi-
celle treatments. For Caco-2 cells, we seeded 200,000 cells/well
into 12-well plates and allowed cells to reach confluence. We
replaced the growthmedium, washed cells with PBS, and added
test media to the cells as indicated in the experiments.

RNA-Seq

We extracted RNA using the RNeasy Mini Kit (Qiagen).
RNA concentration and quality were determined by Qubit Bio-
analyzer. RNA from 3 samples/treatment group were submit-
ted to the JP Sulzberger Columbia Genome Center for library
preparation (standard poly(A) pulldown for mRNA enrich-
ment), RNA-Seq (30M depth, single read), and processing of
raw data. Differential expression analysis on counts data were
done using the DESeq2 package in R.

Mn efflux assays

Mn efflux assays were done as described previously (36).
We collected organoids by dissolving the Matrigel dome with
ice-cold PBS, pipetting, and centrifuging at 150 3 g for 10
min. Organoids were first incubated in “exposure medium”
(DMEM supplemented with 0.2% BSA containing 0 or 500
mM MnCl2) for 16 h at 37 °C, 5% CO2. Following exposure,
organoids were washed with PBS, given medium containing
micelle components (vehicle), 1 mM H10, or 1 mM H90, and
incubated for another 20 h. Organoids were pelleted by cen-
trifugation, and efflux media were collected in metal-free
tubes. For the Mn efflux assay in Caco-2 cells, we followed
the same procedure, with the exception of 100 mM MnCl2
for exposure. Mn was measured by inductively coupled
plasmaMS.

Mouse experiments

12-Week-old male C57BL/6 mice (Taconic) were given AIN-
93Gwith vitamin D adjusted at 50 IU/kg (Envigo TD.97184) for
3 days before the experiment. The vitamin D level was adjusted
to minimize the contribution of dietary vitamin D to VDR sig-
naling, whichmight interfere with the effects of LCA. This dose
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of vitamin D has been previously shown to cause no significant
changes in body weight, serum calcium, serum parathyroid
hormone, cortical or trabecular bone density, or parathyroid
gland morphology, even after 4 months on the diet (86, 87). We
observed no overt defects in the mice after 3 days on this diet.
Mice were housed in a facility with a 12-h light/12-h dark cycle
and had free access to food at all times. Reagent preparation,
doses, and time points for gavage experiments were based
on previous studies by Ishizawa et al. (88). LCA, calcitriol,
and CA stocks were prepared in ethanol (vehicle), diluted
10-fold in corn oil, and vigorously vortexed. We gavaged 10
ml/g of body weight such that the final doses were 10% etha-
nol, 0.8 mmol/kg LCA, 50 nmol/kg calcitriol, and 0.8 mmol/
kg CA. Oral gavages were done at 14 and 2 h prior to eutha-
nasia. Experiments were approved by the Institutional Ani-
mal Care and Use Committee of Columbia University Medi-
cal Center. We collected ileum epithelia by cutting open the
segment longitudinally and scraping the mucosa layer away
from the muscle wall. Tissues were stored at –80 °C until
they were processed for RNA extraction.

RNA extraction, cDNA synthesis, and qPCR

We extracted RNA from gut organoids using the RNeasy
Mini Kit (Qiagen) and used 200 ng for cDNA synthesis. We
extracted RNA from Caco-2 cells and ileum epithelium scrap-
ings using TRIzol (Thermo Fisher Scientific) and used 1 mg for
cDNA synthesis. cDNA synthesis was done using the High
Capacity cDNA reverse transcription kit (Thermo Fisher).
Quantitative real-time PCRs were carried out using iTaq Uni-
versal SYBR Green Supermix (Bio-Rad) and the CFX96 real-
time PCR detection system (Bio-Rad). Mouse 36b4 or B2mwas
used as a reference gene for samples frommouse gut organoids
and tissues. Human RPLP0 (primers from Qiagen) was used as
a reference gene for cDNA from Caco-2 samples. Primer
sequences are listed in Table S3.

Statistical analysis

Unless noted otherwise, we used one-way ANOVA followed
by Benjamini–Hochberg correction. Adjusted p values of
,0.05 were considered significant, with p , 0.05 (*), p , 0.01
(**), and p, 0.001 (***) between groups asmarked.

Data availability

Raw RNA-Seq data have been deposited at the Gene Expres-
sion Omnibus (GEO), accession number GSE144398. All other
data are contained within the article.
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