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Abstract

CD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The 

mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological 

functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained 

by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 

costimulation after acute influenza infection. These TRM cells have both exhausted-like 
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phenotypes and memory features and provide heterologous immunity against secondary infection. 

PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these 

exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection 

inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of 

exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the 

result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective 

immunity.

INTRODUCTION

CD8+ memory T cells offer long-term protection against pathogen reinfection. In addition to 

circulating central and effector memory T cells, tissue-resident memory T (TRM) cells are a 

recently described memory subset that mainly reside in nonlymphoid organs and offer 

immediate protection by coordinating local innate and adaptive immunity (1, 2). TRM cells 

are phenotypically and transcriptionally distinct from circulating memory T cells. CD69, 

which antagonizes T cell recirculation and egress from tissues (3), is a key lineage-defining 

marker that distinguishes TRM cells and circulating memory T cells (4). In addition to CD69, 

a subset of CD8+ TRM cells also express the integrin molecule CD103, which enhances the 

tethering of TRM cells to epithelium via E-cadherin. Tissue-derived cues, particularly 

transforming growth factor–β (TGF-β), are critical for TRM cell development and/or 

maintenance (5). Although local antigen recognition in the tissue is not absolutely required 

for TRM cell formation, tissue antigen reencounter by effector CD8+ T cells after their 

priming in the draining lymphoid organs does facilitate optimal TRM cell development (6–8). 

Although recent studies have suggested that TRM cells are maintained independently of T 

cell receptor (TCR) signaling in the skin (9), much remains to be defined regarding the 

mechanisms regulating the maintenance and long-term survival of TRM cells in various 

tissues. Conventional circulating memory CD8+ T cells are maintained in a major 

histocompatibility complex class I (MHC-I)–independent manner; however, whether MHC-I 

and/or TCR signaling contributes to TRM cell maintenance and/or function after pathogen 

clearance is less clear.

In contrast to circulating memory T cells, TRM cells exhibit higher levels of expression of 

multiple effector cytokines and cytolytic molecules including interferon-γ (IFN-γ) and 

tumor necrosis factor–α (TNF-α) (10). The heightened expression of these molecules 

confers enhanced antimicrobial activity of TRM cells (10) but could potentially cause 

bystander inflammation and injury in the tissue. The mechanisms balancing the protective 

and potentially injurious effects of TRM cells during tissue homeostasis are largely 

unexplored. TRM cells express T cell inhibitory molecules, including programmed cell death 

protein 1 (PD-1) on their surface (11). It is conceivable that the expression of these 

molecules may restrict the capacity of TRM cells to promote tissue pathogenesis (11, 12).

Influenza infection in mice leads to the formation of TRM cells that confer resistance to 

reinfection, particularly in the lungs (13, 14). After influenza virus infection in the C57BL/6 

background, two major H-2Db restricted CD8+ T cell epitopes against nucleoprotein peptide 

366–374 (NP366–374) or polymerase peptide 224–233 (PA224–233) are displayed (15–17). 

Wang et al. Page 2

Sci Immunol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previous studies have demonstrated that there is a marked difference in the 

immunodominance hierarchy between NP366–374 and PA224–233 T cells during primary and 

secondary CD8+ T cell responses. NP366–374 and PA224–233 epitope–specific CD8+ T cells 

appear in equivalent proportions during the primary CD8+ T cell responses, whereas 

NP366–374 T cells expand to a much greater proportion and dominate in secondary responses 

(16, 18–20). Antigen load, duration of antigen presentation, and differences in antigen-

presenting cells (APCs) were proposed to regulate the differential responses of NP and PA 

epitopes (15, 21, 22). Furthermore, NP366–374 and PA224–233 TRM cells exhibited distinct 

molecular signatures after secondary virus challenge (23). Of note, NP antigen was 

detectable in the lungs weeks after infectious viral clearance (24–26). How the chronic 

antigen reservoir regulates the phenotype, maintenance, and function of influenza-specific 

TRM cells has not been explored.

Here, we report that NP366–374 TRM cells in the lung receive chronic local TCR stimulation 

weeks after the clearance of infectious influenza virus. Consequently, these NP366–374 TRM 

cells adopt both conventional memory CD8+ T cell and exhausted-like features after 

influenza virus infection. Unlike conventional circulating memory CD8+ T cells that are 

maintained in an MHC-I–independent manner, these exhausted-like TRM cells are sustained 

by persistent TCR–peptide/ MHC-I (pMHC-I) signaling as the depletion of H-2Db at 28 

days post-infection (d.p.i.) selectively impairs the maintenance of these TRM cells. Likewise, 

B7-CD28 signaling blockade at the memory phase (starting at 21 d.p.i.) abrogates the 

persistence of exhausted-like TRM cells and consequently impairs TRM cell–mediated 

secondary heterologous immunity. In contrast, programmed death-ligand 1 (PD-L1) 

blockade at the memory phase promotes exhausted-like TRM cell expansion and 

rejuvenation. This augmentation of TRM cell function leads to enhanced secondary 

protection yet causes chronic tissue fibrotic sequelae after the resolution of the acute 

infection. Our data suggest that memory CD8+ T cells can adopt a tissue-specific cellular 

adaptation to balance fibrotic sequelae and secondary immunity.

RESULTS

Epitope-specific manifestation of an exhaustion gene signature in lung TRM cells after 
acute influenza infection

In C57BL/6 mice, influenza virus (A/PR8/34) infection is cleared from infected lungs 

around 10 d.p.i. (27–29). To assess the generation of TRM cells in the lung after influenza 

infection, we examined lung CD8+ TRM cell responses against NP366–374 and PA224–233 6 

weeks after infection. We used an in vivo antibody (Ab) labeling approach, in which 

fluorescently coupled CD45 Ab was administered intravenously to mice 5 min before tissue 

harvesting to distinguish lung- circulating (intravenous Ab+) and lung-resident (intravenous 

Ab−) CD8+ T cells (30). Lung-resident CD8+ NP366–374 and PA224–233 TRM cells expressed 

comparably higher levels of CD69 than the circulating NP366–374 and PA224–233 T cells (Fig. 

1A). Most of the PA224–233 TRM cells expressed CD103, but only a minor fraction of 

NP366–374 TRM cells was CD103+ (Fig. 1A and fig. S1, A and B). These data suggest that 

there may be epitope-specific heterogeneity between NP366–374 and PA224–233 TRM cells 

after acute influenza virus infection. To explore this idea, we performed RNA sequencing 
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(RNA-seq) analysis of sorted lung NP366–37 and PA224–233 TRM cells 6 weeks after 

infection. Consistent with the surface molecule expression, NP366–374 and PA224–233 TRM 

cells expressed comparable CD69, but Itgae (encoding CD103) was lower in NP366–37 TRM 

cells (Fig. 1B). NP366–374 TRM cells showed elevated expression of a number of coinhibitory 

molecules—including Pdcd1, Havcr2, Tigit, and Lag3 (Fig. 1B)—and transcription factors 

that are typically associated with exhausted T cells generated after chronic viral infection— 

such as Tox, Nfatc1, and Batf (Fig. 1B) (31–33). Gene set enrichment analysis (GSEA) 

demonstrated that NP366–374 TRM cells were positively enriched with the genes up-

regulated, and negatively enriched with the genes down- regulated, in exhausted CD8+ T 

cells after chronic viral infection (34), compared with PA224–233 TRM cells (Fig. 1C). To 

further profile the kinetics of the gene expression patterns of NP366–374 and PA224–23 CD8+ 

T cells, we sorted CD8+ T cells from spleens and lungs at effector (day 8) and memory (day 

38) stages and performed NanoString endogenous mRNA analysis on the expression of 560 

immunological genes in those effector or memory T cells without the need for amplification 

(Fig. 1D). We found that the immune gene expression patterns between NP366–374 and 

PA224–233 T cells at lung effector or splenic memory were quite similar(Fig. 1D). However, 

NP366–374 TRM cells and PA224–233 TRM cells had drastic differences in immune-associated 

gene expression patterns (Fig. 1D). Consistent with the RNA-seq data, NP366–374 TRM cells 

expressed higher levels of genes associated with T cell exhaustion compared with PA224–233 

TRM cells (Fig. 1E). Both NP366–374 and PA224–233 lung effector cells expressed higher 

exhaustion-associated genes than effector T cells in spleen, a feature of effector T cell 

“exhaustion” or “impairment” previously described during respiratory viral infections (Fig. 

1E) (35–38). Those exhausted genes were maintained or even further up-regulated in lung 

NP366–374 TRM cells at 38 d.p.i. (Fig. 1E). In contrast, those exhaustion-associated genes 

were generally down-regulated in PA224–233 TRM cells compared with day 8 effector T cells 

in the lungs (Fig. 1E). These observations suggest that there are distinct gene expression 

patterns in two epitope-specific polyclonal TRM cell populations and there exists an 

exhaustion-like gene pattern in a population of lung TRM cells after acute influenza infection 

reflective of those CD8+ T cells from chronic infections.

Exhausted-like NP366–374 TRM cells coexhibit exhaustion and memory features

On the basis of the gene expression data, we next examined the surface expression of 

inhibitory molecules. We first tracked the kinetics of PD-1 expression on lung NP366–374 and 

PA224–233 T effector or TRM cells over time. During the effector phase, NP366–374 and 

PA224–233 TRM cells had similar amounts of PD-1 expression (Fig. 2A). However, lung-

resident NP366–374 T cells maintained PD-1 expression that was lost on PA224–233 TRM cells 

at the memory stage (30 to 60 d.p.i.) (Fig. 2A). NP366–374 TRM cells also exhibited higher 

PD-1 expression than H2Kb-restricted T cells against the PB1 703–711 epitope (PB1703–711 

TRM cells) (fig. S1C) and ovalbumin (OVA)–specific OT-I TRM cells [after infection with 

recombinant influenza A PR8 expressing OVA323–339 epitope (PR8-OVA)] (fig. S1D), as 

well as higher than their splenic or lung-circulating counterparts (fig. S1E). Thus, NP366–374 

TRM cells appear to exhibit unique characteristics of high PD-1 expression at the memory 

stage.
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We next simultaneously evaluated the expression of multiple inhibitory receptors including 

PD-1, T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-

activation gene 3(LAG-3),and T cell immunoreceptor with Ig and ITIM domains (TIGIT) on 

TRM cells. As previously reported (4, 11), both NP366–374 and PA224–233 TRM cells were 

PD-1+ cells (Fig. 2B). However, NP366–374 TRM cells expressed much higher PD-1 and a 

large proportion of the cells simultaneously expressed two or three more coinhibitory 

receptors on their cell surface revealed by Boolean gating (Fig. 2, B and C, and fig. S2, A to 

C). Incontrast, most of the PA224–233 TRM cells only expressed PD-1 (Fig. 2C and fig. S2C). 

PB1703–711 TRM cells also exhibited much lower TIM-3 expression compared with 

NP366–374 TRM cells (fig. S2D). Thus, compared with PA224–233 or PB1703–71 TRM cells, 

NP366–374 TRM cells coexpressed multiple coinhibitory receptors. Similar findings were also 

observed in influenza X31 virus infection, although to a lesser extent than influenza PR8 

infection (fig. S3, A to C). The coexpression of multiple coinhibitory receptors on NP366–374 

TRM cells suggests that these cells may have features similar to exhausted CD8+ T cells 

observed during chronic viral infection (39). Another hallmark of exhausted CD8+ T cells is 

diminished production of effector cytokines, particularly TNF-α, in response to antigenic 

stimulation (39, 40). We therefore examined lung TRM cell cytokine production after ex vivo 

peptide stimulation. NP366–37 TRM cells produced less IFN-γ and TNF-α compared with 

PA224–23 TRM cells, particularly when normalized to antigen-specific tetramer+ cells (Fig. 2, 

D and E, and fig. S3D), suggesting that NP366–374 TRM cells are less sensitive to TCR 

stimulation. These data indicate that NP366–374 TRM cells exhibit features of exhausted 

CD8+ T cells.

However, NP366–374 TRM cells expressed memory CD8+ T cell markers T cell factor 1 

(TCF-1) and CD127 (Fig. 2F) (41), similar to the levels found in PA224–233 TRM cells. 

Furthermore, we observed comparable levels of memory-associated genes between 

NP366–374 and PA224–23 TRM cells (Fig. 2G). TGF-β signaling has been shown to be 

important in the development of TRM cells in various tissues (5, 42). To address the role of 

TGF-β signaling in epitope-specific TRM cell development, we infected wild-type (WT) 

(Tgfbr2fl/fl) or dLck-cre Tgfbr2fl/fl (Tgfbr2Δdlck) mice with influenza virus. Tgfbr2 
deficiency did not impair CD8+ T cell priming in the secondary lymphoid organ at the 

effector phase (9 d.p.i.) (fig. S4A) but resulted in decreased frequency and numbers of both 

NP366–374 and PA224–233 TRM cells at 6 weeks after infection (Fig. 2, H and I, and fig. S4B). 

Impaired expression of CD103 on NP366–374 or PA224–233 TRM cells was also observed in 

the absence of TGF-β signaling (fig. S4C). These data suggest that similar to “conventional” 

PA224–233 TRM cells, NP366–374 TRM cells also require TGF-β signaling for their formation. 

A key feature of memory T cells is their ability to expand upon secondary antigenic 

challenge. Recent reports have revealed that TRM cells are able to proliferate in situ after 

reinfection (43, 44). We therefore examined whether NP366–374 TRM cells could respond to 

and proliferate in the lung upon heterologous influenza rechallenge. We blocked lymphocyte 

circulation 6 weeks after infection by the injection of FTY720 at 1 day before reinfection 

(fig. S4D). We then infected the mice with influenza A/X31 (H3N2), which differs in the 

surface proteins but shares internal proteins with influenza A/PR8, and examined TRM cell 

activation and proliferation 2 days after rechallenge (Fig. 2J). Influenza X31 reinfection 

stimulated CD69 up-regulation on lung NP366–374 TRM cells, suggesting that these cells 
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received and responded to antigenic signals invivo after secondary influenza X31 challenge 

(fig. S4E). There was a marked increase in TRM cell proliferation, specifically the NP366–374 

TRM cell population (Fig. 2J and fig. S4, F and G). These data cor-related well with previous 

findings that NP366–374 memory T cells dominate over PA224–233 memory T cells in the 

secondary expansion and provide heterologous immunity (15, 18, 19). Collectively, our 

results demonstrate that NP366–374 TRM cells exhibit both exhausted and memory T cell 

features. We termed this population of memory cells “exhausted-like TRM cells.”

Exhausted-like TRM cells receive persistent in situ TCR stimulation

We next sought to determine the underlying mechanisms regulating the formation and 

maintenance of exhausted-like TRM cells. Persistent TCR signaling is involved in the 

development of exhausted CD8+ T cells during chronic viral infections (39). We first 

explored whether NP366–374 TRM cells still received TCR signaling at the memory stage. 

Using Nur77-GFP transgenic mice that report on the activation of TCR signaling, we 

examined Nur77-GFP expression in TRM cells, and circulating and splenic memory T cell 

populations after infection with influenza PR8. A greater proportion of exhausted-like 

NP366–37 TRM cells expressed Nur77-GFP compared with PA224–233 TRM cells at 6 weeks 

after infection (Fig. 3A). NP366–374 TRM cells had higher Nur77-GFP expression than 

NP366–374 memory cells in the spleen or in the lung vasculature (Fig. 3A), suggesting that 

NP366–374 TRM cells may receive long-term TCR stimulation in situ. This is consistent with 

the fact that NP protein is more abundant than PA protein during influenza infection, which 

may lead to NP antigen persistence in the lung long after viral clearance (15, 25).

Residual antigen presentation in the draining mediastinal lymph nodes (mLN) by migratory 

dendritic cells can influence the phenotype and localization of memory T cells (24, 26). It is 

thus possible that NP366–374 CD8+ T cells may receive sustained and stronger antigen 

stimulation than PA224–233 memory T cells in the mLN and then migrate into the lung to 

develop into exhausted-like TRM cells. We injected FTY720 to WT mice daily starting at 3 

weeks after infection to block T cell migration (45) and then checked TRM cell phenotype at 

40 d.p.i. (Fig. 3B). Long-term FTY720 treatment suppressed T cell migration (fig. S5A). 

FTY720 treatment did not alter TRM cell Nur77-GFP expression or PD-1, TIM-3, CD69, or 

CD103 expression (Fig. 3, C and D), suggesting that T cell migration at the memory stage is 

probably not required for the development of exhausted-like TRM cells. These data also 

indicated that local TCR signaling may be responsible for the development of exhausted-like 

TRM cells. To further explore this idea, we wondered whether local inoculation of PA224–233 

peptide could lead to the induction of the exhausted-like phenotype in PA224–233 TRM cells. 

PA224–233 TRM cells acquired high levels of PD-1 expression after intranasal PA224–23 but 

not NP366–374 peptide administration at 35 d.p.i. (fig. S5, B and C). PA224–233 peptide 

stimulation also suppressed CD103 but not CD69 expression (fig. S5, D to F). These data 

suggest that lung in situ antigen presentation and resulting TCR signaling likely induce the 

development of epitope-specific exhausted-like TRM cells. Nur77-GFP+ cells had higher 

PD-1 expression (fig. S6A), suggesting that Nur77 (encoded by Nr4a1 gene) itself may be 

involved in the generation of exhausted-like TRM cells. To explore this idea, we created WT 

and Nr4a1−/− 1:1 mixed bone marrow chimeric mice and infected these mice with influenza 

PR8 (Fig. 3E). We found that Nur77 deficiency decreased PD-1 expression and frequencies 
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of exhausted-like NP366–37 TRM cells, but not those of PA224–233 TRM cells or splenic 

memory T cells (Fig. 3, E and F, and fig. S6, B to D), suggesting that TCR-induced Nur77 

expression is of specific relevance for the development of exhausted-like TRM cells.

Persistent MHC-I-dependent signaling drives the formation and maintenance of exhausted-
like TRM cells

We next sought to determine whether the exhaustion of NP366–37 TRM cells is dependent on 

NP antigen dose. We used an NP mutant influenza PR8 virus, in which the asparagine at the 

fifth position of the NP366–374 epitope was replaced with glutamine (N370Q). The N370Q 

mutation prevents the loading of NP366–374 peptide to MHC-I (46). This point mutation did 

not markedly affect influenza viral fitness and lung pathogenesis (fig. S7A) (46). We mixed 

a higher dose of this “mutant” NP virus [~200 plaque-forming units (pfu) per mouse] with 

lower doses of the “WT” NP virus (~40 or ~10 pfu). In this case, the initial WT NP epitope/

antigen amount is limited compared with a high-dose WT virus (~200 pfu) infection, but the 

viral-induced inflammation and disease progression are equivalent. We found that host 

morbidity after WT influenza PR8 virus and the mixed virus (NP mutant PR8/WT PR8) was 

similar (fig. S7A). However, PD-1 or TIM-3 expression was decreased on NP366–374 TRM 

cells from mixed virus–infected lungs, suggesting that antigen dose is a determinant of TRM 

cell exhaustion phenotype (fig. S7B). Influenza virus infection leads to the chronic 

deposition of antigen in the lung for about 2 to 3 months after infection (24, 26). Consistent 

with the timing of complete antigen clearance in the lung, we found that Nur77-GFP and 

inhibitory receptor expression on exhausted-like TRM cells were diminished at 120 d.p.i. 

(fig. S8).

The above data suggested that TRM cell exhaustion is likely caused by persistent antigen 

presentation in the respiratory tract. Thus, we sought to determine whether the development 

of exhausted-like NP366–374 TRM cells requires persistent MHC-I–dependent signaling. We 

bred MHC-I–deficient mice with the transgenic mice harboring H2db floxed allele 

(H2dbfl/fl). We then crossed the mice with Ubc-cre ERT2 transgenic mice 

(H2dbΔUbc-cre ERT2, KO), allowing tamoxifen-inducible ubiquitous depletion of H-2Db 

molecules (fig. S9A). Tamoxifen treatment before infection inhibited the development of 

influenza-specific CD8+ T cell responses in H2dbΔUbc-cre ERT2 mice (fig. S9, B to D), 

confirming the validity of the mouse model. We then infected control or H2dbΔUbc-cre ERT2 

mice with influenzaand depleted H-2Db around 4 weeks after infection (Fig. 4A). We 

examined TRM cell responses 2 weeks after H-2Db ablation. Tamoxifen injection caused 

H-2Db depletion in H2dbDUbc-cre ERT2 mice (fig. S9E). H-2Db ablation led to diminished 

expression of PD-1 and other coinhibitory receptors (including TIM-3 and TIGIT), 

specifically on exhausted-like NP366–374 TRM cells, but not on PA224–233 TRM cells (Fig. 4, 

B and C, and fig. S9F). H-2Db depletion decreased the frequencies and numbers of 

NP366–373 TRM cells but not those of PA224–233 TRM cells (Fig. 4, D and E). H-2Db ablation 

did not cause the loss of splenic NP366–374 or PA224–233 memory T cells (Fig. 4 D), whichis 

consistent with the notion that the maintenance of splenic memory T cells is MHC-I 

independent (47). H-2Db depletion resulted in increased CD103 expression but did not alter 

CD69 expression on exhausted-like TRM cells (Fig. 4, F and G, and fig. S9G).
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These data suggest that TCR–pMHC-I–dependent signaling at the memory phase is required 

for the development and maintenance of polyclonal exhausted-like TRM cells but not their 

splenic counterparts with TCRs against the same influenza epitope or local resident T cells 

with a TCR repertoire against the PA224–233 epitope. Consistent with this notion, NP366–374 

TRM cells gradually declined over time, whereas PA224–233 TRM cells or splenic NP366–374 

and PA224–233 memory cells were more stably maintained (fig. S10, A to C). To determine 

the consequence of exhausted-like NP366–374 TRM cell loss over time, we rechallenged the 

influenza PR8–infected mice with influenza X31 at 40 or 120 days after primary influenza 

PR8 infection in the presence of FTY720. Influenza X31 infection resulted in greater weight 

loss in those mice that were previously infected with influenza PR8 at 120 d.p.i. compared 

with those mice that were infected with influenza PR8 at 40 days prior, indicating that the 

loss of exhausted-like TRM cells may lead to impaired TRM cell–mediated protection against 

heterologous virus rechallenge (fig. S10D).

CD28 signaling is required for the maintenance of exhausted-like TRM cells

CD28 costimulation is required for naïve T cell expansion and memory T cell programming 

(48, 49), but its function in the maintenance of circulating or resident memory CD8+ T cells 

is not clear. Given that persistent pMHC-I–TCR signaling is required for the exhausted-like 

TRM cell maintenance, we sought to determine whether CD28 costimulation is required for 

the maintenance of those cells. In our NanoString gene expression data, CD28 was up-

regulated in exhausted-like NP366–374 TRM cells compared with PA224–233 TRM cells (Fig. 

5A). The gene expression data were confirmed by flow cytometry analysis of surface CD28 

protein on NP366–374 and PA224–233 TRM cells (Fig. 5B). To determine the function of CD28 

signaling in the development and/or maintenance of exhausted-like TRM cells after the 

resolution of primary infection, we blocked CD28-B7 interaction through the administration 

of anti-B7.1 (CD80) plus anti-B7.2 (CD86) (α-B7) starting at 21 d.p.i. (Fig. 5C). We then 

determined TRM phenotype and responses at 6 weeks after infection. Blockade of B7 

signaling decreased Nur77-GFP expression in NP366–374 TRM cells (fig. S11, A and B). B7 

Ab treatment also decreased PD-1 expression on NP366–374 TRM cells but not PA224–233 

TRM cells (Fig. 5C). Furthermore, B7 Ab treatment markedly decreased both the frequency 

and cell numbers of exhausted-like NP366–374 TRM cells but not those of PA224–233 TRM 

cells (Fig. 5, D and E). Blockade of CTLA-4, the other receptor for B7.1 and B7.2, did not 

impair NP366–374 TRM cell maintenance (fig. S11D), suggesting that the blockade of CD28 

signaling resulting from a-B7 treatment is responsible for the maintenance of exhausted-like 

NP366–374 TRM cells. Mechanistically, B7 blockade decreased NP366–374 TRM cell survival 

and proliferation as reflected by enhanced active caspase-3/7 activity and decreased KI-67 

staining, respectively, after a-B7 treatment (Fig. 5F and fig. S11E). These data suggest that 

persistent CD28 signaling at the memory stage is required for the maintenance of exhausted-

like TRM cells.

To explore whether impaired maintenance of exhausted-like TRM cells could decrease host 

resistance to heterologous immunity, we infected WT mice with influenza PR8 and then 

treated the mice with α-B7 as above. We injected the mice with FTY720 and subsequently 

rechallenged them with influenza X31 virus (1.2 × 104 pfu) at 6 weeks after infection (Fig. 

5G). Mice receiving B7 blockade lost significantly more weight compared with control mice 
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after influenza X31 infection (Fig. 5G). These data indicate that B7-CD28 costimulation is 

essential for the maintenance of exhausted-like TRM cells, which provide protective 

immunity against heterologous reinfection.

PD-L1 blockade promotes rejuvenation of exhausted-like TRM cells

Blockade of PD-1 and PD-L1 interaction promoted exhausted cell expansion and 

rejuvenation during chronic viral infection (40). We wondered whether the inhibition of PD-

L1–PD-1 interaction could rejuvenate exhausted-like TRM cells after the resolution of acute 

influenza virus infection. We infected the WT mice with influenza PR8 and treated the mice 

with a-PD-L1 from 21 to 37 d.p.i. (Fig. 6A). We then evaluated TRM cell responses at 40 or 

60 d.p.i. PD-L1 blockade increased both the frequency and cell numbers of exhausted-like 

NP366–37 TRM cells but not PA224–233 TRM cells or splenic NP366–374 and PA224–233 

memory T cells at 40 or 60 d.p.i. (Fig. 6, A to C, and fig. S12, A to C). Consistent with the 

enhanced maintenance of NP366–374 TRM cells, α-PD-L1 blockade enhanced their survival 

(Fig. 6D and fig. S12, D and E). In addition to treating the mice with α-PD-L1 starting at 21 

d.p.i., we performed additional experiments by injecting α-PD-L1 to the infected mice 

starting at 42 d.p.i. and then assessed TRM cell responses at 70 d.p.i. The blockade of PD-

L1–PD-1 interaction in this setting also increased the percentages and cell numbers of 

NP366–374 TRM cells but not PA224–233 TRM cells in the lung (fig. S12, F to H), suggesting 

that PD-L1 signaling inhibits the magnitude of NP366–374 TRM cell responses at the memory 

stage.

We next examined whether PD-L1 blockade affected TRM cell cytokine production. We 

found that PD-L1 blockade increased IFN-γ and TNF-α production by NP366–374 TRM cells 

(Fig. 6E and fig. S13, A to E) but had no effects on the IFN-γ and TNF-α production of 

PA224–233 TRM cells (fig. S13, F to K). This was true even when we normalized the 

percentages of IFN-γ and/or TNF-α production to antigen-specific tetramer+ cell numbers 

(Fig. 6E). Thus, PD-L1 blockade promoted exhausted-like TRM cell rejuvenation. In 

addition, PD-L1 blockade led to increased percentages of CD103+ cells and greater per-cell 

CD103 expression levels in exhausted-like TRM cells (Fig. 6, F and G) but did not affect 

CD103 expression on PA224–233 TRM cells (fig. S14, A and B). PD-L1 blockade did not alter 

CD69 expression on either NP366–374 or PA224–233 TRM cells (fig. S14C).

Because CD28 is required for the long-term maintenance of exhausted-like TRM cells and 

CD28 signaling was recently shown as a major target of PD-1 blockade (50, 51), we 

investigated whether the rejuvenation of exhausted-like TRM cells by PD-L1 blockade at the 

memory phase was dependent on CD28 signaling. We infected WT mice with influenza PR8 

and then administered control Ab, α-PD-L1, α-B7, or α-PD-L1 and α-B7 starting at 21 

d.p.i. Co-blockade of CD28 signaling abrogated the effects of PD-L1 blockade on 

exhausted-like NP366–374 TRM cell maintenance (Fig. 6H and fig. S15). Similarly, B7 

blockade decreased CD103 levels on exhausted-like TRM cells after a-PD-L1 blockade (Fig. 

6I). These data suggest that CD28 signaling is important for the effects of PD-L1 blockade 

on the maintenance and rejuvenation of exhausted-like TRM cells.
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Exhausted-like TRM cells balance protective immunity and fibrotic sequelae

Because exhausted-like NP366–374 TRM cells were important in TRM cell–mediated 

heterologous immunity and PD-L1 blockade at the memory phase increased cell numbers 

and function of these cells, we examined whether PD-L1 blockade increased TRM cell–

mediated immunity to influenza reinfection. We infected WT mice with influenza PR8 and 

blocked PD-L1 starting at 21 d.p.i. We then treated the mice with FTY720 and subsequently 

challenged the mice with a high dose of influenza X31 (2.4 × 104 pfu) at 6 weeks after 

infection. Mice with PD-L1 blockade lost significantly less weight than mice receiving 

immunoglobulin G control Ab (Fig. 7A). Similar results were obtained with mice receiving 

primary influenza X31 infection and PD-L1 blockade followed by secondary influenza PR8 

infection (fig. S16A). These data suggest that the rejuvenation of exhausted-like TRM cells 

enhances TRM cell–mediated heterologous protection against influenza reinfection.

TRM cells in the lung undergo enhanced cell death and wane over time after influenza 

infection (52, 53). This transient nature of influenza-induced lung TRM cells was proposed 

as a protective mechanism intended to prevent pathology, but this has not been proven (54). 

Because PD-L1 blockade promoted rejuvenation and maintenance in a population of TRM 

cells, we explored whether this could promote pathologic responses in the lung. PD-L1 

blockade from 21 to 42 d.p.i. increased tissue damage and inflammation at 60 d.p.i. (Fig. 7B 

and fig. S16B). PD-L1 blockade resulted in enhanced lung collagen deposition as revealed 

by Masson’s trichrome staining and hydroxyproline assay (surrogate measure of lung 

collagen content) (Fig. 7, B and C). The enhanced fibrotic sequelae after PD-L1 blockade 

were observed at 90 d.p.i. (fig. S16, C and D), indicating that PD-L1 blockade may cause 

tissue injury and persistent fibrotic sequelae after the resolution of acute influenza infection. 

The increased injurious and fibrotic responses after PD-L1 blockade were CD8+ T cell 

dependent as CD8+ T cell depletion abrogated the effects of PD-L1 blockade (Fig. 7D and 

fig. S17). These data suggest that TRM cell expansion and/or rejuvenation potentially 

contributed to pulmonary pathology and fibrosis.

To further explore this idea in human fibrotic lung disease, we stained the lungs from control 

or patients with idiopathic pulmonary fibrosis (IPF) with CD8, PD-1, and CD103. IPF lungs 

had increased tissue CD8+ T cells and CD8+ T cells coexpressing PD-1 or CD103 (Fig. 7, E 

and F), suggesting that patients with IPF have an enhanced TRM cell presence. Consistent 

with the notion, ITGAE (CD103) and PDCD1 (PD-1) genes were significantly up-regulated 

in the lungs of patients with interstitial lung diseases (ILDs, mostly IPF) in a large publicly 

available dataset (fig. S18). These data indicate that CD8+ TRM cells may be involved in the 

development and/or progress of human lung fibrosis. In summary, our data suggested that 

although exhausted-like properties render NP366–374 TRM cells less protective against 

reinfection, this TRM cell exhaustion prevents the host from developing overt injury resulting 

in fibrotic sequelae after acute influenza virus infection.

DISCUSSION

Memory CD8+ T cells are heterogeneous and display subsets of diversity with respect to 

their trafficking, metabolism, epigenetic regulation, and longevity (55). Here, we have 

described two types of TRM cell populations that arise from acute influenza virus infection. 
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The conventional PA224–233 TRM cells are relatively long-lived and maintained in a TCR–

pMHC-I–independent manner. An exhausted-like NP366–374 TRM cell population that 

exhibit both exhausted and memory features also develop from influenza virus infection. 

They are phenotypically exhausted but retain responsiveness in situ to secondary infections 

and also afford protection against heterotypic viruses with conserved CD8+ T cell epitopes. 

Compared with conventional TRM cells (for example, PA224–233 TRM cells), the maintenance 

of these exhausted-like TRM cells is dependent on persistent TCR–pMHC-I and CD28-B7 

costimulatory signals. These TRM cells have pathogenic and fibrogenic potential if their 

activities are unchecked after the release of PD-1–imposed suppression. These data indicate 

that polyclonal CD8+ memory T cells of different specificities may exhibit distinct 

transcriptional, phenotypic, and functional differences in the same tissue although they 

derive from the same infection. This type of epitope-specific variation and regulation of 

memory cells was observed previously in lymphoid organs (15).

The development of those exhausted-like features in NP366–374 TRM cells is likely due to the 

active adaptation of those cells to the local antigen containing lung environment even weeks 

after the clearance of the infectious virus. It is well documented that acute influenza virus 

infection leads to persistent influenza antigen deposition in the lung and continuous antigen 

presentation is observed in the draining lymph nodes executed via migratory lung dendritic 

cells (24, 26). Studies have suggested that the continuous antigen presentation may affect the 

quantity and quality of CD8+ memory T cells in secondary lymphoid organs (26). It is 

possible that exhausted-like NP366–374 TRM cells migrate continuously from the draining LN 

where they receive antigenic signaling. However, evidence presented here supports the idea 

that local antigen presentation in the lung, rather than in the draining lymph nodes, may be 

responsible for the development of exhausted-like TRM cells. First, compared with the 

resident NP366–374 TRM cells, NP366–374 cells in the lung vasculature were Nur77-GFP 

negative and express lower levels of PD-1, suggesting that exhausted-like NP366–374 TRM 

cells receive antigen presentation and CD28 signaling after the establishment of residence in 

the lung. Second, long-term blockade of T cell circulation via FTY720 treatment does not 

affect Nur77, PD-1, or other coinhibitory receptor expression on NP366–374 TRM cells, 

suggesting that T cell circulation at the memory stage is not required for the development of 

exhausted-like TRM cells. The fact that exhausted-like phenotypes are only observed in 

NP366–374 but not in PA224–233 TRM cells is probably due to the antigen dose and/or the 

duration of antigen presentation. Influenza virus contains a higher number of NP molecules 

(560 molecules per virion) than PA molecules (8 molecules per virion) (15). At later times 

after infection, when virally infected cells are cleared and the majority of antigen is in the 

form of cellular debris and neutralized virions, NP proteins would be present in greater 

amounts than PA (15). Therefore, the probability of processing and presentation of NP by 

lung APCs at the memory stage would be much higher than PA. Nevertheless, future studies 

are warranted to distinguish the roles of lung local antigen presentation versus draining LN 

peptide presentation in driving the development of exhausted-like TRM cells, to identify the 

exact cell types maintaining the residual antigen, and to determine the precise APC 

populations required for the maintenance of exhausted-like TRM cells.

The pathogenic cascade of lung fibrosis is thought to be initiated by repetitive microinjuries 

to the alveolar epithelium (56). Because of the enhanced expression of effector cytokines 
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and cytotoxic molecules, TRM cells could certainly be capable of initiating and/or 

amplifying epithelial injury if triggered by antigenic and/or rejuvenating signals such as 

PD-1 blockade. Whether TRM cell activation is involved in the development and/or 

exacerbations of human pulmonary fibrosis requires future studies. Influenza and other viral 

infections have been associated with both the development and exacerbation of established 

pulmonary fibrosis (57–60). It is tempting to speculate that the activation and/or 

rejuvenation of preexisting viral-specific exhausted-like TRM cells may contribute to the 

development of the lung injury and pathology. These ideas are supported by a recent report 

that PD-1–mediated inactivation of human CD8+ T cells alleviates lung fibrosis development 

in a humanized mouse model of bleomycin-induced pulmonary fibrosis (61). The degree of 

the pulmonary fibrosis observed in the influenza-infected mice after PD-L1 blockade is 

much milder than the acute lung fibrosis that develops after bleomycin inoculation. Whether 

these fibrotic sequelae could result in significant changes in lung function requires further 

studies.

Some limitations of this report are worth noting. In our study, we have only assessed TRM 

cell phenotypes for a limited number of CD8+ T cell epitopes after influenza infection, and it 

is possible that there is an even broader spectrum of TRM phenotypes. Furthermore, only 

respiratory mucosal tissue was examined in this study. Whether exhaustion-like TRM cells 

are present in the lungs or other mucosal tissues after infections with distinct pathogens 

warrants further studies. Nevertheless, TRM cell exhaustion observed in our study is likely an 

active adaptation of the cells delicately maintaining tissue immune memory while 

simultaneously preventing the development of excessive fibrotic sequelae. Potential 

activation of lung TRM cells may result in amplified inflammatory, injurious, and fibrotic 

signals contributing to the development and/or exacerbation of preexisting fibrotic 

respiratory diseases. It is thus important to identify strategies to specifically promote the 

protective function while, if possible, restraining the pathological function of TRM cells 

during vaccination and/or immunotherapies.

MATERIALS AND METHODS

Mouse and infection

WT C57BL/6, dLck-cre, Tgfbr2fl/fl, CD90.1 (Thy1.1), CD45.1, Ubc-creERT2, OT-I, and 

Nr4a1−/− mice were originally purchased from the Jackson Laboratory and bred in-house. 

Tgfbr2Δdlck mice were generated by breeding dLck-cre to Tgfbr2fl/fl mice. Control mice for 

Tgfbr2Δdlck mice are littermates without dLck-cre transgene (Tgfbr2fl/fl). To generate 

H2dbfl/fl transgenic mice, LoxP sites were inserted into a Db transgene. The transgene was 

introduced to C57BL/6 mice by the Mayo Clinic Transgenic Mouse Core (Rochester, MN). 

These animals were then backcrossed onto an MHC-I–deficient background until they 

lacked endogenous MHC-I. To generate H2dbΔUbc-creERT2 mice, MHC-I–deficient H2dbfl/fl 

transgenic mice were bred to Ubc-creERT2 transgenic mice to generate Ubc-creERT2/

H2dbfl/fl double transgenic mice on an MHC-I background (H2dbΔUbc-creERT2) (fig. S4A). 

Nur77-GFP reporter mice were a gift from G. Rajagopalan (Mayo Clinic) and bred in-house. 

All animal experiments were performed in animal housing facilities at the Indiana 

University School of Medicine (IUSM, Indianapolis, IN) or the Mayo Clinic (Rochester, 
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MN). Sex-matched and age-matched 9- to 12-week-old mice of both sexes were used in the 

experiments. All animal experiments were approved by the IUSM or the Mayo Clinic 

Institutional Animal Care and Use Committees. Influenza A/PR8/34 virus harboring point 

mutation that abrogates the binding of MHC-I to the NP366–374 peptide (PR8-NP mutant) 

was generated as described before (46). For influenza virus infection, influenza WT PR8 

virus (~200 pfu per mouse unless stated in the text in the primary infection and ~1 × 104 pfu 

per mouse in the secondary infection), PR8-NP mutant virus (~200 pfu per mouse), PR8 

expressing ovalbumin peptide (PR8-OVA) (~1200 pfu per mouse), or X31 (~800 pfu per 

mouse in the primary infection and ~1.2 × 104 or ~2.4 × 104 pfu per mouse in the secondary 

infection as indicated in the text) was diluted in fetal bovine serum (FBS)–free Dulbecco’s 

modified Eagle’s medium (Corning) on ice and inoculated in anesthetized mice through 

intranasal route as described before (28).

Human lung tissue sections

Archived human surgical lung biopsy specimens from individuals diagnosed with usual 

interstitial pneumonia (UIP) on biopsy (clinically IPF; n = 10) were obtained from the Mayo 

Clinic tissue bank. The diagnosis of UIP/IPF was based on standard criteria (62). Control 

lung tissue was obtained from surgical biopsy specimens acquired from patients undergoing 

lung biopsy for benign indications: primarily benign lung nodules. The control lung tissue 

samples used were from the lung tissue adjacent to the resected lung nodule. The control 

subjects (n = 10) did not have any evidence of interstitial lung diseases. The use of human 

lung tissue in this study was approved by the Mayo Clinic Institutional Review Board 

committee (protocol number 18–004030).

Immunofluorescence staining

Staining for two groups of combination of either CD8/CD103 or CD8/PD-1 was performed 

on formalin-fixed paraffin-embedded (FFPE) lung tissue slides. FFPE slides were 

deparaffinized in CitriSolv for 30 min and then immersed in alcohol series from 100, 95, 85, 

and 75% to distill H2O for 5 min each for tissue hydration. For antigen retrieval, hydrated 

slides were steamed for 20 min in 1 mM EDTA. The slides were then blocked with 10% 

normal goat serum phosphate-buffered saline (PBS) for 30 min at room temperature (RT) 

and then were incubated with either rabbit anti-CD103 (Abcam) or rabbit anti–PD-1 (Cell 

Signaling) overnight at 4°C.8After rinsing in 0.1% PBST (PBS with Tween 20) solution, the 

slides were incubated with Alexa Fluor 488–conjugated goat anti-rabbit secondary Ab (Life 

Technologies). After rinsing with 0.1% PBST, the slides were then incubated with Alexa 

Fluor 647–conjugated mouse anti- CD8 (BioLegend) for 60 min at RT. After stringent 

washing in 0.1% PBST, slides were aired before mounting with 4’,6-diamidino-2- 

phenylindole for nuclei counterstain. Tissue staining for the Ab mixture was reviewed and 

representative images were captured in Olympus cellSens Dimension system. Fifteen 

representative image fields were captured for each patient for quantification purposes.

RNA-seq and data analysis

Total RNA was isolated from sorted pooled NP366–374 or PA224–233 TRM population from 16 

mice (Qiagen). High-quality total RNA was used to generate the RNA-seq library. cDNA 

synthesis, end-repair, A-base addition, and ligation of the Illumina indexed adapters were 
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performed according to the TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA). 

The concentration and size distribution of the completed libraries were determined using an 

Agilent Bioanalyzer DNA 1000 chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen, 

Carlsbad, CA). Paired-end libraries were sequenced on an Illumina HiSeq 4000 following 

Illumina’s standard protocol using the Illumina cBot and HiSeq 3000/4000 PE Cluster Kit. 

Base calling was performed using Illumina’s Real-Time Analysis (RTA) software (version 

2.5.2). Paired-end RNA-seq reads were aligned to the mouse reference genome (GRCm38/

mm10) using RNA-seq spliced read mapper Tophat2 (v2.1.1) (63). Pre- and post-alignment 

quality controls, gene level raw read count, and normalized read count (i.e., FPKM) were 

performed using RSeQC package (v2.3.6) with the NCBI mouse RefSeq gene model (64). 

We further calculated the logFC (fold change) by dividing FPKMNP/FPKMPA with 

additional restrictions on FPKM values as min (FPKMNP, FPKMPA) > 0 and max 

(FPKMNP, FPKMPA) > 5, and genes were sorted by logFC for GSEA analysis (http://

www.broadinstitute.org/gsea/). Gene lists of up-regulated and down-regulated genes in 

exhausted CD8+ T cells during chronic viral infection (compared with memory CD8+ T cells 

in acute viral infection) are adapted from GSE9650 (34). RNA-seq data were deposited in 

Gene Expression Omnibus (GEO) database (GEO number: GSE115786).

Hydroxyproline assay

Lung tissue was hydrolyzed in 1 ml of 6 M HCl at 95°C overnight. The hydrolysate was 

cooled down to RT and centrifuged for 10 min at 13,000g. The black particles on the surface 

of the hydrolysate were removed by vacuum sucking. Two and a half microliters of each 

sample was added to an indicated well of assay plate. Hydroxyproline standard solution was 

purchased from Sigma-Aldrich. Standard solution (1 mg/ml) was diluted 10 times, and 0, 2, 

4, 6, 8, and 10 ml of diluted standard solution were added into different wells in the assay 

plate for generation of standard curve. Then, the assay plate was placed in a 60°C oven to 

dry samples. One hundred microliters of freshly made chloramine-T solution (2.0 ml of n-

propanol, 0.282 g of chloramine-T, and 2.0 ml of H2O in 20 ml of citrate acetate buffer) was 

added into each well, and the mixture was incubated at RT for 20 min. Then, 100 ml of fresh 

Ehrlich solution (4.5 g of 4-dimethylaminobenzaldehyde in 18.6 ml of n-propanol and 7.8 

ml of perchloric acid) was added into each well. After that, the assay plate was placed at a 

60°C oven for 60 min before reading at 560-nm wavelength in a Thermax plate reader.

Intravascular CD8+ T cell labeling

Mice were injected intravenously with 1.5 mg of anti-CD45 diluted in 200 μl of sterile PBS 

as previously described (30). Mice were euthanized, and tissues were collected 5 min after 

injection of the intravenous Ab. Tissues were dissociated in 37°C for 30 min with 

gentleMACS (Miltenyi Biotec). Lung-circulating CD8+ are defined by intravenous Ab+, and 

lung-resident CD8+ are defined by intravenous Ab−.

OTI cell transfer

One million splenocytes from Thy1.1+ OTI mice were transferred into WT (Thy1.2+) 

congenic mice. Then, the mice were infected with PR8-OVA virus 24 hours later. At 6 weeks 

after infection, mice were injected with intravenous CD8• Ab, and lungs were collected for 
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TRM analysis. TRM phenotype of transferred OTI cells and endogenous NP366–374 or 

PA224–233 populations were based on Thy1.1 and Thy1.2 staining separation.

Flow cytometry analysis

Fluorescence-activated cell sorting (FACS) Abs were primarily purchased from BioLegend, 

BD Biosciences, or eBioscience. H-2Db Ab was purchased from Accurate Chem. The clone 

numbers of those Abs are as follows: CD8α(53–6.7), CD8β(YTS156.7.7), CD45(30-F11), 

CD45.1(A20), CD90.1(OX-7), CD90.2(53–2.1), PD-1(29F.1A12), TIM-3 (RMT3–23), 

Lag-3(C9B7W), TIGIT(1G9), CD103(2E7), CD69(H1.2F3), CD49a(TS2/7), 

CD127(A7R34), TCF-1(7F11A10), IFN-γ(XMG1.2), TNF(MP6-XT22), KI-67(SolA15), 

and H-2Db(B22–249.R1). The dilution of surface staining Abs was 1:200, and dilution of 

intracellular staining Abs was 1:100. H-2Db-NP366–374 and H-2Db-PA224–2 tetramers were 

from the National Institutes of Health tetramer facility. After Ab staining, cells were 

acquired through an 11-color Attune NxT system (Life Technologies). Data were then 

analyzed by FlowJo software (Tree Star).

Intracelluar staining

Cell suspensions were stained with the indicated surface marker, and staining was performed 

at 4°C for 30 min. Cells were washed twice with FACS buffer (PBS, 2 mM EDTA, 2% FBS, 

and 0.09% sodium azide) before fixation and permeabilization with either Perm Fix and 

Perm Wash (BD Bioscience, for cytokine staining) or the Foxp3 transcription factor staining 

buffer set (eBioscience, for KI-67 and TCF-1 staining) for 1 hour at RT in the dark. Cells 

were washed twice with perm wash (BD Bioscience or eBioscience); stained with Abs 

against TCF-1, KI-67, IFN-γ, and TNF for at least 30 min at RT; and washed twice with 

perm wash before flow cytometry acquisition (29).

Apoptotic cell detection

CellEvent Caspase-3/7 Green Flow Cytometry Assay Kit (Life Technologies) was used to 

detect active caspase activity inside the cells. Lung cells were incubated with CellEvent 

Caspase-3/7 green detection reagent for 25 min at 37°C as described in the manual. Annexin 

V Apoptosis Detection Kit (BioLegend) was used to detect phosphatidylserine on apoptotic 

cell surface. Lung cells were stained with annexin V and 7-aminoactinomycin D (7-AAD) 

for 15 min at RT according to the manual.

Tamoxifen treatment

To induce gene recombination in H2dbΔUbc-creERT2 mice, tamoxifen (Sigma-Aldrich) was 

dissolved in warm sunflower oil (Sigma-Aldrich) and administered via daily intraperitoneal 

injection for six consecutive times. Each application was 2 mg per mouse at a concentration 

of 20 mg/ml.

FTY720 treatment

For the influenza rechallenge experiment, mice were treated daily with FTY720 (1 mg/kg) 

by intraperitoneal injection starting at 1 day before rechallenge. For the chronic blockade of 
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memory T cell migration, mice were treated daily with FTY720 (1 mg/kg) starting at 21 

d.p.i. until 40 d.p.i., when mice were euthanized for TRM analysis.

Ab depletion and blockade in vivo

Anti-CD8, anti–PD-L1, anti-B7.1, anti-B7.2, and control Abs were purchased from Bio X 

Cell. For PD-L1 or CTLA-4 blockade experiments, WT B6 mice were infected with 

influenza and received intraperitoneal injection of control or blocking Abs at a dose of 500 

μg per mouse for the first time at 21 d.p.i. Mice then received intraperitoneal injection of 

Abs every 4 days (250 mg per mouse) thereafter. For B7 blockade experiments, WT B6 mice 

were infected with influenza and received anti-B7.1 (200 μg per mouse) and anti-B7.2 (200 

μg per mouse) treatment every 3 days starting at 21 d.p.i. or as stated in the text. For CD8 T 

cell depletion, mice received intraperitoneal injection of 400 μg per mouse once a week 

starting at 21 d.p.i.

Bone marrow chimera

To generate WT and Nr4a1−/− mixed bone marrow chimera, we injected CD45.1 mice with 

Busulfan (Sigma) at 100 mg/kg for four consecutive days. Mice were then reconstituted with 

Thy1.1+ WT bone marrow cells mixed with Thy1.2+ Nr4a1−/− bone marrow cells (1:1 ratio). 

Mice were rested for 6 weeks before infection with influenza. At 6 weeks after infection, 

mice were euthanized for the analysis of TRM. WT CD8+ T cells are identified as 

CD8+CD45.1−CD45.2+Thy1.1+ Thy1.2−, and Nr4a1−/− CD8+ T cells are identified as 

CD8+CD45.1− CD45.2+Thy1.1−Thy1.2+.

Peptide restimulation in vitro

Lung tissues were dissociated with gentleMACS (Miltenyi). Cell suspensions were 

restimulated with NP366–374 or PA224–233 peptide (100 ng/ml) (AnaSpec) for 5 hours in the 

presence of GolgiStop (BD Biosciences) (65). After restimulation, cells were first stained 

with surface markers and then were fixed and permeabilized using Perm Fix/Wash kits as 

described in the protocol.

Peptide inoculation in vivo

WT mice were infected with influenza PR8. At 35 d.p.i., mice were intranasally inoculated 

with PBS, PA224–233 peptide (10 μg per mouse), or NP366–374 peptide (10 μg per mouse) 

(AnaSpec) dissolved in PBS. At 37 d.p.i., mice were injected with intravenous CD8β Ab, 

and lungs were collected for TRM phenotype analysis.

Lung histopathology

After euthanasia, mice were perfused with PBS (10 ml) via the right ventricle. 

Paraformaldehyde (10%) (PF) was then gently instilled into the lung and left inflated for 1 

min before excising and moving the lobe to 10% PF for 48 hours followed by transfer to 

ethanol (70%). Samples were shipped to the Mayo Clinic Histology Core Lab (Scottsdale, 

AZ) where they were embedded in paraffin, and 5-mm sections were cut for hematoxylin 

and eosin and Masson’s trichrome stain.Slideswere then digitallyscannedbytheMayo 
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ClinicPathology Research Core (Rochester, MN) at 400× resolution with the Aperio system 

(Leica).

NanoString analysis

Total RNA from sorted T cell populations (n = 4 to 12 mice per group) was extracted with 

mini RNA Kit (Qiagen). Equal amounts of total RNA from different cells were used for the 

assay. Hybridization reaction was established by following the instruction of the 

manufacturer. Aliquots of Reporter CodeSet and Capture ProbeSet were thawed at RT. Then, 

a master mix was created by adding 70 μl of hybridization buffer to the tube containing the 

reporter codeset. Eight microliters of this master mix was added to each of the tubes for 

different samples; 5 μl (50 ng) of the total RNA sample was added into each tube. Then, 2 μl 

of the well-mixed Capture probeset was added to each tube and placed in the preheated 65°C 

thermal cycler. All the sample mixes were incubated for 16 hours at 65°C for completion of 

hybridization. The samples were then loaded into the sample hole in the cartridge and loaded 

into the NanoString nCounter SPRINT Profiler machine (NanoString). When the 

corresponding Reporter Library File (RLF) running is finished, the raw data were 

downloaded and analyzed with NanoString Software nSolver 3.0 (NanoString). mRNA 

counts were processed to account for hybridization efficiency, background noise, and sample 

content, and were normalized using the geometric mean of housekeeping genes. Fold 

changes were calculated comparing the experimental group to their appropriate controls. 

Heat map was generated by MeV software.

Statistical analysis

The means of two groups were compared with nonpaired two-tailed Student’s t test. To 

compare the means of more than two groups, one-way ANOVA with Tukey multiple 

comparison test was performed. All statistical analyses were performed using Prism 6 

software (GraphPad Software). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 1. Epitope-specific manifestation of exhaustion gene signature in lung TRM cells.
WT C57BL/6 mice were infected with influenza PR8. Spleens or lungs were harvested after 

intravenous (i.v.) administration of CD45 Ab at the indicated d.p.i. (A) Expression of CD69 

and CD103 on lung NP366–374 or PA224–233 circulating memory (intravenous Ab+, TM-Circ) 

cells or TRM cells (intravenous Ab−) by flow cytometry at 40 d.p.i. (n=4). (B and C) 

Transcriptional profiles of NP366–374 and PA224–233 TRM cells were determined by RNA-seq 

at 42 d.p.i. (pooled from 16 mice). (B) Differential gene expression between NP366–374 TRM 

cells and PA224–233 TRM cells. FPKM, fragments per kilobase million. (C) GSEA showing 

positive enrichment in NP366–374 TRM cells of the genes up-regulated in exhausted CD8+ T 

cells (top) or showing negative enrichment in NP366–374 TRM cells of the genes down-

regulated in exhausted CD8+ T cells (bottom). NES, normalized enrichment score. (D and 

E) Expression of immune-related genes in NP366–374 (NP) or PA224–233 (PA) lung effector 

(TE-LUNG) and TRM cells, and spleen effector (TE-SPL) and memory (TM-SPL) cells were 

determined by NanoString at 8 (effector) or 38 (memory) d.p.i. (pooled from 4 to 12 mice 

per group). (D) Heat map representing expression levels of 560 immune-associated genes. 

(E) Heat map representing expression levels of exhaustion-associated genes.
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Fig. 2. Exhausted-like TRM cells coexhibit exhausted and memory T cell features.
(A to G) WT C57BL/6 mice were infected with influenza PR8. Spleens and lungs were 

harvested after intravenous administration of CD45 Ab at the indicated d.p.i. (A) PD-1 

expression levels [mean fluorescence intensity (MFI)] on intravenous Ab− lung NP366–374 or 

PA224–233 T cells were assessed by flow cytometry at the indicated d.p.i. (B) Expression of 

inhibitory receptors on lung NP366–374 or PA224–233 TRM cells was assessed by flow 

cytometry at 40 d.p.i. (C) Total numbers of inhibitory receptors expressed on lung NP366–374 

or PA224–233 TRM cells were assessed by flow cytometry at 40 d.p.i. (D and E) IFN-γ and 

TNF-α production by TRM cells was assessed by flow cytometry after ex vivo stimulation 

with the NP366–374 or PA224–233 peptide at 40d.p.i. (D) Representative plots of tetramer 

(Tet), IFN-γ, and TNF-α staining in lung-resident (intravenous Ab−) CD8+ cells. (E) 

Frequencies of IFN-γ+ TNF-α+ cells were normalized to the frequencies of tetramer+ TRM 

cells in resident CD8+ cells. Percentages of IFN-γ+ TNF-α+ cells in tetramer+ TRM cells 

were assessed. (F) NP366–374 or PA224–233 TRM cell TCF-1 and CD127 expression was 
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assessed by flow cytometry at 42 d.p.i. (G) Expression of CD8+ memory-associated genes in 

lung effector (TE-LUNG) or TRM cells, and spleen effector (TE-SPL) or memory (TM-SPL) 

cells was determined by NanoString at 8 or 38 d.p.i. (H and I) Tgfbr2fl/fl or Tgfbr2Δdlck 

mice were infected with influenza PR8. Spleens and lungs were harvested after intravenous 

administration of CD45 Ab at 42 d.p.i. (H) Representative flow cytometry plots. (I) 

Frequencies of NP366–374 or PA224–233 TRM and TM-SPL cells. (J) WT C57BL/6 mice were 

infected with influenza PR8, treated with FTY720 (39 to 41 d.p.i.), and then rechallenged 

with influenza X31 at 40 d.p.i. KI-67 expression in NP366–374 or PA224–233 TRM cells was 

assessed by flow cytometry before and 2 days after rechallenge. Representative of two to 

three experiments (n=2 to 7) except (G). Data are mean ± SD; ns, not significant. *P < 0.05, 

**P < 0.01, ****P < 0.0001, unpaired two-tailed t test.
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Fig. 3. TCR signaling is required for exhausted-like TRM cell formation and maintenance.
(A) Nur77-GFP mice were infected with influenza PR8. Spleens and lungs were harvested 

after intravenous administration of CD45 Ab. Green fluorescent protein (GFP) expression in 

TRM cells, lung-circulating memory (TM-Circ, intravenous Ab+), and TM-SPL cells was 

assessed by flow cytometry at 40 d.p.i. (B to D) Nur77-GFP mice were infected with 

influenza PR8 and received vehicle or FTY720 daily starting at 21 d.p.i. Mice were 

euthanized after intravenous administration of CD45 Ab at 40 d.p.i. (B) Schematic of 

experimental design (top) and representative flow cytometry plots of Nur77-GFP expression 

in NP366–374 or PA224–233 TRM cells. (C) Quantification of percentages of Nur77-GFP+ cells 

in NP366–374 or PA224–233 TRM cells after vehicle or FTY720 treatment. (D) PD-1, TIM-3, 

CD69, or CD103 expression on NP366–374 or PA224–233 TRM cells after vehicle or FTY720 

treatment was assessed by flow cytometry. (E and F) Thy1.1+ C57BL/6 WT and Thy1.2+ 

Nr4a1−/− (Nur77) mixed bone marrow (BM) chimeric mice were infected with influenza 
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PR8. Spleens and lungs were harvested after intravenous administration of CD45 Ab at 40 

d.p.i. (E) PD-1 expression on NP366–374 or PA224–233 TRM cells was determined by flow 

cytometry. (F) Representative plots (left) and percentages (right) of NP366–374 or PA224–233 

TRM cells in Thy1.1+ WT or Thy1.2+ Nr4a1−/−-resident CD8+ T cells. Representative of two 

to three experiments (n = 3 to 5). Data are mean ± SD; ns, not significant. *P < 0.05, **P < 

0.01, unpaired two-tailed t test.
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Fig. 4. Persistent TCR–pMHC-I signaling drives the formation and maintenance of exhausted-
like TRM cells.
H2dbfl/fl (Ctl) and H2dbΔUbc-creERT2 (KO) mice were infected with influenza PR8 and then 

treated with tamoxifen starting at 22 d.p.i. Spleens and lungs were harvested after 

intravenous administration of CD45 Ab at 42 d.p.i. (A) Schematic of the experimental 

design. (B) Average PD-1 or TIM-3 expression levels (MFI) on NP366–374 TRM cells 

evaluated by flow cytometry. (C) Average PD-1 or TIM-3 expression levels (MFI) on 

PA224–233 TRM cells evaluated by flow cytometry. (D) Representative plots and average 

frequencies of TRM cells (top) or TM-SPL cells (bottom) in lung-resident or splenic CD8+ T 

cells, respectively. (E) Cell numbers of NP366–374 or PA224–233 TRM cells. (F) 

Representative plot of CD103 expression on NP366–374 TRM cells. (G) Average CD103 

expression levels (MFI) on NP366–374 or PA224–233 TRM cells were evaluated by flow 

cytometry. Representative of three experiments (n=4 mice per group). Data are mean ± SD; 

ns, not significant. *P < 0.05, **P < 0.01, unpaired two-tailed t test.
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Fig. 5. B7 blockade diminishes exhausted-like TRM cell maintenance.
(A) WT mice were infected with influenza PR8. CD28 gene expression in NP366–374 or 

PA224–233 TRM cells or spleen memory T cells was determined by NanoString at 38 d.p.i. 

(B) WT mice were infected with influenza PR8. CD28 expression levels (MFI) on TRM cells 

were assessed by flow cytometry at 42 d.p.i. (C to F) WT mice were infected with influenza 

PR8 and B7 costimulation was blocked through the administration of α-B7.1 plus α-B7.2 at 

21 d.p.i. Spleens or lungs were harvested after intravenous administration of CD45 Ab at 42 

d.p.i. (C) Schematic of experimental design and PD-1 expression levels (MFI) on TRM cells. 

(D) Frequencies of NP366–374 or PA224–233 TRM cells in total lung-resident (intravenous Ab
−) CD8+ T cells. (E) Cell numbers of NP366–374 or PA224–233 TRM cells. (F) Representative 

plots (left) and frequencies (right) of active caspase-3/7+ cells in NP366–374 or PA224–233 

TRM cells. (G) WT mice were infected with influenza PR8 with or without B7 blockade at 

21 d.p.i. and then rechallenged with X31 (1.2 × 104 pfu) at 42 d.p.i. in the presence of 

FTY720. Percentages of original weight after rechallenge were assessed daily. 

Representative of two to three experiments except (A) (n = 3 to 4 mice per group). Data are 
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mean ± SD; ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, unpaired two-tailed t 
test.
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Fig. 6. PD-L1 blockade rejuvenates exhausted-like TRM cells.
(A to G) WT mice were infected with influenza PR8 and received control IgG (Ctl) or a-PD-

L1 from 21 to 37 d.p.i. Spleens and lungs were harvested after intravenous administration of 

CD45 Ab at the indicated d.p.i. (A) Experimental design and representative plots of 

NP366–37 or PA224–233 TRM cells at 40 or 60 d.p.i. (B) Frequencies of NP366–374 or 

PA224–233 TRM cells in total resident (intravenous Ab−) CD8+ T cells at 40 or 60 d.p.i. (C) 

Cell numbers of NP366–374 or PA224–233 TRM cells at 40 or 60 d.p.i. (D) Frequencies of 

active caspase-3/7+ cells in NP366–374 TRM cells at 35 d.p.i. (E) IFN-γ and TNF-α 
production by TRM cells was determined after ex vivo NP366–374 peptide stimulation at 40 

d.p.i. Left panel, representative plots. Right panel, average frequencies of IFN-γ and TNF-α 
double-positive cells with or without PD-L1 blockade. (F and G) CD103 expression on 

NP366–374 lung TRM cells was determined at 40 d.p.i. Representative plots (F) and 

frequenciesof CD103+ cells (G, left) or CD103 expression levels (MFI) (G, right) in 

NP366–374 TRM cells. (H and I) WT mice were infected with influenza PR8 and received 
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control Ab, α-PD-L1, and/or α-B7 as indicated starting at 21 d.p.i. Lungs were harvested 

after intravenous administration of CD45 Ab at 40 d.p.i. (H) Representative plots and 

percentages of TRM cells in lung-resident (intravenous Ab−) CD8+ T cells. (I) CD103 

expression levels (MFI) on TRM cells were determined by flow cytometry. Representative of 

two to four experiments (n = 3 to 6). Mean ± SD; ns, not significant. *P < 0.05, **P < 0.01, 

***P < 0.001, ****P < 0.0001 unpaired two-tailed t test or one-way analysis of variance 

(ANOVA) with Tukey multiple comparison test.
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Fig. 7. TRM cell exhaustion balances protective immunity and fibrotic sequelae.
(A) WT mice were infected with influenza PR8 and received control IgG (Ctl) or α-PD-L1 

from 21 to 37 d.p.i. Mice were rechallenged with influenza X31 (2.4 × 104 pfu) in the 

presence of FTY720 at 42 d.p.i. Percentages of original weight were determined daily after 

rechallenge. (B to D) WT mice were infected with influenza PR8 and received control IgG 

(Ctl) or α-PD-L1 from 21 to 37 d.p.i. Lung pathology and hydroxyproline levels were 

determined at 60 d.p.i. (B) Hematoxylin and eosin (H&E) and Masson’s trichrome C 

staining of lung sections. (C) Hydroxyproline levels (micrograms per milligram of lung 

tissue) of the lungs. (D) Hydroxyproline levels of the lungs from mice received control Ab, 

α-PD-L1, or α-PD-L1 plus α-CD8 (CD8 depletion). (E and F) CD8, PD-1, and CD103 

staining was performed on lung sections from control (n = 10) or patients with IPF (n = 10). 

(E) Representative of CD8, PD-1, and CD103 staining. Blue, DAPI (4',6-diamidino-2-

phenylindole). (F) Frequencies of CD8+ cells, CD8+ CD103+, or CD8+ PD-1+ cells in DAPI
+ cells of control or IPF lungs. (A to D) Representative of two to five experiments (n = 3 to 

6). Mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001, unpaired two-tailed t test.
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