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The cellular and molecular landscape of
hypothalamic patterning and differentiation
from embryonic to late postnatal development
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The hypothalamus is a central regulator of many innate behaviors essential for survival, but
the molecular mechanisms controlling hypothalamic patterning and cell fate specification are
poorly understood. To identify genes that control hypothalamic development, we have used
single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression
across 12 developmental time points between embryonic day 10 and postnatal day 45. This
identified genes that delineated clear developmental trajectories for all major hypothalamic
cell types, and readily distinguished major regional subdivisions of the developing hypotha-
lamus. By using our developmental dataset, we were able to rapidly annotate previously
unidentified clusters from existing scRNA-Seq datasets collected during development and to
identify the developmental origins of major neuronal populations of the ventromedial
hypothalamus. We further show that our approach can rapidly and comprehensively char-
acterize mutants that have altered hypothalamic patterning, identifying Nkx2.7 as a negative
regulator of prethalamic identity. These data serve as a resource for further studies of
hypothalamic development, physiology, and dysfunction.
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ARTICLE

he hypothalamus is comprised of a diverse array of neu-

ronal and glial cell types, many of which are organized into

spatially discrete clusters or nucleil=3. Stereotactic lesion
and focal stimulation studies have identified individual nuclei as
essential for regulating a broad range of homeostatic physiological
processes, ranging from circadian rhythms to hunger; behaviors
such as mating, aggression and care of young; and cognitive
processes such as motivation, reward, and memory*”7. More
recently, opto- and chemogenetic techniques have made it pos-
sible to identify the role of individual hypothalamic neuronal
subtypes in controlling some of these behaviors3-10.

Progress in this area has been hampered, however, by the fact
that hypothalamic cell types thus far have remained quite poorly
characterized, despite recent efforts aimed at using scRNA-seq to
classify cells in different regions of the adult hypothalamus!!-1>,
and more recently in limited embryonic and early postnatal
periods!®17, Still less is known about how hypothalamic cell types
acquire their identities during development. Even the basic spatial
organization of the developing hypothalamus, and its relationship
to other forebrain structures such as the prethalamus and tele-
ncephalon, remains contentious'8-20. Previous efforts using
microarray analysis coupled with large-scale two-color in situ
hybridization (ISH) have identified a set of molecular markers
that uniquely define spatial domains of the early embryonic
hypothalamus and adjacent diencephalic regions?, while parallel
efforts using high-throughput ISH have identified additional
region-specific markers?!-22,

These datasets have been used as the basis for genetic
studies that selectively disrupt the development of specific
hypothalamic regions and/or cell types?3-%’, leading to the
identification of novel functions for previously characterized
hypothalamic regions or cell types?82°. However, these datasets
have important limitations: they do not provide cellular reso-
lution of gene expression data, and they do not efficiently
measure the coexpression of multiple genes. In addition, despite
the availability of many highly specific molecular markers,
analysis of mutants that affect hypothalamic development is
currently both slow and difficult, owing to the complexity of
this structure.

Recent advances in single-cell RNA-seq technology (scRNA-
seq)3Y have made it possible to both analyze the development of
complex organs at cellular resolution and to also rapidly and
comprehensively characterize the molecular phenotype of devel-
opmental mutants3!. In this study, we use scRNA-seq to profile
changes in gene expression and cell composition across the full
course of mouse hypothalamic development, with a particular
focus on identifying genes that control glial differentiation
and function. We next focus on identifying genes that control
hypothalamic regionalization and neurogenesis in the early
embryo, and integrate these findings to generate a Hypothalamic
Developmental Database (HyDD), which identifies selective
markers of each region of the developing hypothalamus and
prethalamus. We next use the HyDD to rapidly annotate cell
types in previously published scRNA-seq datasets, and to infer
the developmental history of specific subtypes of adult hypotha-
lamic neurons. Finally, we demonstrate how the HyDD can be
used to comprehensively analyze developmental mutants that
generate complex phenotypes that would be difficult to char-
acterize with traditional histology-based approaches, and in the
process identify Nkx2-1 as a negative regulator of prethalamic
identity.

This study provides a reference atlas for future studies of
hypothalamic development. It also identifies pathways by which
gene regulatory networks that control cell identity can be targeted
to analyze the functional role of individual hypothalamic neu-
ronal subtypes.

Results

Comprehensive profiling of entire hypothalamus development.
To profile changes in gene expression across the full course of
mouse hypothalamic development, we processed 12 time points
ranging from embryonic day (E)10 to postnatal day (P)45. For
E10-E16, both prethalamus and hypothalamus were collected,
whereas for E18-P45, only the hypothalamus was profiled
(Fig. 1a, Supplementary Fig. 1). In total, 129,151 cells were pro-
filed (Supplementary Fig. 2a, b). Using molecular markers of
known hypothalamic regions and cell types?, we were able to
annotate all major hypothalamic and adjacent brain regions, and
major cell types at each individual age (Supplementary Fig. 2¢, d,
Supplementary Fig. 3a). Roughly similar detection of expressed
genes and total mRNAs were observed at each time point (Sup-
plementary Fig. 3b, c).

UMAP plotting paired with RNA velocity showed separate
neuronal and glial trajectories (Fig. 1a), where glial trajectories in
turn gave rise to trajectories leading to oligodendrocytes,
astrocytes, ependymal cells, and tanycytes (Fig. 1a).

Trajectories leading from neuronal progenitors to mature
neurons were then extracted to identify different subclusters of
hypothalamic neurons (Fig. 1b). A total of 50 different major
neuronal clusters across the hypothalamus were identified,
distinguished by unique (Agrp, Hcrt, and Pomc) or shared (Th,
Gal, and Pnoc) neuropeptides and neurotransmitter expression,
as well as transcription factor expression that acts as a positional
code to identify the location of these neuronal clusters (Fig. 1c).
Expression of most neuropeptide and neurotransmitter-based
markers is shared across multiple hypothalamic neuronal types,
and most neuronal cluster identities were distinguished by their
transcription factor-based positional codes (i.e, Lhx9+ and
Hert+ LH neuronal cluster and Lhx9+ and Pnoc+ LH neuronal
cluster). However, owing to the high cellular complexity of the
hypothalamus, these neuronal clusters do not necessarily
correspond to individual cell types, but rather to clusters of
neurons that share common spatial location and/or develop-
mental origin, which can be seen by the fact that several neuronal
clusters show enriched expression for synaptic vesicle transpor-
ters for both glutamate (Slc17a6) and GABA (Slc32a1) (Fig. 1c).

Glial cells of the hypothalamus have been shown to play critical
and tissue-specific roles in the regulation of osmolarity32,
circadian rhythm33, metabolism34, and neurogenesis®. To better
understand the molecular mechanisms controlling the specifica-
tion and differentiation of hypothalamic glia, each glial popula-
tion was reclustered and examined separately.

Cells that were identified as part of the oligodendrocyte
maturation trajectory, and hence that share a similar molecular
history, were reclustered as previously described!3-3%, and genes
that demarcate each stage of oligodendrocyte development were
identified with pseudotime3” and RNA velocity analysis®
(Supplementary Fig. 4a—c, Supplementary Data 1). To identify
genes selectively enriched in hypothalamic oligodendrocytes,
mature oligodendrocytes were directly compared to scRNA-seq
datasets from mature cortical oligodendrocytes. While PeskIn and
Cbx3 are highly enriched in hypothalamic, relative to cortical,
oligodendrocytes (Supplementary Fig. 4d-h), these genes are
enriched in all hypothalamic glial cells, and are not specific to
oligodendrocytes.

In contrast, we identified many genes that were both astrocyte-
enriched relative to other glial cell types, and selectively expressed
in hypothalamic, relative to cortical, astrocytes (Supplementary
Fig. 5a-c). These include higher expression of Agt, and a lower
level of Mfge8 in hypothalamic astrocytes, as previously
reported®, along with newly identified hypothalamic-enriched
genes such as Marcks and Marcksl (Supplementary Figure 5a—c),
which are important regulators of protein kinase C-dependent
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Fig. 1 Overview of generation of the hypothalamus scRNA-seq dataset. a UMAP plot showing scRNA-seq data obtained from the developing
diencephalon (including the prethalamus and hypothalamus) between E10 and E16, E18, P4, P8, P14, and P45. RNA velocity marks neuronal or glial
(oligodendrocytes, astrocytes, ependymal cells, and tanycytes) trajectories. b UMAP plot showing neuronal clusters across the entire course of
hypothalamus development. ¢ Heatmap showing subtypes of neuronal clusters based on neuropeptide and transcription factor expression.

calmodulin signaling3>40. Analysis of the developing trajectory
connecting non-neuronal gliogenic progenitor cells and hypotha-
lamic astrocytes with RNA velocity and pseudotime analysis
identified transitional states between these two populations.
Immature hypothalamic astrocytes co-express the mature astro-
cyte marker Agt, and Rgce, a cell-cycle regulator that regulates
Notch signaling*!#2 (Supplementary Fig. 5d-f, Supplementary
Data 2). Loss of expression of genes specific to gliogenic
progenitors was observed in hypothalamic astrocytes and other
glial populations after the second postnatal week (Supplementary
Fig. 5g). The upregulation of Notch signaling pathway compo-
nents was also observed, as previously reported for human
astrocyte development in vitro*? (Supplementary Fig. 5h).
Analysis of developmental trajectories for individual hypotha-
lamic cell types identified the age at which these cell types began
to diverge in gene expression, and identified both known and
candidate regulators of cell fate. This is clearly seen when
comparing the development of two ventricular glial-like cell
populations—ependymal cells and tanycytes. These two classes of
ventricular cells begin to diverge at E13, with differential
expression of Foxjl and Rax—established markers of ependymal
cells and tanycytes—first detected at this age (Fig. la, Supple-
mentary Fig. 6)44. Pseudotime analysis paired with RNA velocity
identifies additional transcription factors that are candidates for
controlling tanycyte and ependymal cell specification and
differentiation (Supplementary Fig. 6a, b, Supplementary Data 3).
Transcription factors and morphogenic signaling components are
highly enriched during the early stage of ependymal (i.e., Wnt7b,

Unc50, Vegfa, Ptchl, Nfib, and Arxes2), and tanycyte (i.e., Wnt7b,
Ptchl, Notch3, Hopx, and Nr2fl) development, and ependymal
(i.e., Rarres2 and Foxjl), and tanycyte (i.e., Lhx2 and Rax) are at
the strongest towards the end of pseudotime (Supplementary
Fig. 6¢, d).

Profiling of region-specific genes in the developing diencephalon.
We next investigated whether we could use this dataset to faithfully
distinguish hypothalamic domains that are spatially distinct in the
embryo. To do this, we re-clustered data from E11 to E13, which
correspond to the peak period of hypothalamic neurogenesis
(Fig. 2a, Supplementary Fig. 7)*°. Using previously identified
region-specific markers as a reference?, we observed a clear segre-
gation of spatially distinct neuronal precursors and progenitors
(Fig. 2a, Supplementary Fig. 7). We were able to readily distinguish
hypothalamic and adjacent cell populations including the pre-
thalamus, discrete clusters for telencephalic structures such as
preoptic area and medial ganglionic eminence, thalamic eminence,
rim domain, and the main body of the sensory thalamus, as well as
the zona limitans intrathalamica (ZLI) at all three developmental
ages (Supplementary Fig. 7).

Each of the previously reported major subdivisions of the
developing hypothalamus? were also identified, including post-
mitotic neuronal precursor cells of the paraventricular nucleus/
supraoptic nucleus (PVN/SON), extrahypothalamic diagonal (ID)
and tuberomammillary terminal (TT), ventromedial hypothalamus
(VMH), arcuate nucleus (ARC), premammillary hypothalamus
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Fig. 2 Specification of hypothalamic patterning during embryonic development. a UMAP plot showing E11-E13 developing diencephalon with RNA
velocity trajectories (left), and UMAP plot showing the four main molecularly distinct regions of the developing hypothalamus and prethalamus
(mediobasal hypothalamus, mammillary hypothalamus, anterior hypothalamus, and prethalamus) (right). b Dendrogram showing a developmental
hierarchy of the entire diencephalon and associated regulons. ¢ Heatmap showing a key subset of pattern-specific genes in major hypothalamic regions and

prethalamus.

(PMN), mammillary nucleus (MMN), and supramammillary
nucleus (SMN) (Fig. 2b, Supplementary Fig. 7). In addition, several
spatially distinct subtypes of mitotic hypothalamic progenitor cells
were also observed, most notably cells that shared markers of both
MMN and SMN (Supplementary Fig. 7, Supplementary Data 4).
We also identified a clear separation between mitotic neural
progenitors and postmitotic neural precursors (Fig. 2a, Supple-
mentary Fig. 7).

RNA velocity paired with regulon analysis using SCENIC4#0
identified four main developmental trajectories, which give rise to
mammillary hypothalamus, prethalamus, anterior hypothalamus,
and mediobasal hypothalamus (Fig. 2a). Each of these develop-
mental trajectories included multiple subdivisions of the devel-
oping hypothalamus. Hierarchical gene regulatory networks
showed multiple regulons that are potentially involved in the
differentiation of neural progenitors into neural precursors from
the major spatial subdivisions of the developing hypothalamus
(Fig. 2b).

Multiple known and previously undescribed molecular mar-
kers, including many transcription factors that act as positional
codes and regulons, were further identified for each of these
regions (Fig. 2¢, Supplementary Data 4). While some of these
markers are shared among multiple regions of the hypothalamus
and other forebrain areas, others are highly specific and
nonoverlapping. However, there was no substantial difference

in expression patterns of neuropeptides and neurotransmitters
across subdivisions of the developing hypothalamus that belong
to the four main developmental trajectories (Supplementary
Fig. 8), which could indicate that neuropeptides or neurotrans-
mitter expression in each hypothalamic region are regulated by
different gene regulatory networks. This analysis was able to
efficiently identify gene expression patterns that were restricted to
specific spatial domains and subdomains of the developing
hypothalamus and prethalamus, confirming and extending our
previous findings?.

Due to the high complexity of the hypothalamic clusters
observed in both two- and three-dimensional analysis, it is
difficult to comprehensively visualize region-specific differences
in gene expression. To improve visualization of these data, we
generated a heatmap for major pattern marker genes that
corresponds to the two-dimensional sagittal plane, capturing
the main spatial subdivisions of the developing hypothalamus and
adjacent brain regions (Supplementary Fig. 9).

This analysis also identified clusters that correspond to three
hypothalamic regions that had not been described in previous
work?, including two populations of excitatory neurons. The first
of these regions is found in the dorsomedial hypothalamus, and is
marked by expression of Sst, Cited1, Otp, and Six6 (Fig. 2c). The
second region is found in the TT/PMN region, and expresses
Pax7 (Supplementary Data 4). The third region is found in the
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lateral hypothalamus (LH), and consists of a diverse collection of
subtypes of neuronal precursors. This LH cluster consists
primarily of glutamatergic neurons, with a small subpopulation
of GABAergic neurons (Supplementary Fig. 10, Supplementary
Data 6). The glutamatergic population includes a discrete
subcluster of Lhx9-positive neurons, which marks precursors of
hypocretin neurons>4748. Cells within this LH cluster express
multiple transcription factors that are also selectively expressed in
other hypothalamic regions, including the VMH, PMN, MMN
and ID, as well as a mixture of neuropeptides expression
(Supplementary Fig. 10).

Clustering of cells from previously characterized spatial
domains of developing hypothalamus also identified discrete
subclusters that express common sets of genes, as well as regulons
that are enriched in the discrete subclusters of individual
hypothalamic regions. This is clearly seen in the PVN/SON
cluster (Supplementary Fig. 11, Supplementary Data 6). Selective
expression of Omnecut2, Cartpt, and Zicl characterizes a
ventrolateral domain that, based on its position, likely corre-
sponds to the developing SON (Supplementary Fig. 11).

This same approach can be readily applied to other forebrain
regions. We have previously identified molecular markers that
both identify discrete spatial domains within the prethalamus,
which gives rise to structures such as the thalamic reticular
nucleus and ventral lateral geniculate nucleus?4%0, and inves-
tigated whether these regions could be identified using scRNA-
seq data.

Subclustering of prethalamic cells allowed us to distinguish
discrete spatial subdivisions within the prethalamus. We observed
partially overlapping domains of expression of the transcription
factors Sp8 and Sp9 (Supplementary Fig. 12, Supplementary
Data 6), which play critical roles in the development of
telencephalic interneurons®!. We also identified a small ventral
cluster that selectively expresses Pbxl. We also identified Th
expression in the two prethalamic clusters which were enriched
for the Meis2, but not the Pax6, regulon, indicating the Meis2
might direct differentiation of dopaminergic neurons®2. ISH
analysis revealed enriched expression of Sp8 in anterior
prethalamus and ID, while Sp9 was enriched in posterior
prethalamus (Supplementary Fig. 12).

Subclustering of the VMH allowed us to detect two distinct
clusters, which corresponded to separate anterior and posterior
domains of gene expression (Supplementary Fig. 13, Supplemen-
tary Data 6). A clear distinction between these anterior and
posterior domains was detected until E16, both spatially and at
the molecular level (Supplementary Fig. 13). These two clusters
had begun to spatially intermingle, yet the molecular distinction
still remained, possibly reflecting local tangential cell migration
within the VMH.

By combining our analysis of both the molecular markers of
differentiation of major hypothalamic cell types and the selective
markers of the different spatial domains of the developing
hypothalamus and prethalamus, we have compiled a reference set
of molecular markers that will be useful for further functional
studies. We have designated this integrated and annotated
scRNA-seq dataset as HyDD, or the Hypothalamus Develop-
mental Database.

HyDD identifies developmental origins of VMH neurons. To
demonstrate the broad usefulness of the HyDD, we first anno-
tated a previously published scRNA-seq dataset obtained through
selective dissection of Pomc-EGFP-expressing cells from E15.5
hypothalamus using regional and cell type-specific markers from
the HyDD?3. In this study, while one cluster (cluster 0) was
previously identified as the developing ARC, the remaining

clusters were not annotated owing to the lack of well defined
regional and cell type-specific markers to resolve the spatial
location of these clusters. Using markers obtained from the
HyDD to train the dataset, we were able to annotate all but two
clusters, representing cells from multiple hypothalamic regions,
including VMH, PMH, anterior ID, DMH, SCN, and ARC. Some
clusters were composed of cells from multiple hypothalamic
regions, which may explain some of the previous difficulties in
annotating these cells (Fig. 3a, b). Two unannotated clusters
appear to reflect contamination from the habenula and pituitary
that occurred during dissection (Supplementary Fig. 14). A subset
of the neurons in the ARC cluster share molecular markers of
neural precursors in the PMN and DMH, implying that these
cells may have migrated to the ARC from these regions (Sup-
plementary Fig. 14).

We also identified a cluster that closely resembled hypotha-
lamic NPC (Supplementary Fig. 15), but which also co-expressed
astrocyte-, ependymal, and/or tanycyte-specific marker genes.
Gene sets enriched in this cluster were then projected into the
entire hypothalamus scRNA-seq dataset (E10-P45), and glial
populations including immature glial cells were enriched with
these gene sets. This same gene expression pattern was found to
be enriched in a subset of hypothalamic NPC that were detected
from E11 onwards, and which may represent NPC that are
competent to generate glia (Supplementary Fig. 15). Many of
these same genes are also expressed in the late-stage retinal
progenitor cells, from the age at which they become competent to
give rise to tanycyte-like Miller glial cells®!.

Since HyDD contains a nearly uninterrupted temporal profile
of changes in gene expression during the process of cell
specification and differentiation, it can also be used to infer the
developmental origins of fully mature hypothalamic neurons.
However, identifying the precise spatial location of individual cell
types from hypothalamus scRNA-seq data based on specific
molecular markers alone is bioinformatically challenging, due to
the extreme tissue complexity. This is the case even when scRNA-
seq data has been generated with microdissected or flow-sorted
cells from predefined hypothalamic regions. Most informative
region-specific markers are strongly expressed early in develop-
ment, but are either not expressed or show substantially different
expression levels at later developmental ages®. Postmitotic
hypothalamic neural precursors also undergo a considerable
amount of tangential migration and dispersion, making it even
harder to directly identify gene regulatory networks that control
the specification of individual hypothalamic cell types>*.

To identify the developmental origin of individual hypotha-
lamic cell types, it is critical that overlapping sets of markers be
identified that selectively label each stage of cell differentiation, in
a manner analogous to molecular stepping stones, so that the
developmental history of each cell type can be reconstructed. As a
proof of principle for this approach, we identified gene sets that
identify VMH cells at early stages of hypothalamic development
(Fig. 3c), when region-specific molecular markers are robustly
expressed. Gene sets specific to discrete spatial domains were then
used to train the following developmental age to find VMH cells
and new VMH-enriched genes were identified. This process was
repeated for each successive developmental age. These VMH-
enriched genes have varying levels of expression and specificity
across the full course of the hypothalamus development
(Supplementary Fig. 16).

We next used the HyDD to identify the developmental origin
of major VMH neuronal subtypes. Recent scRNA-seq of the adult
VMH identified multiple clusters of both core glutamatergic
VMH neurons and of GABAergic neurons surrounding the core
VMH (VMH-out)*>. We sought to identify the developmental
origins of both classes of VMH neurons. We first found that
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Fig. 3 Utilizing HyDD to infer the identity and origin of individual cell types. a The HyDD dataset was used to train a previously published scRNA-seq on
E15.5 hypothalamus obtained through selective dissection of Pomc-EGFP-expressing cells®3. b Alluvial plot showing HyDD clusters (left) matched to
clusters from Huisman et al.>3 (right). Note that 2 clusters (clusters 2 and 4) from Huisman et al.>3 do not match the HyDD dataset. ¢ Using the molecular
stepping stone approach to identify VMH neurons (green) across the entire developmental ages by identification of shared sets of gene modules that can
demarcate the VMH across the entire hypothalamus scRNA-seq dataset. d HyDD dataset is used to identify the developmental origins of previously
annotated subtypes of glutamatergic neurons of the core VMH?>> (top), and to identify the developmental origins of GABAergic neurons surrounding the

core VMH (bottom).

GABAergic neurons of VMH-out originated from four distinct
regions of the developing hypothalamus - ARC, DMH, Ant ID
and PMN (Fig. 3d)—with each VMH-out GABAergic cluster
having a distinct developmental origin based on the specific
expression of regional markers. We likewise observed that
different subsets of core glutamatergic VMH neurons arise from
distinct anterior or posterior domains of the embryonic VMH
(Supplementary Fig. 13). Some of these clusters remain restricted
to anterior or posterior regions of the adult VMH, as noted in the
original study>> (Fig. 3d, Supplementary Fig. 17a, b). However,
the majority of VMH neuronal subtypes originate from both
anterior and posterior domains of the developing VMH
(Supplementary Fig. 17), and are distributed widely along the
anterior-posterior axis of the adult VMH>>. VMH neuronal
subtypes may thus be two distinct developmental steps: an initial
stage in which anterior and posterior identity is specified between
E11 and E13, and a later stage that coincides with the initiation of
local tangential migration that occurs from E16 onwards.

HyDD allows comprehensive analysis of complex mutant
phenotypes. HyDD provides both a high-resolution molecular
atlas of the developing hypothalamus and prethalamus, and a
useful resource to understand the developmental origin of adult
hypothalamic neurons. We next sought to determine if HyDD
could also be used to rapidly and comprehensively characterize
mutants that regulate early stages of hypothalamic development
and organization. As proof of concept, we performed scRNA-seq

analysis on E12.5 FoxdlC¢GFP/+;Ctnnb1¢*3%/+ mice, in which
a constitutively active form of beta-catenin is overexpressed
in Foxdl-positive hypothalamic and prethalamic progenitors,
leading to activation of canonical Wnt signaling in these
cells and their descendants?3. The same analysis was also with
Foxd1CreGFP/+ Jittermate controls. These mice show broad acti-
vation of the canonical Wnt pathway effector LefI, a hyperplastic
ventricular zone, and with the exception of a handful of posterior
hypothalamic markers, show the loss of most regional markers in
the hypothalamus and prethalamus?3.

ScRNA-seq analysis of control and mutant animals at E12.5
reveals a couple of mutant-specific cell clusters (Supplementary
Figs. 18-20). Using the HyDD to annotate both control and
mutant data, we identified changes in gene expression and cell
composition that match previously reported findings (Supple-
mentary Fig. 20), where we observed a substantial increase in
undifferentiated NPC, along with a corresponding reduction in
the number of cells expressing markers of hypothalamic and
prethalamic neuronal precursors (Supplementary Figs. 19 and
20). RNA velocity further highlights differences in developmental
trajectories between control and mutants (Supplementary Fig. 20).
In particular, strong loss of markers shared by both hypothalamus
and prethalamus, such as Meis2, Sp9, and Arx (Supplementary
Fig. 20, Supplementary Data 7) was observed. We also identified
two cell clusters that are found exclusively in mutant mice, both
of which express NPC markers, and also highly express both Lefl
and negative regulators of canonical Wnt signaling such as Dkk1,
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Fig. 4 scRNA-seq-based analysis of Nkx2-1-deficient developing hypothalamus. a UMAP plot showing clusters from combined scRNA-seq dataset of
control (Nkx2-1€reER/+) and Nkx2-1 mutant line (Nkx2-1CreER/CreER) in which clusters were obtained by training the dataset using HyDD markers. b UMAP
heatmap plot showing distribution of individual clusters between control (left) and Nkx2-7 mutants (right). ¢ Bar graph showing the distribution of individual
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LhxT—MMN between control and Nkx2-1 mutants. e Schematic showing overall hypothalamic phenotype between control and Nkx2-1 mutants. Note the
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Wifl, and Axin2 (Supplementary Fig. 18e). One of these clusters
is strongly enriched for G2/M phase markers such Ube2c, Rrm2,
and Ccnbl (Supplementary Figure 19). Flow cytometry data also
demonstrated a substantially higher fraction of NPCs in the G2/
M phase in mutant mice (Supplementary Figs. 19 and 20), as has
been previously reported in nonneuronal cells that show high
levels of canonical Wnt signaling®®. This finding explains the
previous observation that, although a massive increase in the
number of NPC cells is seen in these mutants, only a modest
increase is observed in EdU labeling, which labels S-phase NPC23.
This demonstrates the power of using scRNA-seq in conjunction
with the HyDD to analyze developmental phenotypes, in a
manner that is far more rapid and comprehensive than
conventional histological techniques.

We next used this same approach to characterize E12.5 Nkx2-
1CreER/CreER knockin mice, which are homozygous for a null allele
in the homeodomain transcription factor Nkx2-17. Nkx2-1 is
broadly and selectively expressed in ventral hypothalamic
progenitors, as well as in progenitors that give rise to
telencephalic interneurons®®>%. Loss of function of Nkx2-1 leads
to a substantial reduction in ventral hypothalamic structures by
E18%0, but a detailed molecular characterization of these mutants
has not been conducted.

Analysis of Nkx2-1CreER/CreER  mytants and  heterozygous
littermate controls revealed changes in cluster densities in the
mutant (Fig. 4, Supplementary Figs. 21 and 22). We observed a

NATURE COMMUNICATIONS | (2020)11:4360 | https://doi.org/10.1038/s41467-020-18231-z | www.nature.com/naturecommunications

broad loss of markers specific to Nkx2-1 positive ventral
hypothalamic structures such as ARC, VMH, PMN, and MMN,
but not the SMN (Fig. 4c, d, Supplementary Figs. 23 and 24,
Supplementary Data 8), with both the relative expression levels
and the number of cells expressing these markers reduced. An
increase in the fraction of cells expressing prethalamic markers
was detected (Fig. 4b, c, Supplementary Fig. 21), and increased
Cre expression in the prethalamus was also observed in these
mice (Supplementary Fig. 22).

In contrast to controls, prethalamic cells in mutant mice
expressed Cre, implying that ventral hypothalamic cells that
normally express Nkx2.1 may have acquired prethalamic identity
(Supplementary Fig. 22). This was also implied with an increase
in cells in the prethalamic cluster coupled with a decrease in cells
ventral hypothalamus (mediobasal and mammillary excluding
SMN), but no substantial overall change in the portion of neural
progenitors (Fig. 4b, c). Furthermore, our RNA velocity analysis
strongly indicates altered trajectories between mediobasal
hypothalamus, mammillary hypothalamus, and prethalamus
(Supplementary Fig. 22.) To investigate this further, RNAscope
probes against Sp9, Meis2, and Cre were used to visualize the
location of these Cre-positive prethalamic cells, and substantial
co-localization of prethalamic markers and Cre expression was
observed in the region normally occupied the by the ventral
hypothalamus in controls (Supplementary Fig. 22). This implies
that Nkx2-1 not only maintains the identity of ventral
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hypothalamic progenitors but also actively represses the expres-
sion of molecular markers of prethalamic identity. ISH confirmed
that there was an increase in the absolute size of the prethalamus
and its proportion in the diencephalon (Supplementary Fig. 23).
An increase in the number of cells expressing markers of NPC in
the SMN and MMN was also seen, while Nkx2-1 negative
hypothalamic regions such as the PVN/SON are unaffected
(Fig. 4d, Supplementary Fig. 24).

There was no significant difference in gene expressions
between Cre+ and Cre— pre thalamic cells (Supplementary
Fig. 22), but using regulon analysis, mutant prethalamus showed
enriched activity for transcription factors that are enriched in the
mediobasal hypothalamus, such as Foxpl, Six3, and Zfhx3
(Supplementary Fig. 25).

Discussion

In this study, we use scRNA-seq to develop a molecular atlas of the
developing mouse hypothalamus, with a particular focus on stages
when hypothalamic patterning and neurogenesis are regulated.
This dataset identifies genes that are selectively expressed during
the differentiation of major neuronal and nonneuronal hypotha-
lamic cell types, and accurately delineates spatial subdivisions
present in the early stages of development of both the hypothala-
mus and the adjacent prethalamus. It also identifies many pre-
viously uncharacterized transcription factors and other genes that
are excellent candidates for controlling regional patterning and
specification of individual hypothalamic cell types. Combining
functional analysis of these genes with the new selective markers of
hypothalamic regions and immature hypothalamic cell types
identified in this study has the promise to greatly expand our
knowledge of hypothalamic development and organization.

The integrated dataset presented here provides three specific
features that are critical for studying the formation and function of
the hypothalamus. First, it makes it straightforward to unam-
biguously annotate major cell types at all stages of hypothalamic
development. Second, it makes it possible in many cases to infer
the developmental histories of hypothalamic cells in both the
developing and mature hypothalamus. Third, it allows rapid and
accurate phenotyping of mutants that show broad effects on
hypothalamic patterning, neurogenesis, and differentiation, with
which we were able to validate our findings using traditional
histological analysis. Despite the availability of highly specific
molecular markers for the major spatial subdivisions of the
hypothalamus!®, the highly complex and temporally dynamic
anatomy of this brain region makes analysis of mutant phenotypes
slow and complex. Previously, it has taken up to several years of
full-time labor to obtaina detailed characterization of individual
mutant lines. The HyDD dataset allows these analyses to be
conducted far more rapidly, efficiently, and comprehensively.

Our scRNA-seq characterization of Nkx2-1-deficient mice
identifies an unexpected developmental connection between the
hypothalamus and prethalamus, where Nkx2-1 can potentially act
as both a positive regulator of ventral hypothalamic identity while
simultaneously repressing prethalamic identity. This result is not
predicted by the current prosomeric model for forebrain orga-
nization®!2, and raises questions about the early development
and patterning of these structures. Previous models of hypotha-
lamic development and organization were constructed using very
sparse datasets—typically single color ISH of a limited number of
genes at a small number of time points. The much richer datasets
provided by scRNA-seq, and interpreted usin the HyDD data,
offer a far more powerful resource for constructing these models.

Methods

Mice. All experimental animal procedures were approved by the Johns Hopkins
University Institutional Animal Care and Use Committee. All mice were housed in

a climate-controlled facility (14-h dark and 10-h light cycle) with ad libitum access
to food and water. Time-mated CD1 or C57BL/6] mice were ordered from Charles
River Laboratories to collect mice embryos at E10 (CD1), E11 (CD1), E12 (CD1),
E13 (CD1), E14 (CD1), E15 (CD1), E16 (1 CD1 and 1 C56BL/6]), and E18 (CD1).
Time-mated CD1 mice were ordered to collect pups at P4, P8, and P14. C57BL/6]
mice were used for P45 samples.

Nkx2-1C€reERT2 knockin®? (JAX #014552), FoxdlCmeGEP knockin®3 (JAX
#012463), Ctnnb1x3/ex3 64 were used for single-cell phenotyping studies. Ctnnb1¢%/
ex3 mice were crossed with Foxd1C¢GFP/+ to generate Foxd1CreGFP/+ or
Foxd1CreGEP/+5Ctnnb1¢%3/+, Nkx2-1€7¢ERT2 was C56BL/6] background, and
Foxd1CreGFP/+ knockin, Ctnnb1¢%3/¢3 were C57BL/6 and CD1 mixed background.
Mice were time-mated during their estrous cycle and vagial plugs were observed to
detect successful mating. E12.5 embryos were collected for generating scRNA-seq
dataset.

Dissection and cell dissociation. Embryos or postnatal mice were collected and
dissociated using a previously published protocol®®. Embryos were collected using
Hibernate-E media (Thermo Fisher Scientific) with 2% B-27 supplement (Thermo
Fisher Scientific) and GlutaMAX supplement (0.5 mM final, Thermo Fisher Sci-
entific). A small incision was made dorsal to the lower jaw to expose the ventral
portion of the brain. For samples collected between E10 and E16, tissue residing
posterior to the medial ganglionic eminence and anterior to the midbrain and
sensory thalamus was dissected to collect both developing prethalamus and
hypothalamus. Prethalamus was excluded from samples aged E18 and older, with
only hypothalamus collected, as previously described?. Exclusion of medial gang-
lionic eminence (anterior to the hypothalamus) and structures posterior to the
supramammillary nucleus ensured that the equivalent diencephalon area (hypo-
thalamus and prethalamus) was always included. Between 8 and 12 embryos of
either sex were collected for each embryonic time point and pooled for scRNA-seq
dataset.

Postnatal mice were collected using Hibernate-A media with 2% B-27 and
GlutaMAX (0.5 mM final), and the region that is posterior to the optic chiasm
(Bregma —0.58 mm) and anterior to the hypothalamus-midbrain border (Bregma
2.54 mm) were collected. Eight pups (four male and four female) were collected for
P4, P8, and P14 dataset, and three male mice were pooled for P45 dataset. E10, E12,
and E15; E11 and E13; E14, E16, and P45; E18, P4, and P14 were each generated on
the same day. Consecutive developmental ages were not collected and processed on
the same day and this ensured that trajectories identified using tSNE and UMAP
are not determined by batch-effect but by developmental stages.

For single-cell phenotyping studies, E12.5 time-mated embryos were collected
and placed in a buffer mentioned above on ice. Tail-tips were collected and rapidly
genotyped using GeneAmp Fast PCR master mix (Thermo Fisher Scientific). Both
control and mutant groups were collected on the same day, and E12.5 embryos
were pooled from three different dams. Between six and eight embryos were
collected to generate individual scRNA-seq libraries.

Following dissection, tissues were dissociated in papain (Worthington
Biochemical) as previously described in calcium-free Hibernate media®. Tissue
debris were removed using OptiPrep density gradient media (Sigma-Aldrich) in
postnatal mice following cell dissociation. Numbers of viable cells were counted
manually via haemocytometer with Trypan Blue staining and cross-checked with
an automated cell counter, and cell concentration was adjusted following the
manufacturer’s protocol of 10x Genomics.

ScRNA-seq library generation and data processing. Suspended cells were loa-
ded into 10x Genomics Chromium Single Cell System (10x Genomics), and
libraries were generated using v1 (1 library) and v2 chemistry with manufacturer’s
instructions. Libraries were sequenced on Illumina MiSeq (1 library) and Next-
Seq500 high-output (400 million reads). Sequencing data were first pre-processed
through the Cell Ranger pipeline (10x Genomics, Cellranger count v2.0.2) with
default parameters (expect-cells set to number of cells added to 10x system),
aligned to mm10 genome (refdata-cellranger-mm10-1.2.0), and matrix files were
used for subsequent bioinformatic analysis.

Data analysis. For analysis of the entire hypothalamic dataset, Seurat v3.1066:67
and Scanpy v1.51%8 were used to process matrix files to keep all cells with at least
200 detected genes and 500 UMI. Datasets were normalised using Seurat
“scTransform” function, and Harmony v1.0% was used when treating individual
scRNA-seq (orig.ident) as a variance group, to reduce inter-batch effect and adjust
for individual variation.

For the entire hypothalamic dataset, the top 2000 highly variable genes were
used for principal component analysis (PCA), and top 50 PCA variables were used
for either UMAP, to preserve global distances to better visualise changes across
developmental stages’".

Individual ages were initially clustered using the Louvain clustering algorithm
provided in Scanpy with default parameters. Individual developmental ages were
highlighted in the UMAP dataset, and individual cell types (or hypothalamic
regions) were projected into UMAP to determine segregation of cell types (or
regional markers) in the dataset regardless of developmental ages (https://
proteinpaint.stjude.org/F/mm10/example.scrna.html).
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For neuronal clusters, clustering was conducted until no child clusters showed
any differential gene expression in neuropeptide/neurotransmitter/positional code
(transcription factor) expression. The spatial location of each neuronal cluster was
identified based on transcription factor positional codes identified from HyDD
analysis in combination with Allen Brain in situ atlas data analyzed using co-
coframer?2,

To identify region-specific differences between mature oligodendrocytes or
astrocytes of the hypothalamus and other brain regions, previously published
cortical scRNA-seq?®7! were used to identify differential gene expression, using age
as the variance with default parameters (first-pass gene lists)3”. Published
hypothalamic datasets!!-14-36:72 were then used to compare to these cortical
scRNA-seq datasets using the identified genes (second-pass gene lists). Identified
differential genes were then validated by matching the Allen Brain in situ atlas data
using co-coframer!! to validate spatial expression of these differential genes, as
some observed differences could reflect batch effects resulting from scRNA-seq
library preparations from different laboratories (third-pass gene lists).

To identify the developmental origins of ependymal cells and subtypes of
tanycytes, transcription factors that are highly expressed near the midpoint of the
pseudotime branch—where cells are not full mature tanycytes but no longer
gliogenic progenitors—were extracted and clustered to scRNA-seq data obtained
from adult tanycytes'473 using Garnett v0.2.974,

For analysis of hypothalamic patterning and generation of the developmental
database HyDD (Hypothalamus Developmental Database), the E11-E13 datasets
were used to perform a detailed analysis of hypothalamic patterning?, and
processed as described above using the top 2000 highly variable genes with top
30 PCA variables. Initial clustering was conducted using the Louvain clustering
algorithm in Scanpy with 0.6 resolution’?, and individual clusters (initially divided
based on rough anatomical locations and by cell cycle status) were further
subdivided to capture all the main subdivisions of the developing hypothalamus,
prethalamus, and adjacent structures. The initial clustering results were then cross-
referenced to patterns from scCoGAPS, which were superior in capturing changes
in gene expression over time, and selective markers of small sub-regions of the
developing hypothalamus and prethalamus. A dendrogram showing hierarchical
regulation of hypothalamus development was generated based on RNA velocity
trajectories and positional codes to divide into four regions (mediobasal
hypothalamus, prethalamus, anterior hypothalamus, and mammillary
hypothalamus), and a distance matrix used in PCA space for the branch
specification.

Cross-referencing between these two pipelines allowed us to identify all the sub-
regions of the developing hypothalamus, prethalamus, and adjacent structures.
Following subdivisions, enriched genes (top 50 highly enriched genes in an
individual cluster) in the individual cluster were extracted and cross-referenced
back to our previous work?, ISH validation, Allen Brain in situ atlas?)-22 and
GenePaint to further validate our cluster assignments?1:22, as well as identifying
pattern-specific markers. The final main clusters were subsetted and reclustered to
identify additional subdivisions within the major hypothalamic and prethalamic
regions. This was repeated until the child clusters could not generate any further
clusters that had differential expression of transcription factors or no visible spatial
distinction between markers under the Allen Brain in situ atlas.

To identify developmental hypothalamic clusters expressing neuropeptide
markers, a list of neuropeptides from ref. 17 was used to identify neuropeptides that
are expressed in a neuronal subtype-specific manner, and that show an increased
expression (or an increase in percentage of cells expressing) among clusters
between E11 and E13.

For clustering previously published datasets’®, data were processed as
previously described in the original paper. The HyDD dataset was used as the
reference point to train the dataset using Garnett, using the top ten most selective
markers identified from individual HyDD clusters, and identified clusters that were
aligned to our dataset. For unannotated or poorly annotated clusters (which
comprised less than 5% of all individual cells trained by our dataset), markers were
identified and checked using the Allen Brain in situ atlas. These clusters were
located outside of developing hypothalamus, in the habenula and pituitary, further
validating the accuracy of the molecular markers identified in this study. An
alluvial plot was then generated based on the percentage of clusters that were
trained using our HyDD dataset. The opposite approach was taken to cross-
validate HyDD annotation and to identify NPC that express high levels of gliogenic
gene sets.

To identify VMH cells across the entire course of hypothalamic development
using the molecular stepping stone approach, gene sets identified as labeling the
VMH from the E11 to E13 datasets used to generate HyDD (markers that are
significantly expressed in the VMH but not in ARC, Supplementary Data 4), were
used to train the next developmental age (E14) and identify VMH from E14
scRNA-seq dataset using Garnett’. Following the identification of the VMH,
scCoGAPS was used to identify a VMH-specific gene expression pattern (i.e., the
set of expressed genes that can selectively demarcate the VMH), and identified new
and overlapping gene sets of VMH cells. These gene sets were then used to train the
next developmental age (E15), and this process was repeated to the oldest age (P45)
in our scRNA-seq dataset. Genes that could identify the VMH across at least three
developmental ages, or at least two developmental ages if the gene in question
could also selectively specific cell clusters in the adult VMH, were selected as the
final VMH gene sets (Supplementary Fig. 16). This process was necessary to

identify cells comprising specific hypothalamic nuclei, since at older ages, genes
that are highly informative at providing information about spatial localization
within the hypothalamus are often no longer highly expressed. This molecular
stepping stone approach was validated by identification of glutamatergic VMH
neurons using the public droplet-based scRNA-seq dataset!473. Spatial information
of the identified clusters were validated by comparison to the Allen Brain in situ
atlas data using co-coframer??, as well as by matching to the published SMART-seq
data obtained from the adult VMH>.

To identify the developmental origins of GABAergic neurons surrounding the
core VMH (VMH-out), clusters obtained from public SMART-seq data capturing
only VMH?, were generated to match the previously published clusters. VMH-out
GABAergic cells were then trained using HyDD region-specific markers, as
expression of many region-specific markers persisted into the adult stage (although
usually at low levels), and could readily be detected by SMART-seq.

To identify the developmental origin of major cell clusters in the VMH, key
gene sets from the anterior and posterior VMH were extracted from HyDD
(Supplementary Fig. 13, Supplementary Data 6). These gene sets of the anterior and
posterior VMH were validated in both our dataset at later developmental ages and
in a published dataset using the molecular stepping stone approach®. Additional
histological validation was conducted using RNAscope (described below) and using
the Allen Bran in situ atlas, anterior and posterior VMH gene sets were used to
train VMH clusters. Some clusters clearly labeled either anterior or posterior
domains of the embryonic VMH, and were also restricted to the corresponding
region of the adult VMH?®, validating this approach.

For mutant phenotyping, both control and mutants of individual lines were first
merged together using the above method. Given the complex phenotypes of these
mutants, we used sets of region-specific markers obtained from HyDD, we trained
each individual dataset using Garnett’4, which allowed us to faithfully cluster the
mutant dataset, since the majority of pattern-specific markers were expressed in
both genotypes, although often at different cellular expression levels. This approach
allowed us to identify clusters that did not match annotated regions in HyDD,
indicating the presence of mutant-specific clusters. Gene expression differences
between control and mutants were compared between each identified region of the
developing hypothalamus and prethalamus. For unidentified regions in mutant
samples, gene expression was compared to all control regions. The percentage of
regions occupied by cells of either genotype was compared as well. Both changes in
pattern-specific markers and percentage of clusters occupied by each genotype
reflect biological differences, but not changes in gene expression that resulted from
variation in conditions occurred during dissection and library preparation. Top
differential pattern-specific markers (mostly transcription factors) in regions that
were differentially occupied between control and mutants were then selected for
histological validation. xy coordinates from tSNE were used to estimate density
(contour heatmap) of individual clusters between control and mutant groups.

Differential gene tests on the scRNA-seq datasets were initially performed using
Seurat v3.1.0 FindAllMarkers using MAST with default parameters on all expressed
genes by using individual dataset (age or genotype) as a variance, and cross-
referenced to Monocle2 VGAM likelihood ratio tests using age or genotype as the
full model were then used in differential expression tests with default parameters.

scCoGAPS analysis. scCoGAPS (v.3.7.0), a Bayesian nonnegative matrix factor-
ization algorithm, was used to identify “patterns”, or sets of co-expressed genes and
their cellular expression levels, their weights in either the E11-E13 dataset or the
individual/combined E10-P45 dataset, in order to identify cells that represent
gliogenic progenitors or immature glia, or to identify VMH at individual devel-
opmental ages, using previously described parameters”’.

All genes were used to identify patterns for E11-E13 dataset, scCoGAPS
patterns were projected into our tSNE plot and interpreted by using our prior
knowledge of gene expression patterns in the developing hypothalamus. For the
molecular stepping stone approach used to trace the developmental history of
VMH neurons, or for identifying gliogenic progenitor populations. 200 HyDD cell
or region-specific markers were used to annotate patterns, with the
‘patternMarkers’ function in order to identify robust pattern markers across
developmental stages.

E12 spatial mapping. xy coordinates of E12 were drawn based on our previous
work to capture all postmitotic regions of the developing hypothalamus and pre-
thalamus, average values of individual clusters were assigned to each xy coordinate,
and 2D spatial representation was produced using the Python-based SpatialDE
package v1.1.37879,

Cell cycle analysis. Cell cycle data for NPCs from Foxdl€e/+;Ctnnb15%3/+ mice
overexpressing constitutively active Ctnnbl in hypothalamus and prethalamus, as
well as age-matched controls, were analyzed using scran v3.117°. Additional cell
cycle analysis was conducted by staining dissociated E12.5 control and mutant
developing diencephalon with propidium iodide and analysed DNA content using
LSR II (BD) and FlowJo v10.6.1.

RNA velocity. RNA velocity38 was utilized to understand the dynamic state of the
entire state of hypothalamic development, gliogenesis (oligodendrocytes,
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astrocytes, and ependymal and tanycyte development), during when complex
patterning occurs across multiple hypothalamic regions, and to identify potential
differences in developmental trajectories between control and mutant samples.
Kallisto and bustools®%8! python wrapper kb-python was used to obtain spliced
and unspliced transcripts using -lamanno with GRCm38 mouse genome. Scanpy®®
and scVelo v0.2.182 was used to process the Kallisto output with default para-
meters, based on UMAP coordinates obtained from Seurat.

Pseudotime analysis. Monocle3 v0.2.07 was used to perform pseudotime analysis
to identify differences in gene expression in differentiating oligodendrocytes,
astrocytes, and tanycytes and ependymal cells, where the principal and trajectory
nodes were identified based on trajectories from RNA velocity analysis, and genes
were used for pseudotime plotting was identified based on high-variance genes on
the order of cells in pseudotime with g value less than 0.001.

Regulons. To identify regulons controlling gene expression in different hypotha-
lamic regions during hypothalamus patterning, SCENIC*® using python imple-
mented pySCENIC v0.10.2 Gene regulatory networks (uising -masks_dropouts),
regulons and network activity of regulons were calculated using default parameters
with mm10 feather files on E11-E13 scRNA-seq dataset using raw count matrix.
Regulon specificity scores were ranked following the SCENIC pipeline and top
regulons with z-score higher than two were identified as the cluster/cell-type
regulon.

In situ hybridization (ISH). Chromogenic ISH was performed as previously
described?, except E12.5 or E13.5 embryos were fixed with 4% paraformaldehyde,
sectioned at 25 pm with either coronal or sagittal plane and treated with proteinase
K for 5min at room temperature. Cartpt (BC056431), Zicl (AI848240), Zic3
(BF465672), Arx (BE944865), DIx5 (AW046057), Sox14 (BU517725), Foxbl
(BC111908), Hmx2 (BC023402), and Foxal (BC096524) were used.
Single-molecule fluorescence ISH was performed using RNAScope with probes
targeting Meis2, Sp8, Sp9, Pitx2, Nhih2, Tcf712, Foxp2, Snca, and Cre on E12.5 or
E13.5 wild-type or Nkx2-1CreERT2/CreERT2 embryos; and Nhih2, Foxp2, Snca on
E13.5, E16.5, E18.5, and P4 wild-type mice following the manufacturer’s protocol.

Immunostaining. Fixed embryos were processed for immunostaining with Pax6-
antibody (1:200, AB2237, EMN Millipore). Sections were mounted with Vecta-
mount (Vectorlabs) and imaged under Keyence BZ-X800 fluorescence microscope
and Zeiss LSM 700 microscope.

Statistics and reproducibility. All staining was performed in triplicates, with
tissues from at least two different litters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. All scRNA-seq data are available on GEO, GSE132355.
Data can be viewed at https://proteinpaint.stjude.org/F/mm10/example.scrna.html.

Received: 27 April 2020; Accepted: 12 August 2020;
Published online: 31 August 2020

References

1. Bedont, J. L., Newman, E. A. & Blackshaw, S. Patterning, specification, and
differentiation in the developing hypothalamus. Wiley Interdiscip. Rev. Dev.
Biol. 4, 445-468 (2015).

2. Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat.
Neurosci. 13, 767-775 (2010).

3. Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation,
modification and innovation. Development 144, 1588-1599 (2017).

4. Kent, M. A. & Peters, R. H. Effects of ventromedial hypothalamic lesions on
hunger-motivated behavior in rats. J. Comp. Physiol. Psychol. 83, 92-97
(1973).

5. Kruk, M. R. et al. Discriminant analysis of the localization of aggression-
inducing electrode placements in the hypothalamus of male rats. Brain Res.
260, 61-79 (1983).

6. Lammers, J. H,, Kruk, M. R., Meelis, W. & van der Poel, A. M. Hypothalamic
substrates for brain stimulation-induced attack, teeth-chattering and social
grooming in the rat. Brain Res. 449, 311-327 (1988).

7. Hervey, G. R. The effects of lesions in the hypothalamus in parabiotic rats. J.
Physiol. 145, 336-352 (1959).

9.

10.

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

40.

41.

Bedont, J. L. et al. An LHX1-regulated transcriptional network controls sleep/
wake coupling and thermal resistance of the central circadian clockworks.
Curr. Biol. 27, 128-136 (2017).

Kohl, J. et al. Functional circuit architecture underlying parental behaviour.
Nature 556, 326-331 (2018).

Yang, T. et al. Social control of hypothalamus-mediated male aggression.
Neuron 95, 955-970.e4 (2017).

Romanov, R. A. et al. Molecular interrogation of hypothalamic organization
reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176-188
(2017).

Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral
hypothalamic area reveals molecularly distinct populations of inhibitory and
excitatory neurons. Nat. Neurosci. 22, 642-656 (2019).

Chen, R., Wu, X,, Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals
hypothalamic cell diversity. Cell Rep. 18, 3227-3241 (2017).

Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median
eminence cell types. Nat. Neurosci. 20, 484-496 (2017).

Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the
hypothalamic preoptic region. Science 362, eaau5324 (2018).

Romanov, R. A. et al. Molecular design of hypothalamus development. Nature
582, 246-252 (2020).

Zhang, Y.-H. et al. Cascade Diversification Directs the Generation of Neuronal
Diversity in Hypothalamus. https://doi.org/10.1101/2020.06.01.125054 (2020).
Swanson, L. W. Brain Maps: Structure of the Rat Brain. (Elsevier Publishing
Company, 1992).

Kuhlenbeck, H. The Central Nervous System of Vertebrates: Pt. 1.

Structural Elements: Biology of Nervous Tissue. pt. 2. Overall Morphologic
Pattern. (1967).

Rubenstein, J. L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic
vertebrate forebrain: the prosomeric model. Science 266, 578-580 (1994).
Visel, A., Thaller, C. & Eichele, G. GenePaint.org: an atlas of gene expression
patterns in the mouse embryo. Nucleic Acids Res. 32, D552 (2004).

Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse
brain. Nature 445, 168-176 (2007).

Newman, E. A., Wu, D., Taketo, M. M., Zhang, J. & Blackshaw, S. Canonical
Wnht signaling regulates patterning, differentiation and nucleogenesis in
mouse hypothalamus and prethalamus. Dev. Biol. 442, 236-248 (2018).
Newman, E. A. et al. Foxd1 is required for terminal differentiation of anterior
hypothalamic neuronal subtypes. Dev. Biol. 439, 102-111 (2018).

Kurrasch, D. M. et al. The neonatal ventromedial hypothalamus transcriptome
reveals novel markers with spatially distinct patterning. J. Neurosci. 27,
13624-13634 (2007).

Lee, B. et al. DIx1/2 and Otp coordinate the production of hypothalamic
GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).

Sokolowski, K. et al. Specification of select hypothalamic circuits and innate
behaviors by the embryonic patterning gene dbx1. Neuron 86, 403-416
(2015).

Liu, K. et al. Lhx6-positive GABA-releasing neurons of the zona incerta
promote sleep. Nature 548, 582-587 (2017).

Bedont, J. L. et al. Lhx1 controls terminal differentiation and circadian
function of the suprachiasmatic nucleus. Cell Rep. 7, 609-622 (2014).

Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20,
257-272 (2019).

Clark, B. S. et al. Single-cell RNA-seq analysis of retinal development identifies
NFI factors as regulating mitotic exit and late-born cell specification. Neuron
https://doi.org/10.1016/j.neuron.2019.04.010 (2019).

Choe, K. Y., Olson, J. E. & Bourque, C. W. Taurine release by astrocytes
modulates osmosensitive glycine receptor tone and excitability in the adult
supraoptic nucleus. J. Neurosci. 32, 12518-12527 (2012).

Tso, C. F. et al. Astrocytes regulate daily rhythms in the suprachiasmatic
nucleus and behavior. Curr. Biol. 27, 1055-1061 (2017).

Chowen, J. A. et al. The role of astrocytes in the hypothalamic response and
adaptation to metabolic signals. Prog. Neurobiol. 144, 68-87 (2016).

Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-
responsive neurogenic niche. Nat. Neurosci. 15, 700-702 (2012).

Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174,
999-1014.€22 (2018).

Qiu, X. et al. Single-cell mRNA quantification and differential analysis with
census. Nat. Methods 14, 309-315 (2017).

La Manno, G. et al. RNA velocity of single cells. Nature 560, 494-498 (2018).
Gallant, C., You, J. Y., Sasaki, Y., Grabarek, Z. & Morgan, K. G. MARCKS is a
major PKC-dependent regulator of calmodulin targeting in smooth muscle. J.
Cell Sci. 118, 3595-3605 (2005).

El Amri, M., Fitzgerald, U. & Schlosser, G. MARCKS and MARCKS-like
proteins in development and regeneration. J. Biomed. Sci. 25, 43 (2018).
Counts, S. E. & Mufson, E. ]. Regulator of cell cycle (RGCC) expression
during the progression of Alzheimer’s disease. Cell Transplant. 26, 693-702
(2017).

10 | (2020)11:4360 | https://doi.org/10.1038/s41467-020-18231-z | www.nature.com/naturecommunications


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132355
https://proteinpaint.stjude.org/F/mm10/example.scrna.html
https://doi.org/10.1101/2020.06.01.125054
https://doi.org/10.1016/j.neuron.2019.04.010
www.nature.com/naturecommunications

ARTICLE

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Carrieri, F. A. et al. CDK1 and CDK?2 regulate NICD1 turnover and the
periodicity of the segmentation clock. EMBO Rep. 20, e46436 (2019).

Malik, N. et al. Comparison of the gene expression profiles of human fetal
cortical astrocytes with pluripotent stem cell derived neural stem cells
identifies human astrocyte markers and signaling pathways and transcription
factors active in human astrocytes. PLoS ONE 9, 96139 (2014).
Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S.
Raxregulates hypothalamic tanycyte differentiation and barrier function in
mice. J. Comp. Neurol. 522, 876-899 (2014).

Shimada, M. & Nakamura, T. Time of neuron origin in mouse hypothalamic
nuclei. Exp. Neurol. 41, 163-173 (1973).

Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083-1086 (2017).

Liu, J. et al. Evolutionarily conserved regulation of hypocretin neuron
specification by Lhx9. Development 142, 1113-1124 (2015).

Dalal, J. et al. Translational profiling of hypocretin neurons identifies
candidate molecules for sleep regulation. Genes Dev. 27, 565-578 (2013).
Vue, T. Y. et al. Characterization of progenitor domains in the developing
mouse thalamus. J. Comp. Neurol. 505, 73-91 (2007).

Jeong, Y. et al. Spatial and temporal requirements for sonic hedgehog in the
regulation of thalamic interneuron identity. Development 138, 531-541
(2011).

Li, J. et al. Transcription factors Sp8 and Sp9 coordinately regulate olfactory
bulb interneuron development. Cereb. Cortex 28, 3278-3294 (2018).
Agoston, Z. et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic
periglomerular fate specification in the adult olfactory bulb. Development 141,
28-38 (2014).

Huisman, C. et al. Single cell transcriptome analysis of developing arcuate
nucleus neurons uncovers their key developmental regulators. Nat. Commun.
10, 3696 (2019).

Arnold-Aldea, S. A. & Cepko, C. L. Dispersion patterns of clonally related cells
during development of the hypothalamus. Developmental Biol. 173, 148-161
(1996).

Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node
controlling social behavior. Cell 179, 713-728.e17 (2019).

Olmeda, D., Castel, S., Vilard, S. & Cano, A. B-catenin regulation during the
cell cycle: implications in G2/M and apoptosis. Mol. Biol. Cell 14, 2844-2860
(2003).

Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of
GABAergic neurons in cerebral cortex. Neuron 71, 995-1013 (2011).

Du, T., Xu, Q., Ocbina, P. J. & Anderson, S. A. NKX2.1 specifies

cortical interneuron fate by activating Lhx6. Development 135, 1559-1567
(2008).

Elias, L. A. B., Potter, G. B. & Kriegstein, A. R. A time and a place for
nkx2-1 in interneuron specification and migration. Neuron 59, 679-682
(2008).

Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding
protein is essential for the organogenesis of the thyroid, lung, ventral
forebrain, and pituitary. Genes Dev. 10, 60-69 (1996).

Puelles, L. Forebrain development: prosomere model. Encycl. Neurosci. https://
doi.org/10.1016/b978-008045046-9.01076-7 (2009).

Ferran, J. L., Puelles, L. & Rubenstein, J. L. R. Molecular codes defining
rostrocaudal domains in the embryonic mouse hypothalamus. Front. Neuroanat.
9, 46 (2015).

Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial
origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85-97 (2010).
Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation
of the beta-catenin gene. EMBO J. 18, 5931-5942 (1999).

Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and
neurospheres. Nat. Protoc. 2, 1490-1498 (2007).

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411 (2018).

Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177,
1888-1902.e21 (2019).

Alexander Wolf, F., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
with Harmony. Nat. Methods 16, 1289-1296 (2019).

Becht, E. et al. Dimensionality reduction for visualizing single-cell data using
UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).
Bhattacherjee, A. et al. Cell type-specific transcriptional programs in mouse
prefrontal cortex during adolescence and addiction. Nat. Commun. 10, 4169
(2019).

Chen, R.,, Wu, X,, Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals
Hypothalamic Cell Diversity. Cell Rep. 18, 3227-3241 (2017).

73. Yoo, S., Cha, D.,, Kim, D. W.,, Hoang, T. V. & Blackshaw, S. Tanycyte-
Independent Control of Hypothalamic Leptin Signaling. Frontiers in
Neuroscience 13 (2019).

74. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables
rapid annotation of cell atlases. Nature Methods 16, 983-986 (2019).

75. Held, P., Krause, B. & Kruse, R. Dynamic Clustering in Social Networks Using
Louvain and Infomap Method. 2016 Third European Network Intelligence
Conference (ENIC) (2016) https://doi.org/10.1109/enic.2016.017.

76. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5,
2122 (2016).

77. Stein-O’Brien, G. L. et al. Decomposing Cell Identity for Transfer Learning
across Cellular Measurements, Platforms, Tissues, and Species. Cell Syst 8,
395-411.e8 (2019).

78. Stein-O’Brien, G. L. et al. Decomposing cell identity for transfer learning
across cellular measurements, platforms, tissues, and species. bioRxiv 395004
(2018) https://doi.org/10.1101/395004.

79. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of
spatially variable genes. Nat. Methods 15, 343 (2018).

80. Melsted, P. et al. Modular and efficient pre-processing of single-cell RNA-seq.
https://doi.org/10.1101/673285.

81. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 525-527 (2016).

82. Bergen, V., Lange, M., Peidlj, S., Alexander Wolf, F. & Theis, F. J. Generalizing
RNA velocity to transient cell states through dynamical modeling. https://doi.
org/10.1101/820936.

Acknowledgements

This work was supported by a grant from the NIH (DK108230) to S.B., and Maryland
Stem Cell Postdoctoral Research Fellowship (2019-MSCRFF-5124) to D.W.K. We thank
Transcriptomics and Deep Sequencing Core at Johns Hopkins for sequencing all scRNA-
seq libraries, Ross Flow Cytometry Core (Johns Hopkins) for FACS analysis, and
Microscope facility (Johns Hopkins MICFAC, supported by the award number
$100D018118). We thank M. Placzek, E. Newman, J. Nathans, A. Kolodkin, W. Yap, and
members of the Blackshaw lab for comments on the paper.

Author contributions

D.W.K. and S.B. designed the experiments. D.W.K., PW.W.,, ZQW.,, B.TIL, SL, L],
and H.W. performed the experiments. D.W.K,, PW.W., ZQ.W,, S.L,, and C.S. analyzed
the data. All authors contributed to writing the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18231-z.

Correspondence and requests for materials should be addressed to S.B.

Peer review information Nature Communications thanks Igor Adameykoand the other
anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

37 Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2022

| (2020)11:4360 | https://doi.org/10.1038/s41467-020-18231-z | www.nature.com/naturecommunications 1


https://doi.org/10.1016/b978-008045046-9.01076-7
https://doi.org/10.1016/b978-008045046-9.01076-7
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1109/enic.2016.017
https://doi.org/10.1101/395004
https://doi.org/10.1101/673285
https://doi.org/10.1101/820936
https://doi.org/10.1101/820936
https://doi.org/10.1038/s41467-020-18231-z
https://doi.org/10.1038/s41467-020-18231-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The cellular and molecular landscape of hypothalamic patterning and differentiation from�embryonic to late postnatal development
	Results
	Comprehensive profiling of entire hypothalamus development
	Profiling of region-specific genes in the developing diencephalon
	HyDD identifies developmental origins of VMH neurons
	HyDD allows comprehensive analysis of complex mutant phenotypes

	Discussion
	Methods
	Mice
	Dissection and cell dissociation
	ScRNA-seq library generation and data processing
	Data analysis
	scCoGAPS analysis
	E12�spatial mapping
	Cell cycle analysis
	RNA velocity
	Pseudotime analysis
	Regulons
	In situ hybridization (ISH)
	Immunostaining
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




