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ABSTRACT Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by ge-
netic lesions in developing B cells that function as drivers for the accumulation of
additional mutations in an evolutionary selection process. We investigated secondary
drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion
(Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in
Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a
high variant-allele frequency (VAF) were dominated by C¡T transition mutations
that were compatible with activation-induced cytidine deaminase, whereas the ma-
jority of mutations, with a low VAF, were dominated by C¡A transversions associ-
ated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The
Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and
ROS-induced gene expression signatures, and altered ROS-induced mutational signa-
tures. These results reveal that JAK mutations can alter the course of leukemia clonal
evolution through ROS-induced DNA damage.
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Acute lymphoblastic leukemia (ALL) is the most frequently occurring type of cancer
in young children (1). Despite a high remission rate, ALL is still the leading cause

of cancer-related deaths in children, and much needs to be done to reduce the
long-term effects of chemotherapy toxicity (1). Of the many subtypes of ALL, 80% of
pediatric ALLs are cancers of the B lymphocyte lineage (B-ALL) (1). Pre-B-ALL is
associated with mutations or chromosomal translocations involving genes encoding
transcription factors or proteins involved in B cell receptor (BCR) signaling (2). Pre-B-ALL
cells are frequently addicted to Janus kinase signal transducer and activator of tran-
scription (JAK-STAT) signaling pathways that are activated by interleukin-7 (IL-7) (3).
Pre-B-ALLs, like all cancers, develop by an evolutionary process (4). Mutations that
confer a survival or proliferation benefit to pro-B/pre-B cells, known as driver mutations,
lead to the accumulation of secondary driver mutations and passenger mutations
during leukemia evolution (5, 6). Whole-genome sequencing, whole-exome sequencing
(WES), and targeted cancer gene sequencing have eliminated the bottleneck in iden-
tifying mutations that function as drivers of leukemogenesis (7). However, there is still
a gap in utilizing biochemistry and mouse models to determine the molecular mech-
anisms of how identified mutations function as drivers of leukemogenesis. Animal
models are critically important for understanding leukemia evolutionary biology (8).
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Pre-BCR signals synergize with interleukin-7 receptor (IL-7R) signaling to drive
proliferation of large pre-B cells (9). Expansion of pre-B cell numbers is accompanied by
extensive changes to B cell metabolism, including high levels of reactive oxygen
species (ROS) that play important roles as second messengers (10). Assembly of Ig light
chains with Ig heavy chains forms a functional BCR that signals through Bruton tyrosine
kinase (BTK) and B cell linker protein (BLNK) to inhibit IL-7R signaling and proliferation.
All stages of B cell development are controlled by cell type-specific transcription factors,
including early B cell factor (EBF), E2A, Pax5, Ikaros, Aiolos, PU.1, and Spi-B (11).

PU.1 (encoded by Spi1) and Spi-B (encoded by Spib) are transcription factors
belonging to the E26 transformation-specific (ETS) family of proteins (12). PU.1 and
Spi-B have similar DNA binding domains that interact with an overlapping set of DNA
binding sites within the genome (the sequence AAGTGGAAGT [underlining indicates
the core ETS binding site that is required for binding; nonunderlined sequence indi-
cates nucleotides preferred but not required for binding]) (13). PU.1 is expressed in
blood cells, beginning in hematopoietic stem cells, and has pioneer activity that can
open sites of closed chromatin, allowing access to other factors (14). Spi-B is expressed
specifically in the lymphocyte and plasmacytoid dendritic cell lineages (12). PU.1 and
Spi-B are complementary transcriptional activators of genes involved in B cell signaling,
including those for Bruton tyrosine kinase (Btk) (15) and B cell linker protein (Blnk) (16).

We previously described a mouse model in which a Spi1lox/lox allele (encoding PU.1)
is deleted during B cell development under the control of the B cell-specific Mb1Cre

gene. These mice are also germ line null for Spib (Spib�/�) (17). These mice, called
Mb1-CreΔPB, to indicate that PU.1 and Spi-B are deleted in the B cell lineage, have a
profound block to B cell development starting at the small pre-B cell stage, demon-
strating a requirement for PU.1 and Spi-B in B cell development (17). Importantly, 100%
of Mb1-CreΔPB mice develop B-ALL by 18 weeks of age (18). Previous work suggests
that secondary driver mutations cooperate with PU.1/Spi-B deletion to induce leukemia
(18). However, it is unclear whether secondary driver mutations are recurrent and, if so,
what the mechanism(s) of mutagenesis is.

In this study, we investigated secondary drivers of leukemogenesis in the Mb1-
CreΔPB mouse model using WES. We found that 5/8 leukemias had mutations in Jak3
(encoding Janus kinase 3), 2/8 had mutations in Jak1, and 3/8 had mutations in Ikzf3
(encoding the transcription factor Aiolos). Mutations with the highest variant allele
frequency (VAF) were dominated by C¡T transition mutations that were compatible
with activation-induced cytidine deaminase (AID), whereas the majority of mutations,
with the lowest VAF, were dominated by C¡A transversions associated with ROS.
Leukemia cells were dependent on high levels of ROS, driven by IL-7-dependent
JAK-STAT signaling and altered antioxidant gene expression, which resulted in
8-oxoguanine (8-OxoG) DNA damage. The JAK inhibitor ruxolitinib inhibited leukemia
cell growth, ROS production, and STAT5 phosphorylation in cultured leukemia cells.
Rodent chow containing ruxolitinib increased survival and reduced tumor size in
Mb1-CreΔPB mice. Gene expression analysis of leukemias from ruxolitinib-treated mice
showed reduced ROS-induced gene expression, while WES analysis showed altered
mutational signatures. These results reveal that JAK mutations can alter the course of
leukemia clonal evolution through ROS-induced DNA damage.

RESULTS
WES of Mb1-Cre�PB leukemias reveals recurrent mutations in Jak1, Jak3, and

Ikzf3. Mb1�/Cre Spi1lox/lox Spib�/� mice (shortened to Mb1-CreΔPB mice) develop
precursor B cell acute lymphoblastic leukemia (B-ALL) at 100% incidence with a median
time to euthanasia of 18 weeks (18). Mb1-CreΔPB leukemias invariably express
interleukin-7 receptor on their surface, have a pro-B/pre-B phenotype, and are either
clonal or oligoclonal with respect to immunoglobulin (Ig) heavy chain and Ig� rear-
rangements (18). In this study, we sought to determine if there are recurrent secondary
driver mutations associated with Mb1-CreΔPB leukemias. We performed whole-exome
sequencing (WES) on genomic DNA prepared from the thymi of 8 leukemic mice, as
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well as control genomic DNA prepared from tail clips of the same mice (see Tables S1
and S2 in the supplemental material). All thymi from leukemic mice contained high
frequencies of cells expressing the B cell-specific marker CD19. Single nucleotide
variants (SNVs) for each of the 8 leukemias were determined by comparing leukemia
and control sequences using three independent somatic-variant callers: Strelka,
Varscan2, and FreeBayes (Data Set S1). Variable numbers of somatic variants were called
using these three algorithms after applying a cutoff of �0.1 variant allele frequency
(VAF), with Strelka showing the lowest sensitivity and FreeBayes showing the highest
sensitivity (Table S2). SNVs were filtered further based on the prediction of high-impact
functional missense, stop, start, and splice (MSSS) variants and mapping to genes. The
average numbers of genes containing one or more variants were 75 using Strelka, 281
using VarScan, and 889 using FreeBayes. The average number of genes containing one
or more variants, called by all three callers, was 20 per leukemia (Table S2).

The intersection of the genes impacted by the identified variants showed that 5/8
exomes had high-impact SNVs in Jak3, encoding Janus kinase 3, 2/8 exomes had
high-impact SNVs in Jak1, encoding Janus kinase 1, and 3/8 exomes had high-impact
SNVs in Ikzf3, encoding Aiolos, a zinc finger transcription factor highly related to Ikaros
(IKZF1) (Fig. 1). No other genes had high-impact variants in more than one exome. All
of these SNVs were present at high cancer cell frequency (CCF). A summary of the base
changes, amino acid changes, and predicted impacts of identified variants in Jak3, Jak1,
and Ikzf3 is shown in Table S3. All Jak3 and Jak1 mutants, except Jak3 T844M (encoding
a change of T to M at position 844 of Janus kinase 3), encoded mutations located in the
pseudokinase domain of these proteins, and their mutations were therefore predicted
to function as activating mutations (19). Jak3 V670A, R653H, and T844M were previ-
ously shown to be activating mutations for IL-7-dependent signaling (18). In contrast,
Ikzf3 R137* and H195Y encoded mutations located in zinc fingers 1 and 3, respectively
(Table S3), and were therefore predicted to represent loss-of-function or dominant-
negative mutations (20). In conclusion, recurrent mutations in Jak3 and Jak1 are
activating mutations that likely act as secondary drivers of leukemogenesis by induc-
tion of the JAK-STAT signaling pathway.

Mutational signature analysis reveals distinct patterns of DNA damage. Anal-
ysis of whole-exome and whole-genome sequences from thousands of human cancers

Jak3 Jak1

Ikzf3

857

406

856

968

853

854

973

853 857

932
FIG 1 Venn diagrams showing overlap in gene variants between exome sequences. Numbers outside colored
shapes indicate sequenced leukemia exomes. Numbers inside colored shapes indicate numbers of variants called
by three variant callers.
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revealed at least 30 distinct mutational signatures (21). To determine mutational
signatures in our 8 WES sequences of Mb1-CreΔPB mouse leukemia, we used the
deconstructSigs R package that identifies mutational signatures in exome sequences
based on comparison to human COSMIC (Catalogue Of Somatic Mutations In Cancer)
version 2 mutational signatures (22). DeconstructSigs analysis of output from Strelka
(Fig. S1) or VarScan2 (not shown) showed that the two most common mutational
signatures identified were signatures 18 and 24 (Fig. 2A). In contrast, analysis of output
from FreeBayes showed mutational signatures 3 and 4 only (not shown). Mutational
signatures 3 and 4 are flat signatures with no particular enrichment in mutation type
(21). Therefore, we speculate that this result is due to the high number of SNVs called
by FreeBayes relative to the numbers called by Strelka and Varscan2 (Table S2).
Mutational signatures 18 and 24, discovered from both Strelka and Varscan2 data, are
characterized by a high frequency of C¡A transversions (Fig. S1) (7, 23). C¡A trans-
versions are thought to be caused by high levels of reactive oxygen species (ROS)
causing oxidation of guanine, resulting in 8-oxoguanine (8-OxoG) mispairing with
adenine following one round of replication (24). C¡T transition mutations are thought
to be induced primarily by APOBEC family enzymes, including activation-induced
cytidine deaminase (AID) (25). To gain insight into the mechanism(s) of mutagenesis in
the Mb1-CreΔPB mouse model, SNVs called by Strelka were placed into bins based on
VAF to determine the frequency of C¡A transversion relative to C¡T transition
mutations. This analysis showed that SNVs with VAFs of �0.3 had higher frequencies of
C¡T transitions relative to their frequencies of C¡A transversions (Fig. 2B). This result
suggests different mutational processes for high-VAF mutations and low-VAF muta-
tions.

Libraries from leukemias 853, 854, and 857 were prepared separately from those
from leukemias 406, 968, 973, 856, and 932 and exhibited higher ratios of C¡A
transversions to C¡T transitions (Fig. S1). It has previously been noted that preparation
of genomic DNA libraries by high-energy sonication can result in the presence of an
8-oxoguanine library preparation artifact, albeit at a VAF of �0.1 (23). To exclude
potential artifacts, we reanalyzed our data by excluding SNVs at a VAF of �0.167. We
also used the Broad Institute d-ToxoG tool to remove predicted 8-OxoG artifacts. SNVs
were then placed into two bins, those at 0.167 to 0.334 VAF and those at 0.334 to 0.5
VAF, and the ratios of C¡A transversions to C¡T transitions were determined for the
8 leukemia exomes. Analysis showed that the ratios of C¡A transversions to C¡T
transitions were higher at VAFs of �0.334 than at VAFs of �0.334 (Fig. 2C). We noted
that, of the mutations in Ikzf3, Jak1, and Jak3 described in Table S3, most of which are
at high VAF and CCF, 7/10 were C¡T transitions, 2 were T¡C or T¡G, and 1 was a
C¡A transversion. Taken together, these results suggest the presence of two distinct
mutational processes in Mb1-CreΔPB mice, one occurring early in leukemia develop-
ment and leading to C¡T transitions at high VAF and the second occurring later in
leukemia development and leading to C¡A transversions at low VAF.

AID is an APOBEC family member expressed exclusively in the B cell lineage that is
implicated in mutagenesis in B cell leukemia and lymphoma (25). AID induces C¡T
transition mutations with preference for WRC (A/T, A/G, C) sequences (26). To deter-
mine whether the high-VAF (�0.334) mutations called by Strelka were compatible with
mutagenesis induced by AID, the sequence context was examined. Analysis showed
that WRC trinucleotide motifs were significantly enriched for high-VAF variants relative
to their enrichment for low-VAF variants (Fig. 2C). To determine if the 7 C¡T mutations
described in Table S3 were compatible with an AID-induced signature, the sequence
context was examined. Three of 7 C¡T mutations were in a CAC trinucleotide se-
quence, while 3/7 were in an AGC trinucleotide sequence and 1/7 was in a TAC
trinucleotide sequence. Therefore, the sequence context of high-VAF variants, including
Jak3, Jak1, and Ikzf3 C¡T transition mutations, is compatible with the preferred
recognition sequence for AID.
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High levels of ROS in leukemias from PU.1, Spi-B-deficient mice. The high
frequency of C¡A transversion mutations in Mb1-CreΔPB leukemias suggested
8-oxoguanine DNA damage due to reactive oxygen species (ROS) (27). To determine if
the gene expression profile of leukemia cells showed evidence of ROS, 100-bp paired-
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FIG 2 Evidence for distinct mutational processes. (A) Frequencies of mutational signatures. The pie chart shows
frequencies of top mutational signatures for each of 8 leukemias analyzed by the indicated mutation caller. (B)
Frequencies (percentages) of C¡A transversions compared to C¡T transitions in each of 6 VAF bins. (C) The ratios
of C¡A transversions to C¡T transitions are lower at high VAF (0.334 to 0.5) than at low VAF (0.167 to 0.334)
(n � 8; unpaired t test; *, P � 0.01). (D) Variants are enriched for WRC (A/T, A/G, C) motifs at high VAF frequency
compared to their enrichment at low VAF frequency (repeated-measures one-way analysis of variance [ANOVA]; *,
P � 0.05; **, P � 0.01; ****, P � 0.0001).
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end RNA-seq was performed on the eight Mb1-CreΔPB leukemia samples summarized
in Table S1. Paired-end reads were analyzed using Cufflinks, and normalized gene
expression was determined as fragments per kilobase of transcript per million mapped
reads (FPKM). The levels of gene expression from leukemia samples were compared to
the gene expression from nonleukemic PU.1/Spi-B-deficient pro-B cells (17) using gene
set enrichment analysis (GSEA) (28). GSEA analysis revealed positive enrichment in
leukemia cells for gene ontology (GO) gene sets “GO response to ROS” (191 genes) (Fig.
3A) and “GO response to oxidative stress” (352 genes) (Fig. 3B). GSEA revealed negative
enrichment for “GO positive regulation of ROS” (86 genes) (Fig. 3C). These results
suggest an impact of ROS on gene expression in Mb1-CreΔPB leukemias.

Published literature was examined to prioritize genes that have a role in producing
or clearing/scavenging ROS. No prooxidant genes were eligible due to undetectable
expression. However, 29 antioxidant genes were expressed and showed substantial
differences, with most showing downregulation in leukemia cells (Fig. 3D). Genes for
catalase (Cat), glutathione peroxidase (Gpx1), and peroxiredoxin (Prdx4 and Prdx5)
enzymes, important for the control of intracellular hydrogen peroxide (29), were among
the most highly downregulated genes in Mb1-CreΔPB leukemia cells compared to their
expression in preleukemic cells (Fig. 3D). Overall, these results suggest that antioxidant
responses are reduced in Mb1-CreΔPB leukemias relative to their levels in control cells.

In order to determine whether ROS was increased in leukemia cells relative to the
amount in control cells, cell lines were generated from leukemias by culturing in
IL-7-conditioned medium. Cell line 973 was chosen as the representative cell line since
it grew robustly in culture and had a Jak1 mutation, identified using whole-exome
sequencing (Fig. 1; Table S3). Cell line 973 leukemia cells and wild-type (WT) fetal-liver-
derived pro-B cells were incubated with 2=,7=-dichlorodihydrofluorescein diacetate
(H2DCFDA), a cell-permeant dye that becomes brightly fluorescent upon oxidization.
973 cells had high levels of H2DCFDA staining relative to the staining in WT pro-B cells
that expressed PU.1 and Spi-B (Fig. 3E). To determine if PU.1 plays a role in control of
ROS in preleukemic cells, bone marrow cells from young (6- to 8-week-old) ΔB (Spib�/�)
or Mb1-CreΔPB mice were placed in culture with 5% IL-7-conditioned medium for
2 weeks to generate proliferating pro-B/pre-B cells and then stained with H2DCFDA.
Flow cytometric analysis showed that Mb1-CreΔPB pro-B/pre-B cells had increased ROS
compared to the amount in ΔB cells (Fig. S2). Taken together, these results suggest high
levels of ROS in both preleukemic and leukemia cells from Mb1-CreΔPB mice.

Detection of 8-oxoguanine DNA damage in Mb1-Cre�PB leukemia cells. To
determine if there was 8-oxoguanine DNA damage in Mb1-CreΔPB leukemias, thymic
leukemias were freshly isolated, placed in short-term culture (5 to 7 days) to select
for nonapoptotic cells, and then cytospun onto glass slides, followed by parafor-
maldehyde fixation and staining with anti-8-oxoguanine antibody and 4=,6-di-
amidino-2-phenylindole (DAPI) (Fig. 4A). Wild-type fetal-liver-derived pro-B cells were
used as controls. 8-Oxoguanine-stained leukemia cell nuclei had a median fluorescence
intensity (MFI) that was 27.9-fold greater than the MFI of cells stained with secondary
antibody only (Fig. 4B). The median fluorescence of wild-type cells was 9.3-fold greater
than that of cells stained with secondary antibody only (Fig. 4B). 8-Oxoguanine-stained
leukemia cells had 3.4-fold higher levels of fluorescence than 8-OxoG stained wild-type
cells (Fig. 4B). We conclude that Mb1-CreΔPB leukemia cells had increased levels of
8-oxoguanine DNA damage compared to the levels in wild-type pro-B cells. These
results suggest that Mb1-CreΔPB leukemia cells have increased levels of ongoing DNA
damage as a consequence of high ROS levels.

Requirement of high ROS for proliferation and gene expression of Mb1-
Cre�PB leukemia cells. ROS has been shown to promote proliferation and survival of
leukemia cells (27, 29). A number of cellular signaling pathways, including the JAK-STAT
pathway downstream from IL-7R, generate ROS and are also activated by ROS in a
positive feedback loop (10, 30). To determine if Mb1-CreΔPB leukemia cells require ROS
for survival, cell line 973 cells were cultured with the antioxidant N-acetylcysteine (NAC)
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(30) and proliferation was determined using MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide] assays and confirmed by cell counting, since the
MTT assay can be sensitive to ROS. Concentrations of NAC above 1 �M inhibited
proliferation of 973 cells as determined by MTT assay (Fig. 5A). To determine if
interleukin-7 signaling plays a role in ROS generation, we performed cell counting
assays to identify a concentration of IL-7 at which cells survived but did not proliferate
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(Fig. 5B). Consequently, 0.05% conditioned medium was selected as a low IL-7 con-
centration and 5% conditioned medium was selected as a high IL-7 concentration (Fig.
5B). To increase ROS, 973 cells were cultured with hydrogen peroxide (H2O2), a form of
ROS that serves as a second messenger for cellular signaling pathways (10). Under
culture conditions using 5% IL-7-conditioned medium, the addition of H2O2 reduced
cell counts (Fig. 5C). Interestingly, under culture conditions with 0.05% IL-7, the
addition of H2O2 at concentrations up to 50 �M stimulated proliferation of 973 cells
(Fig. 5D). Taken together, these results suggest that 973 cells require a specific level of
ROS, above or below which proliferation is reduced.
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Next, we determined the effects of half-maximal doses of NAC (2.5 �M) and H2O2

(50 �M) (determined from the results shown in Fig. 5A to D) on gene expression in 973
cells. Neil1 encodes a DNA glycosylase that is important for repair of guanine oxidation
products, whose transcription is activated by DNA damage and ROS (31). We found that
Neil1 was downregulated by NAC and upregulated by H2O2, indicating that this gene
is activated by ROS (Fig. 5E and F). Rad51 encodes a key protein involved in DNA repair
and is transcriptionally upregulated in response to DNA damage (24). Rad51 was
downregulated by NAC and upregulated by H2O2, suggesting that this gene responds
to ROS-induced DNA damage (Fig. 5E and F). Sod2 encodes superoxide dismutase 2, a
mitochondrion-located enzyme whose function is to catalyze the dismutation of su-
peroxide (O2

�) into molecular oxygen and H2O2 (29). Sod2 was not significantly
affected by NAC treatment but was strongly downregulated by H2O2 (Fig. 5E and F).
Gpx1 encodes glutathione peroxidase 1, the function of which is to catalyze a reaction
between glutathione and ROS to oxidize glutathione disulfide, reducing oxidative stress
within the cell (29). Gpx1 was downregulated in response to NAC and upregulated in
response to H2O2 (Fig. 5E and F). Finally, we examined changes in the expression of Cat,
encoding catalase, which catalyzes dismutation of H2O2 to water and oxygen (29). Cat
expression was downregulated by NAC and upregulated 100-fold in response to H2O2

(Fig. 5E and F). In summary, in response to upregulation of ROS by H2O2 treatment in
cultured leukemia cells, Neil1, Rad51, Gpx1, and Cat were upregulated, while these
genes were downregulated in response to treatment with NAC. Downregulation of
antioxidant gene expression by NAC suggests that this compound functions directly as
an antioxidant, resulting in reduced requirement for antioxidant gene expression. In
contrast, H2O2 was capable of stimulating antioxidant gene expression in 973 cells.
These results show that gene expression is dynamically regulated by ROS in cultured
leukemia cells.

Regulation of proliferation and gene expression of Mb1-Cre�PB leukemia cells
by Necrox-5 and ML334. Necrox-5 is a small molecule that specifically targets the
mitochondria and was reported to inhibit calcium flux and have antioxidant activity (32,
33). Necrox-5 significantly inhibited the proliferation of 973 cells at concentrations
above 2 �M as determined by MTT assay (Fig. S3A). Unexpectedly, at 3 �M (half
maximal), Necrox-5 induced increases in antioxidant gene expression that were similar
to those induced by H2O2 (Fig. S3B). Necrox-5 also resulted in reduced levels of ROS as
determined by H2DCFDA staining (Fig. S3C). These results suggest that Necrox-5
interferes with mitochondrial signaling to the antioxidant gene response.

High levels of ROS induce dissociation of Keap1 from Nrf2, followed by translocation
of Nrf2 to the nucleus to activate antioxidant gene expression (10). The experimental
compound ML334 activates antioxidant responses by inducing Keap1-Nrf2 dissociation
(34). ML334 reduced cell counts of cultured 973 cells in a dose-dependent manner (Fig.
S3D). At 50 �M, ML334 resulted in upregulation of antioxidant gene expression, in-
cluding Sod2 (Fig. S3E). Taken together with the results presented above, these
experiments demonstrate that Mb1-CreΔPB leukemia cells require ROS for proliferation
and/or survival and that reduction of ROS by treatment with NAC, Necrox-5, or ML334
results in altered antioxidant gene expression.

FIG 5 Legend (Continued)
cultured 973 cells in a dose-dependent manner. MTT assays were performed, and the absorbance was
determined. Zero indicates vehicle control. OD, optical density. (B) Dose-response of cultured pro-B cells
to interleukin-7. % IL CM, percentage of IL-7 in conditioned medium. (C) Hydrogen peroxide (H2O2) reduces
cell counts of cultured 973 cells in a dose-dependent manner. Experiment was performed using 5%
IL-7-conditioned medium. (D) Under low-IL-7 conditions, H2O2 increases cell counts of cultured 973 cells in
a dose-dependent manner. The experiment was performed using 0.5% IL-7-conditioned medium. P value
was determined by ordinary one-way ANOVA of biological replicate (n � 3) experiments. (E, F) Gene
expression analysis. RT-qPCR was performed to determine relative fold changes in the indicated mRNA
transcripts after 24 h of culture with NAC (D) or H2O2 (E). Statistical analysis was performed using
one-sample t and Wilcoxon tests (n � 5 biological replicate experiments). Error bars indicate standard
errors of the means. *, P � 0.05; **, P � 0.01; ***; P � 0.001, ****, P � 0.0001.
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Ruxolitinib inhibits proliferation and alters mutational signatures of Mb1-
Cre�PB leukemia cells. JAK-STAT signaling increases cellular ROS, and increased levels
of cellular ROS provide positive feedback to augment JAK-STAT signaling (27, 30).
Ruxolitinib (Jakafi, INC424) is a JAK inhibitor that is effective against human and murine
JAK1 to -3 (JAK1–3) (3, 35). Since leukemias in Mb1-CreΔPB mice are IL-7 dependent (18,
36) and IL-7 signals primarily through JAK1 and -3 (19), we set out to determine
whether proliferation of Mb1-CreΔPB leukemia cells could be inhibited by ruxolitinib.
Proliferation of 973 cells in culture was efficiently inhibited by ruxolitinib as determined
by cell counting (Fig. 6A) or MTT assay (Fig. 6B), with half-maximal activity at 75 nM.
Culture of 973 cells with 75 nM ruxolitinib resulted in reduced STAT5 phosphorylation
(Fig. 6C), as well as reduced ROS as determined by H2DCFDA staining (Fig. 6D).
Furthermore, treatment of 973 cells with 75 nM ruxolitinib resulted in upregulated
antioxidant gene expression (Fig. 6E). To determine if reduced ROS might be respon-
sible for reduced proliferation, we asked whether the addition of H2O2 could rescue
proliferation of ruxolitinib-treated 973 cells. The addition of 50 �M H2O2 partly rescued
cell counts of 973 cells treated with ruxolitinib (Fig. 6F). These results indicate that
inhibition of JAK-STAT signaling downstream from IL-7 signaling by ruxolitinib resulted
in reduced ROS.

Based on the recurrence of Jak1/-3 mutations and the ROS gene signature in
Mb1-CreΔPB leukemias, we hypothesized that ruxolitinib would delay leukemia inci-
dence in Mb1-CreΔPB mice. To test this idea, Mb1-CreΔPB mice were fed ruxolitinib
chow or control rodent chow between 4 and 8 weeks of age and then switched to
regular chow and monitored until signs of illness appeared (Fig. 7A, top). Ruxolitinib-
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treated and control mice consumed on average 6.9 g and 7.1 g of chow per day,
respectively. Four of 8 ruxolitinib-treated Mb1-CreΔPB mice developed B-ALL with
delayed time to euthanasia, while 4/8 Mb1-CreΔPB mice did not develop signs of
leukemia before the experiment was terminated at 58 days (Fig. 7A, bottom).
Ruxolitinib-treated Mb1-CreΔPB mice had reduced thymus weight compared to that of
control mice (Fig. 7B). Despite reduced cellularity, 7/8 mice had extensive CD19�

leukemia cell infiltration in the thymus at the time of euthanasia, while 1 mouse had a
few infiltrating CD19� leukemia cells in the thymus. These results showed that rux-
olitinib treatment between 4 and 8 weeks of age significantly delayed time to eutha-
nasia in Mb1-CreΔPB mice.

To determine if delayed leukemia development was associated with altered ROS and
DNA damage, we performed transcriptome sequencing (RNA-seq) on leukemia cells
from four control and five ruxolitinib-treated mice, as shown in Fig. 7A (summarized in
Table S4). Normalized gene expression was determined as FPKM using the Cufflinks
suite, and differential gene expression was determined using DESeq2 (37). More genes
were downregulated than upregulated in ruxolitinib-treated leukemias, with highly
pro-B-/pre-B-specific genes like VpreB1, Igll1, and Cd79b being among the most highly
downregulated genes (Fig. 7C). Antioxidant and electron transport chain genes were
also downregulated in ruxolitinib-treated leukemias (Fig. 7C). Furthermore, GSEA anal-
ysis using the antioxidant gene expression set shown in Fig. 3D showed highly
significant downregulation of antioxidant gene expression (Fig. 7D). These results
suggest that ruxolitinib reduced ROS in leukemia cells, resulting in downregulation of
antioxidant gene expression.

Finally, WES was performed on leukemia cells from four control and seven
ruxolitinib-treated mice, as shown in Fig. 7A and summarized in Table S4. SNVs were
called using Strelka, Varscan2, and FreeBayes variant callers as described above. No
variants were identified that were in common between all leukemias and all three
callers. The frequencies of Jak1, Jak2, and Jak3 variants were reduced in leukemias from
ruxolitinib-treated mice compared to their frequencies in control mice, as would be
expected if ruxolitinib preferentially targets leukemic clones with Jak1–3 driver muta-
tions (Fig. 7E). As previously noted, FreeBayes called variants with relaxed stringency
compared to the reporting by Strelka and Varscan2 (Fig. 7E). Next, mutational signature
analysis was performed on variants identified by Strelka (Fig. 7F) and Varscan2 (Fig. 7G).
As noted above and shown in Fig. 2A, ROS-associated mutation signatures 18 and 24
were among the most heavily weighted mutational signatures in control leukemias
(Fig. 7F and G). For leukemias with delayed onset from mice fed from 4 to 8 weeks with
ruxolitinib chow, there was increased variability in signatures 18 and 24, accompanied
by increases in frequencies of calling and weights of mutational signatures 10, 15, 20,
and 29 for Strelka (Fig. 7F; Fig. S4A) and of mutation signatures 3, 5, 14, 20, and 29 for
Varscan2 (Fig. 7G). For variants with a VAF of �0.3, which were expected to have arisen
earlier during clonal evolution, there was an even more pronounced spreading of
mutational signatures than for variants with a VAF of �0.3 (Fig. S4B and C). In summary,
these data indicate that feeding with ruxolitinib chow for 4 to 8 weeks resulted in
delayed onset of leukemia, and the leukemias that developed had not only an altered
gene expression signature but also an altered mutational signature. These results
suggest that Jak mutations affect the clonal evolution of leukemia by leading to
additional DNA damage through mechanisms that may include ROS.

DISCUSSION

In this study, we investigated secondary drivers of leukemogenesis in the Mb1-
CreΔPB mouse model using whole-exome sequencing (WES). WES analysis revealed
that 5/8 leukemias had mutations in Jak3 (encoding Janus kinase 3), 2/8 had mutations
in Jak1, and 3/8 had mutations in Ikzf3 (encoding the transcription factor Aiolos).
Mutations with the highest VAFs were dominated by C¡T transition mutations,
whereas the majority of mutations with the lowest VAFs were dominated by C¡A
transversions. Leukemia cells were dependent on high levels of ROS driven by IL-7-

Janus Kinase Mutation and DNA Damage in Leukemia Molecular and Cellular Biology

September 2020 Volume 40 Issue 18 e00189-20 mcb.asm.org 13

https://mcb.asm.org


dependent JAK-STAT signaling. Leukemia cells had altered antioxidant gene expression
and 8-OxoG DNA damage. The JAK inhibitor ruxolitinib inhibited leukemia cell growth,
ROS production, and STAT5 phosphorylation in cultured leukemia cells. Rodent chow
containing ruxolitinib increased the survival time of Mb1-CreΔPB mice, resulting in a
gene expression signature indicating lower levels of ROS and a mutational signature
indicating altered ROS-induced DNA damage. Taken together, these data suggest that
Jak1/-3 mutations lead to altered IL-7-dependent proliferation driven by ROS, cooper-
ating with JAK/STAT signaling, and followed by 8-OxoG-induced accumulation of
additional mutations to drive disease evolution.

Mutations in JAK3 and JAK1 are recurrent in human leukemia and frequent in Ph-like
human leukemia (3, 38). The Jak3 and Jak1 mutations identified in our mouse model
correspond to mutations observed in human leukemia. The human equivalent of Jak3
R653H (JAK3 R657Q) and V670A (JAK3 V674F) was identified as an activating mutation
in leukemia (39). The human equivalent of Jak3 A568V (JAK3 A572V) was identified as
an activating mutation in T cell leukemia (40). Jak1 V657F corresponds to human JAK1
V658F, which has been shown to be a frequent activating human driver mutation in ALL
(41). The human equivalent of Jak1 F837V (JAK1 F838V) was identified in one case of T
cell lymphoma (42). Mutations in IKZF3 (AIOLOS) are recurrent in human hypodiploid
ALL and frequently occur in zinc finger domains (43). The Ikzf3 H195Y mutation is
predicted to disrupt zinc finger 3, leading to a dominant-negative protein similar to that
resulting from the human IKZF3 H163Y mutation (44). Therefore, the Mb1-CreΔPB
mouse represents a powerful model for leukemogenesis in which each mouse inde-
pendently evolves its own leukemia through the development of secondary driver
mutations corresponding to mutations observed in human leukemia.

Previous studies have shown that many types of human cancer, including human
leukemia, have levels of ROS that are higher than in normal cells (45). These high levels
of ROS are generated either from the electron transport chain or from prooxidant
enzymes, including the NOX family (46). High ROS levels increase cellular signaling
pathways, including JAK signaling, by diverse mechanisms, including inactivation of
protein tyrosine kinases and PTEN, leading to further increases in cellular metabolism
and ROS (10, 29). However, the danger of sustained high levels of ROS is cellular
damage, including 8-OxoG DNA damage (45). JAK-STAT signaling has previously been
implicated directly in the generation of high levels of ROS, associated with DNA
damage and cancer (47).

Reduced levels of antioxidant genes have been observed previously in precursor B
cell acute lymphoblastic leukemia (27). JAK3 activation of STAT5 has been shown to
repress antioxidant gene expression, leading to increased ROS (48). Therefore, we
speculate that the high levels of ROS observed in Mb1-CreΔPB leukemia cells are
caused in part by deregulation of JAK signaling but also are due in part to STAT5-
mediated repression of antioxidant gene expression (Fig. 3). In accord with this,
ruxolitinib treatment increased antioxidant gene expression and reduced ROS (Fig. 7C
and D). Treatment with the antioxidant NAC led to downregulation of antioxidant gene
expression (Fig. 5D). Conversely, treatment with Necrox-5 or ML334 resulted in activa-
tion of antioxidant gene expression and reduced ROS (Fig. S3). Our observation that
Necrox-5, a mitochondrion-targeted ROS scavenger and Ca2� flux inhibitor, reduced
ROS and upregulated antioxidant activity suggests that the mitochondrial electron
transport chain is the major source of ROS in Mb1-CreΔPB leukemias. Cytoplasmic
prooxidant enzymes were not significantly expressed in our cells, as described in
Results and shown by the results in Fig. 3D. These experiments suggest that high levels
of ROS and, consequently, 8-OxoG DNA damage are expected to be a hallmark of
dysregulated JAK-STAT signaling in leukemia. In accord with this idea, mutational
signature analysis of human pediatric cancers revealed that a substantial frequency of
precursor B-ALLs have high frequencies of C¡A transversions thought to be caused by
8-oxoguanine DNA damage (7).

Precursor B-ALL is thought to originate from large pre-B cells, and the phenotype
and metabolic state of large pre-B cells is similar to that of B-ALL cells (6). Large pre-B
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cells have high levels of metabolic activity, as well as the highest levels of ROS of any
B cell stage measured (49). It has recently been shown that transcription factors PAX5
and IKZF1 have gatekeeper functions for repression of cellular metabolism (50). Inter-
estingly, PAX5 and IKZF1 are among the most frequently mutated genes in childhood
pre-B-ALL (50, 51). Mutation of PAX5 and IKZF1 results in activation of cellular metab-
olism, which can cooperate with additional driver mutations to induce malignant
transformation (50). We speculate that PU.1 and Spi-B also function as gatekeepers for
cellular metabolism (see Fig. S2 in the supplemental material) and that mutations in
Spi1/Spib cooperate strongly with Jak1/-3 mutations to activate metabolism, leading to
ROS, further activation of JAK-STAT signaling, and DNA damage. Activated STAT5
downstream from JAK3 signaling would be expected to enforce signaling both by
activation of cellular metabolism and by direct repression of antioxidant genes (48).

SPI1 and SPIB mutations have been identified in human leukemia (52, 53). SPI1 and
SPIB are transcriptionally repressed by ETV6-RUNX1 and ETO-RUNX1 translocation
products in human B-ALL and acute myeloid leukemia (AML) (54, 55). Importantly,
ETV6-RUNX1 (t12;21) leukemias represent nearly 25% of childhood leukemias (2). It was
recently shown that B cells from mice lacking the transcription factors PU.1 and
interferon (IFN) regulatory factor 8 (IRF8) have increased mRNA transcript levels of
Aicda, encoding AID, suggesting that AID expression is constrained by PU.1 and IRF8
(56). In another study, it was shown that B cells from mice lacking both PU.1 and Spi-B
had robust upregulation of Aicda (57). These studies suggest that AID expression is
constrained by PU.1 and Spi-B interacting with IRF4/-8, although the mechanism of this
has not been investigated. Deregulated expression of Aicda represents a potential
mechanism for induction of secondary driver mutations in the Mb1-CreΔPB mouse
model.

The successful implementation of clinically approved JAK inhibitors (ruxolitinib,
tofacitinib, baracitinib, and itacitinib) demonstrates that inhibition of JAK-STAT signal-
ing is beneficial in a wide variety of cancers and chronic inflammatory and autoimmune
diseases (58). It will be useful to explore other JAK inhibitors in our system, particularly
tofacitinib, since it is a dual JAK1/-3 inhibitor, whereas JAK2 might be largely irrelevant
in the Mb1-CreΔPB mouse model. Combination therapy using JAK inhibitors and ROS
scavengers may also be effective, as demonstrated in other systems. It will also be
necessary to test the efficacy of JAK inhibitors after disease onset, since ruxolitinib may
not be as effective in this context (58). The development of covalent kinase inhibitors
is a dynamic area of research that is expected to continue producing new clinically
relevant drugs (59).

Overall, this work suggests that activating JAK mutations, which are frequent in
human leukemia, are expected to lead to increased ROS and 8-oxoguanine DNA
damage, which will result in additional secondary driver mutations that will affect the
clonal evolution of the disease. JAK inhibitors may be effective at targeting leukemia by
breaking the positive feedback cycle of JAK-STAT signaling, ROS production, and
8-OxoG DNA damage that leads to clonal evolution of the disease.

MATERIALS AND METHODS
Animal care. C57BL/6 mice were purchased from Charles River Laboratories (Saint-Constant, QC,

Canada). Mb1�/Cre Spi1lox/lox Spib�/� mice (shortened to Mb1-CreΔPB mice) were generated by mating
Mb1�/� Spi1lox/lox Spib�/� female mice to Mb1�/Cre Spi1lox/lox Spib�/� male mice and genotyped as
described previously (18). Four-week-old preleukemic littermate Spib/Spi1-deficient mice were fed 10 g
of ruxolitinib chow (2,000 mg/kg of body weight; provided by Novartis) or control chow for 30 days, after
which all mice were switched to regular chow. Upon signs of illness indicated by lethargy, dyspnea, and
piloerection, mice were euthanized in fulfilment of ethical standards provided by the Western University
Council on Animal Care.

WES. DNAs from leukemias and matched tails were extracted using the Wizard genomic DNA
purification kit (Promega, Madison, WI). WES was performed by the Genome Quebec Innovation Centre
using the SureSelectXT mouse all exon kit (Agilent Technologies, Mississauga, Canada) for exome target
capture, the SureSelectXT target enrichment system to produce the paired-end DNA libraries, and the
Illumina HiSeq4000 (Illumina, San Diego, CA) for exome sequencing. The BAM files generated had
adaptor sequences trimmed using TrimGalore! and aligned to the reference mm10 genome using
Bowtie2. Processed files were analyzed using mutation callers Strelka (60), VarScan2 (61), and FreeBayes
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(62) with the standard settings. Annotation was performed on these files using SnpEffect (63). Mutational
signatures were identified using deconstructSigs (22). GetFlanks was used to obtain the 15 bases
preceding the C¡T mutation. Cancer cell frequency (CCF) was calculated according to the formula
CCF � VAF � (1/purity)[CN � purity � 2(1 � purity)], where CN stands for cell number. Venn diagrams
were prepared using the Van de Peer laboratory tool available at http://bioinformatics.psb.ugent.be/
beg/tools/venn-diagrams.

RNA sequencing. RNA was prepared from leukemias using Qiagen RNeasy (Qiagen, Hilden, Ger-
many). RNA samples were sequenced by the Genome Quebec Innovation Centre using the TruSeq
stranded total RNA library preparation kit and the Illumina HiSeq4000 PE100 (Illumina, San Diego, CA).
BAM files were trimmed using TrimGalore! and aligned to mm10 using TopHat2. Cufflinks was used to
generate transcript counts, expressed as fragments per kilobase of transcript per million mapped reads
(FPKM). DESeq2 differential gene expression analysis (37) and gene set enrichment analysis (GSEA) (28)
were performed using standard settings. The eligibility of prooxidant and antioxidant genes for heat map
analysis was determined based on genes that were expressed (FPKM � 0.5) and differed in expression by
more than 1.3-fold (highest FPKM/lowest FPKM). Heat maps were generated using the heatmap function
in RStudio 1.2.5.

Cell culture. Thymus or bone marrow cells were cultured in Iscove’s modified Dulbecco’s medium
(IMDM) with 10% fetal bovine serum (FBS), 1� penicillin–streptomycin–L-glutamine, 5 � 10�5 M
�-mercaptoethanol, and IL-7-conditioned medium prepared as previously described (64). A cell line was
established from leukemia 973 by passaging every 48 to 72 h. Fetal-liver-derived pro-B cells were
cultured on ST2 stromal cells as previously described (64). Cell counting or MTT assays (Trevigen,
Gaithersburg MD) were performed using 72 h of culture in various concentrations of N-acetylcysteine
(MilliporeSigma, Oakville, ON, Canada), hydrogen peroxide (Fisher Scientific, Mississauga, ON, Canada),
Necrox-5 (Bio-Techne, Oakville, ON, Canada), ML334 (Bio-Techne), or ruxolitinib (Abcam, Toronto, ON,
Canada). For gene expression experiments, cells were cultured for 24 h before RNA was prepared using
TRIzol (Thermo-Fisher Scientific). Primers for reverse transcriptase quantitative PCR (RT-qPCR) experi-
ments are shown in Table S5 in the supplemental material. For immunoblot analysis, whole-cell lysates
were generated using Laemmli buffer and probed with anti-STAT5 and anti-phosphorylated-STAT5
(anti-p-STAT5) antibodies (Cell Signaling Technology, Danvers, MA). Imaging was performed using a
ChemiDoc XRS� imager (Bio-Rad, Hercules, CA).

8-Oxoguanine DNA damage immunofluorescence staining. Wild-type pro-B cells or leukemia cells
from the enlarged thymus of moribund Mb1-CreΔPB mice were cultured for �2 weeks and then
cytospun onto glass slides at 1 � 105 cells/slide for 5 min at 500 rpm. Air-dried slides were fixed with 4%
paraformaldehyde (MilliporeSigma) in phosphate-buffered saline (PBS) for 30 min and then rinsed and
treated at room temperature with 0.2 mg/ml RNase A (MilliporeSigma) for 1 h. Slides were rinsed with
0.3% Triton X-100 in PBS, incubated in 2 M HCl for 10 min, and rinsed with 50 mM Tris base for
neutralization. Slides were blocked with 5% normal goat serum (Southern Biotech, Birmingham AL), Fc
Block antibody (BD Biosciences, Mississauga, ON, Canada), and 0.1% Triton X-100 (MilliporeSigma). Slides
were then rinsed and incubated with biotinylated anti-8-oxoguanine antibody (15A3; Abcam) for 1 h at
room temperature, followed by incubation with Alexa Fluor 647-conjugated antibiotin antibody (Jackson
ImmunoResearch, West Grove, PA) overnight at 4°C. Coverslips were placed over cells in DAPI-containing
Fluoromount mounting medium (Thermo-Fisher Scientific, Mississauga ON, Canada). Imaging was per-
formed with a Leica DMI6000B wide-field microscope at �630 magnification. Image analysis was
performed using ImageJ. DAPI fluorescence was used to delineate the boundaries of intact nuclei, and
the average fluorescence intensity for Alexa Fluor 647 in the corresponding regions was quantified. The
Iglewicz-and-Hoaglin modified Z score was used to identify and remove outliers, defined as nuclei with
an average fluorescence intensity Z score of �3.5.

Statistical analysis. All data reported in this article were graphed as mean values � standard errors
of the means (SEM). Statistical analyses were conducted with Prism 8.2.2 (GraphPad Software, La Jolla,
CA) using tests indicated in the figure legends.

Reagent table. A reagent table is provided as Table S6.
Data availability. Data are available under BioProject accession number PRJNA588255 in the

Sequence Read Archive.
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