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Abstract

Anti–tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in 

inflammatory bowel disease (IBD), partly due to insufficient understanding of disease-site, 

protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and 

phenotype discrepancies contribute to confounding translation from preclinical animal models of 

disease to clinical cohorts. We developed an approach called translatable components regression 

(TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models 

and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment 

transcriptomic data to identify molecular features discernable in the mouse data that are predictive 

of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin 

pathway signaling in anti-TNF–resistant colonic Crohn’s disease (cCD) and ulcerative colitis (UC) 
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patients. As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on 

biopsies from a cCD patient and analyzed publicly available immune cell proteomics data to 

characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found 

that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell 

types were associated with resistance to anti-TNF therapy. We experimentally showed that the α1 

integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, 

TransComp-R identified an integrin signaling mechanism with potential therapeutic implications 

for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable 

framework for addressing species, molecular, and phenotypic discrepancies between model 

systems and patients to deliver translationally relevant biological insights.

One-sentence summary:

A platform for comparing trans-omics data sets between IBD mouse models and human patients 

reveals therapeutically relevant targets.

Editor’s summary:

Found in translation

An ongoing challenge for the development of new therapeutics is the difficulty in translating 

findings from preclinical animal models to human subjects, more so when different types of data 

(proteomics versus transcriptomics) are compared. Brubaker et al. developed a method to project 

transcriptomic data from patients with inflammatory bowel disease (IBD) into a principal 

components analysis of mouse proteomics data to investigate resistance to the anti-TNF antibody 

infliximab. This analysis, which suggested that integrin signaling contributed to resistance, was 

validated in experiments showing that inhibiting α1 integrin subunit signaling enhanced the ability 

of infliximab to suppress proinflammatory cytokine release from immune cells. These data suggest 

that this approach for comparing model system and patient data might reveal therapeutically 

relevant targets for other diseases.

Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases 

(IBDs) with an increasing global prevalence (1). Anti–tumor necrosis factor (anti-TNF) 

therapeutics, including infliximab and adalimumab (ADA), have emerged as remission-

inducing therapies that are effective in 30 to 50% of patients, with up to 30% of these 

patients eventually developing a secondary nonresponse (2, 3). This high rate of nonresponse 

to anti-TNF therapy has motivated several studies examining the transcriptomic 

determinants of resistance (2, 4–9). These transcriptomic characterizations of anti-TNF 

resistance have yet to translate into effective strategies for overcoming resistance, potentially 

due to the lack of functional proteomic characterization of infliximab-resistant IBD. 

Whereas some mouse proteomics studies have measured thousands of proteins by mass 

spectrometry and provided a detailed view of signaling in inflamed and uninflamed 

conditions (10, 11), these did not include therapeutic stimuli, making it challenging to 

generalize these murine signaling characterizations to clinical therapeutic resistance.
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Interspecies translational systems biology uses computational systems models to better 

translate biological insights from in vitro and nonhuman in vivo experimental models to the 

human disease context. Several studies have applied statistical and machine learning models 

to infer human disease biology from model systems (12–17), but a limitation of these 

methods was the need for comparable molecular data types and similar phenotypes between 

model systems and humans. Therefore, these methods are not appropriate for translating the 

IBD mouse model proteomic characterizations to understand infliximab resistance in 

patients. If the challenges of interspecies, trans-omic, inter-phenotypic translation could be 

overcome, then the available mouse proteomics data could provide valuable insights into the 

signaling networks associated with infliximab nonresponse in IBD.

Here, we developed a method to translate proteomics from IBD mouse models to patients, 

which we call translatable components regression (TransComp-R). TransComp-R projected 

human IBD transcriptomic data into a mouse proteomics principal component analysis 

(PCA) model and performed principal component (PC) regression against the human 

infliximab response phenotypes to identify the most translatable mouse PCs. Analysis of the 

proteins that defined separation along these latent variables identified activated integrin 

signaling, in both UC and CD, that separated infliximab responders and non-responders 

before treatment. Because IBD is a complex disorder that affects both host tissue and 

immune cell signaling, we obtained colonic biopsies from a CD patient to perform single-

cell RNA-sequencing (scRNA-seq) and analyzed publicly available, proteomics data from 

sorted immune cells to identify the cell types and intercellular signaling pathways associated 

with the identified infliximab resistance signatures. The signaling network identified by 

TransComp-R and scRNA-seq described interactions between ITGA1+ T cells and colonic 

cell types. Further characterization of the intercellular signaling network between immune 

and colonic cell types implicated a collagen-binding integrin network associated with 

infliximab resistance in disease-relevant cell types. We then experimentally confirmed that 

inhibition of the α1 integrin subunit enhanced the cytokine-suppressive effects of infliximab 

in immune cells as assessed by Luminex analysis. The results of TransComp-R and our 

confirmatory analyses and experiments suggest that inhibition of the α1 integrin subunit may 

enhance the responsiveness of IBD patients to anti-TNF therapy.

Results

The molecular characteristics of infliximab resistance are tissue-specific

We analyzed publicly available gene expression data of colon and ileum biopsies from CD 

and UC patients, before the start of treatment with infliximab, to identify resistance 

signatures in each disease and tissue [responder (R) versus nonresponder (NR)] (4, 18). 

Differential expression analysis [Wilcoxon Mann-Whitney (WMW), false discovery rate 

(FDR) q < 0.25] identified several infliximab response–associated, differentially expressed 

genes (DEGs) in colonic Crohn’s disease (cCD, 2214 genes) and UC (996 genes) but found 

no substantial DEGs in ileal Crohn’s disease (iCD) patients (Fig. 1, A to C).

We assessed pathway-level dysregulation between infliximab responders and nonresponders 

by performing PANTHER pathway enrichment analysis on genes significantly loaded on 

human RNA PCs predictive of infliximab response (19–21). This analysis also provided a 
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computational control for TransComp-R. Predictive human PCs were identified by PC 

regression using PCs explaining 95% of the variance in the gene expression data. We defined 

significantly loaded genes as those in the top 10% absolute value loadings on a PC. No 

models were significantly predictive, however, patients separated by infliximab response 

along the most predictive PCs, and significant genes on these PCs were enriched for 

candidate pathways (Fig. 1, D to H, table S1). The implicated PCs were often lower rank 

PCs that insufficiently explained overall transcriptional variation but were more predictive 

than the typically studied PC1 and PC2. UC and cCD shared 22 resistance pathways, 

including several inflammatory signaling pathways, T cell activation, integrin signaling, 

vascular endothelial growth factor (VEGF), and wingless-type MMTV integration site 

family (WNT) signaling. B cell activation was associated with infliximab resistance in UC, 

cCD, and iCD.

Translatable components regression analysis of mouse data predicts signaling in patients

Although transcriptomics can identify pathways associated with infliximab resistance, gene 

signatures alone are an incomplete characterization of signaling (5, 6, 22). Previous 

proteomic studies in IBD have principally been serum-based, and not direct measurements 

of signaling at the site of disease (23–25). We previously obtained proteomic measurements 

from two IBD mouse models, the adoptive T cell transfer (TCT) and TNFΔARE (TNF-ARE) 

mice, in inflamed and uninflamed conditions (10, 11). No therapeutic stimuli were studied in 

these mice, potentially limiting the relevance of these datasets for human infliximab 

resistance. We developed a data-driven, systems-modeling framework called TransComp-R 

to translate mouse proteomics to understand infliximab resistance in IBD patients (Fig. 2). 

TransComp-R trains a PCA model using mouse proteins whose coding genes are homologs 

with infliximab response–associated human genes and projects the RNA samples from IBD 

patients into the mouse proteomics PC space. Classically, new samples are projected into a 

PCA model by normalizing the new data with the scaling factors from the training data and 

then multiplying by the PCA eigenvectors. This is not appropriate for interspecies, trans-

omic projections because scaling factors cannot be assumed to be comparable between 

different species, sequencing platforms, or molecular data types. TransComp-R modifies this 

procedure by projecting in terms of relative human differences along mouse PCs, rather than 

absolute differences. This is accomplished by multiplying the normalized human matrix by 

the mouse PC eigenvectors. Once projected, a PC regression model is trained to relate 

human scores on mouse PCs to the human infliximab response, identifying predictive 

proteomic PCs and dysregulated proteins. The projection of human samples into the mouse 

PC space is a form of computational reverse-translation, and we can regard the mouse 

proteomic PCs that predicted the human clinical associations as the most humanized 

translatable components of the mouse (Fig. 2).

TransComp-R identifies activated integrin signaling in infliximab-resistant IBD

We applied TransComp-R to identify proteomic signatures of infliximab response by 

projecting pre-infliximab treatment transcriptomics from cCD, UC, and iCD patients into 

mouse proteomic PCA models. Because different mouse models may describe different 

aspects of human disease, we used both the TCT and TNF-ARE mice to train separate 

TransComp-R models (10, 11). Infliximab response–associated genes were selected using an 
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FDR threshold of q < 0.25 for UC and cCD. Because no genes met this threshold for iCD, 

we used the full dataset to train TransComp-R models. As a control, we trained PC 

regression models on the human transcriptomics data using the same genes selected for the 

TransComp-R models. Proteins significantly loaded on predictive PCs (top 10% absolute 

value loadings) were interpreted using PANTHER pathway enrichment analysis (19–21).

The cCD-TCT TransComp-R model was built using 335 proteins with homologous human 

DEGs. Although the human data alone did not produce a predictive model a TransComp-R 

model significantly predicted the infliximab response. The most predictive TCT PCs were 

PC5 and PC6 (5.85% total variance explained) (Fig. 3A, table S2). TCT mouse PC5 proteins 

were enriched for adenine and hypoxanthine salvage, coenzyme A biosynthesis, and vitamin 

D metabolism pathways, whereas TCT mouse PC6 proteins were enriched for adenine and 

hypoxanthine salvage and Alzheimer disease–presenilin pathways (table S3). The 

identification by TransComp-R of increased vitamin D metabolism in responders, a known 

biomarker of infliximab response, provides a positive control that the method can detect 

known response mechanisms (26, 27).

For the cCD-TNF-ARE TransComp-R model, 810 DEGs had homologous proteins in the 

TNF-ARE mouse data and these failed to train a predictive model with the cCD RNA data. 

The cCD-TNF-ARE TransComp-R model was predictive of the infliximab response, with 

the most predictive TNF-ARE PCs being PC1 and PC6 (72.5% total variance explained) 

(Fig. 3B, table S2). The proteins significantly loaded on TNF-ARE PC1 were enriched for 

12 pathways, including B cell activation, T cell activation, interleukin signaling, 

inflammation medicated by chemokine and cytokine signaling, and integrin signaling (table 

S3). Integrin signaling was the most significantly enriched pathway on PC6, but the 

enrichment was driven by a different set of proteins than those on PC1. We plotted the 

variable loadings driving integrin pathway enrichment on PC1 and PC6 and found that the 

significant integrin-encoding genes driving enrichment on PC1 were associated with 

immune cell function (ITGA4, ITGAL, ITGAM) whereas those on PC6 encode collagen-

binding integrins (ITGA1 and ITGB1) (Fig. 3C). On both PCs, a greater abundance of these 

integrins was associated with infliximab nonresponders, suggesting that multiple dimensions 

of activated integrin signaling are associated with resistance to infliximab.

There were 368 UC infliximab response–associated DEGs with homologous proteins in the 

TNF-ARE mouse data. These genes resulted in a predictive model using UC RNA PCs to 

predict the infliximab response, with the most predictive UC RNA PCs being PC1 and PC2 

(62.4% total variance explained) (Fig. 3D, table S2). The significant proteins on UC PC1 

were enriched for 20 pathways, among them integrin signaling and T cell activation (table 

S3). The gene encoding the immune cell trafficking–associated α4 integrin subunit (ITGA4) 

was among the genes driving enrichment of the integrin pathway, consistent with the finding 

from the cCD-TNF-ARE TransComp-R model. The UC-TNF-ARE TransComp-R model 

was slightly more predictive of infliximab response than was the human UC RNA model, 

with the most predictive TNF-ARE PCs being PC1 and PC5 (70.5% total variance 

explained) (Fig. 3D, table S2). The significant proteins on these PCs were enriched for six 

pathways, all of which were identified by the UC PC regression model except for the 

cadherin signaling pathway (table S3). Both the UC-TNF-ARE TransComp-R and UC RNA 
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models identified the ITGA4 gene, indicating that mouse α4 integrin subunit activity may be 

translationally predictive of patient infliximab resistance.

There were 144 DEGs with homologous proteins in the TCT mouse data. These genes 

resulted in a predictive model using human UC RNA PCs to predict infliximab response, 

with the most predictive PCs being PC1 and PC3 (59.4% total variance explained) (Fig. 3E, 

table S2). The significant genes on both UC RNA PCs were enriched for eight pathways, 

with both PCs enriched for integrin signaling involving ILK, ACTN1, CAV1, and FYN 
(table S3). The UC-TCT TransComp-R model was slightly less predictive of infliximab 

response, with the most predictive TCT PCs being PC2 and PC3 (27.0% total variance 

explained) (Fig. 3E, table S2). Of the nine pathways enriched on the TCT PCs, four were 

also enriched on the predictive UC RNA PCs (table S3). These pathways included the 

hypoxia response to HIF activation, p53 pathway by glucose deprivation, p53 pathway 

feedback loops 2, and the phosphoinositide 3-kinase (PI3K) pathway, indicating that these 

pathways have both transcriptomic and proteomic relevance to infliximab resistance.

For iCD, neither the human RNA PCs nor the TransComp-R models were significantly 

predictive of infliximab response regardless of which mouse models were used, suggesting 

that there must be a signal in the human data being projected for TransComp-R to provide a 

predictive model. Differences in the coverage and depth of protein homologs for human 

genes did not appear to be a substantial factor in TransComp-R performance, with the lower 

coverage TCT data training predictive TransComp-R models in the UC and cCD cases. 

Although mouse PC1 and PC2 explained a greater proportion of proteomic variance, 

TransComp-R revealed that the lower-rank PCs were often more predictive of the human 

therapeutic response (fig. S1, table S2). Whereas the initial mouse PCA models separated 

mice along PCs describing inflammation and inter-mouse variability, TransComp-R detected 

the proteomic signal predictive of therapeutic response in humans, a signal not necessarily 

related to differences between mice. Comparison of PC regression and TransComp-R model 

P values indicates that in all cases except the UC-TCT TransComp-R model, TransComp-R 

better separated patients by infliximab response with mouse proteomic PCs than models 

built with human transcriptomic PCs. This is a strength of the TransComp-R framework: the 

ability to identify cross-species proteomic signatures that better predict the infliximab 

response than training comparable models on human transcriptomic data using the same 

features.

Interrogating cell type–specific integrin signaling signatures of infliximab resistance in 
cCD

The integrin signaling pathway was significantly activated in infliximab-resistant UC and 

cCD patients, with different subsets of integrins and integrin-associated proteins implicated 

on predictive PCs (Fig. 3, tables S2 and S3). In both disease subtypes, immune cell 

trafficking integrins were identified as being increased in resistant patients in both human 

RNA PC regression and mouse protein TransComp-R models. Immune cell trafficking 

integrin signaling has previously been associated with IBD pathobiology and resistance to 

anti-TNF therapeutics (9, 28–30). TransComp-R also identified a collagen-binding integrin 

signature increased in infliximab-resistant cCD, an uncharacterized mechanism of resistance 
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to infliximab that we investigated further. TransComp-R was performed on samples 

containing a mixture of colonic and immune cells, making it challenging to associate 

resistance signaling with particular cell types. To develop therapeutic strategies to overcome 

therapeutic resistance, it is necessary to verify the activity of the collagen-binding integrin 

signaling network in cCD patients and to characterize the cell types responsible. To address 

these questions, we performed single-cell RNA sequencing (scRNA-seq) on two biopsies 

from a cCD patient and analyzed a publicly available proteomics dataset of 28 sorted 

immune cell types (ImmProt) (31).

We mined ImmProt for cell types expressing the cCD integrin signaling network proteins 

that contribute to infliximab resistance (Fig. 3) (31). Clustering of protein copy numbers 

revealed cell-specific expression of certain key proteins, including specialization of 

MAP3K1 to neutrophils, ITGA1 (the α1 integrin subunit) to activated natural killer (NK) 

cells, and ITGB1 (the β1 integrin subunit) in macrophages and NK cells (Fig. 4A). Whereas 

broad involvement of macrophages is a hallmark of CD, the specificity of MAP3K1 to 

neutrophils suggests that this cell type may be a key player in infliximab resistance. 

Furthermore, the potential for immune cell populations to secrete ligands of integrin α1β1 

suggests a range of possible interactions between immune and colonic cell types that may 

facilitate infliximab resistance in cCD.

Having shown that the infliximab resistance–associated integrin signaling network proteins 

were expressed in immune cells, we profiled this network in the physiological cCD context 

of mixed immune and colonic cell types. We analyzed the post-infliximab-treated cCD 

samples from bulk gene expression data to see whether dysregulation in collagen-binding 

integrin signaling persisted after treatment. Both before and after treatment, the infliximab 

resistance–associated integrin pathway genes were more highly expressed in infliximab-

resistant patients relative to infliximab-sensitive patients (fig. S2). Activity of the genes in 

this signature after treatment suggests that the collagen-binding integrin signature is a 

durable feature of infliximab-resistant cCD. We could therefore compare the integrin 

signaling network from TransComp-R to scRNA-seq data from left and right colonic 

biopsies obtained from a CD patient after anti-TNF treatment to characterize the cell types 

and intercellular integrin signaling network.

Cells from left and right colonic biopsies of a cCD patient after anti-TNF treatment were 

merged to generate a compendium of 5195 cells for analysis. We applied a Gaussian Mixture 

Model (GMM)–based approach to classify cell types using a set of marker genes curated 

from the literature (table S4) (32–34). The GMM identified four distinct cell types, including 

an epithelial cell population, goblet cells, stromal cells, and T cells in each biopsy, which we 

visualized by t-distributed stochastic neighbor embedding (TSNE) (table S5, Fig. 4B). 

Although it is possible that other sub-populations of cell types were present within the 

epithelial category, the accuracy of GMM classification degraded on our data when we tried 

to predict additional cell types.

We performed differential expression analysis (Kruskal-Wallis test) on the infliximab-

resistance signature genes to characterize cell type–specific signaling of the collagen-

binding integrin signaling network (table S6, Fig. 4C). In the merged, single-cell dataset, 
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four genes were differentially expressed between cell types, including ITGA1, ITGAV, 

ITGB1, and RND3. ITGB1 was more highly expressed in intestinal cell types than in T cells 

and was expressed to a similar extent as that of ITGA1 in T cells. ITGA1 was significantly 

overexpressed in T cells relative to its expression in intestinal cell types, suggesting that the 

collagen-binding integrin α1β1 primarily functions through immune cell interactions with 

intestinal cell types.

Having identified a population of T cells expressing the genes (ITGA1 and ITGB1) 

encoding the integrin α1β1 as potential mediators of infliximab resistance, we characterized 

intercellular communication with a scoring algorithm that uses gene expression data to infer 

potential ligand-receptor (LR) interactions between cells (32). We scored 2567 LR 

interactions and identified 41 highly ranked interactions (top 10% of all interaction scores) 

implicating the integrin α1β1 (inferred by expression of ITGA1 or ITGB1). We visualized 

these interactions between cell types in a network using Cytoscape, with nodes for each cell 

type and edges for LR interactions, colored by LR directionality (Fig. 4D) (35).

Interactions through the integrin α1β1 were highly prevalent between ITGA1-positive T 

cells and colonic cell types. The LR interaction inference model showed that ITGA1+ T 

cells might interact with goblet, epithelial, and stromal cells through intestinal cell type 

secretion of the laminin, LAMA1, which would interact with the integrin α1β1 (Fig. 4E). 

Interactions between T cells and stromal cells accounted for the highest number of 

significant interactions and the highest inferred interaction scores (Fig. 4D). Although some 

colonic cell types expressed ITGB1 and would be expected to interact with T cells through T 

cell–secreted ligands, the highest scoring cell-cell interactions between colonic cells and T 

cells occurred when the ligands were associated with colonic cells and the integrin α1β1 

components were associated with T cells (Fig. 4E). However, these interactions were not 

inferred from proteomics, and do not account for the localization of potentially interacting 

cells, necessitating further experimental characterization of integrin α1 subunit-mediated 

signaling.

Activated collagen-binding integrin signaling contributes to infliximab resistance

Having shown by immune cell proteomics and scRNA-seq that the collagen-binding integrin 

α1β1 was active in cCD patients, we sought to support our hypothesis that activated integrin 

α1 subunit signaling contributes to resistance to anti-TNF therapy. We treated peripheral 

blood mononuclear cells from four independent donors with anti-ITGA1, anti-TNFα, and 

the combination of both antibodies, and then measured cytokine responses at 2, 6, and 10 

hours after treatment to assess the role of ITGA1+ immune cells in mediating the anti-

inflammatory effects of anti-TNF therapy (Fig. 5, Table S7). Inhibiting ITGA1 alone did not 

induce significant changes in a panel of 27 cytokines at any time points (Kruskal-Wallis, P < 

0.05). Treatment with anti-TNFα antibody alone induced significant inhibition of the 

production of six cytokines at different times (TNFα, IL-10, IL1-RA, G-CSF, MCP1, and 

IL-15). In contrast, the combined inhibition of ITGA1 and TNFα induced significant 

inhibition of between 11 and 26 cytokines over time (Fig. 5). This finding suggests that 

activated integrin α1 subunit signaling in immune cells contributes to resistance to anti-TNF 
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therapy and that inhibiting integrin α1 enhances the anti-inflammatory effects of anti-TNF 

therapy.

Discussion

The challenge of interspecies translation becomes complicated by discrepancies in 

phenotypes and molecular data types between clinical cohorts and pre-clinical experimental 

systems. Here, we demonstrated the utility of the TransComp-R framework for translating 

proteomic dysregulation in IBD mouse models to a phenotypically and molecularly 

mismatched clinical cohort of patients to characterize resistance to anti-TNF therapy. We 

identified a signature for infliximab resistance that linked observations of immune 

trafficking integrins, laminins, and collagen-binding integrins in IBD to the clinical 

challenge of overcoming resistance to anti-TNF therapies. Our verification of a collagen-

binding integrin anti-TNF therapy resistance network in immune cell proteomics, patient 

biopsies, and in vitro experiments suggests a larger role for ITGA1+ immune cell signaling 

in CD pathobiology and biologic therapy resistance.

Together, our results indicate an expanded role for collagen-binding integrin signaling in the 

clinical phenotype of infliximab-resistant cCD. In healthy colon, ITGA1 expression is 

localized to colonic crypts in (36), and inhibition of integrin α1β1 components is protective 

against colitis in the DSS and TNBS mouse models of IBD (37, 38). Previous studies 

examining tissue-independent markers of memory T cells have also implicated the α1 

integrin subunit as a consistent surface marker of tissue-resident memory T cells (39). Our 

results suggest that collagen-binding integrin signaling associated with infliximab resistance 

is likely facilitated by a memory T cell population through interactions with colonic cell 

types. The combined evidence of our scRNA-seq data, ImmProt analysis, and in vitro 

experiments suggests that the immune cells expressing ITGA1 mediate an intercellular 

signaling network that facilitates CD disease progression and infliximab resistance.

Our results also indicate that MAP3K1 signaling may be playing a role in infliximab 

resistance as an intracellular mediator of the extracellular signaling cues from collagen-

binding integrin signaling. Activation of α1-containing integrin on the surface of cells is 

capable of activating MAP3K1 (40–43). Further studies showed that MAP3K1 can activate 

RAF1, which is itself an activator of the extracellular signal–regulated kinase (ERK) and c-

Jun N-terminal kinase (JNK) signaling cascades (44). A small clinical trial of a RAF1 

inhibitor showed that targeting the JNK signaling cascade in macrophages could induce 

remission in cCD and that this could be achieved in infliximab nonresponsive patients (45–

47). MAP3K1 also carries a cCD specific SNP, rs832582, which may predispose carriers to 

a more intense inflammatory response (48). A potential biomarker of infliximab resistance 

in cCD could therefore be MAP3K1 signaling in neutrophils, stromal cells, or both, as well 

as potentially the IBD risk SNP rs832582 for MAP3K1. The convergence of multiple 

signaling disruptions by collagen-binding integrins and MAP3K1 suggests that patients 

expressing these disease characteristics should be considered for a therapeutic course other 

than anti-TNF therapy.
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A powerful computational feature of TransComp-R is that it identifies mouse proteomic PCs 

predictive of human phenotypes despite these PCs explaining little variation in the mouse 

proteomics data. TransComp-R accomplishes this by first assessing whether the projection 

of human samples into the mouse PC space can produce an overall significantly predictive 

regression model. If this condition is met, then the top-two most predictive PCs can be 

interpreted to identify the most translatable biology. In general, a predictive TransComp-R 

model is not guaranteed and, if produced, the top two PCs may not be individually 

significantly predictive. Despite this, using top candidate PCs from a predictive TransComp-

R model can reveal translational insights that can be validated experimentally, as in the 

present study.

In standard PCA, latent variables are constructed to explain the variance in the training 

dataset (mouse proteomics), rather than the relationship of the PCs to a phenotype or to 

reflect variance of a secondary dataset (human transcriptomics). Because the mouse PCA 

model was built with data from mice with different phenotypes than the human CD dataset 

(mouse inflamed vs. uninflamed; human infliximab responder vs. nonresponder), it is not 

surprising that mouse PC1 and PC2 did not separate projected human phenotypes as well as 

did lower-ranked mouse PCs. This suggests that the most translatable biology may not be 

that which most immediately explicates the experimental groups, but instead indicates that a 

computational modeling approach such as TransComp-R can more insightfully recover 

translationally relevant biology. Further extensions of TransComp-R may be able to account 

for different splicing variants, isoforms, and protein posttranslational modifications. In 

particular, TransComp-R currently requires only using one-to-one mouse-human 

homologous proteins-genes. To better understand species-specific associations, it may be 

necessary to incorporate information about homologs that map to multiple genes and 

proteins across species. Overall, we believe that TransComp-R is widely applicable to 

challenges of translation in other disease contexts, model systems, and types of molecular 

data.

Materials and Methods

Analysis of human CD gene expression data

Colonic and ileal CD transcriptomic data were obtained from the gene expression omnibus 

(GEO), accession number GSE16879, using Bioconductor tools and normalized by the 

robust multichip average method (4, 18, 49, 50). Differential expression analysis was 

performed using the Wilcoxon Mann-Whitney test with Benjamini Hochberg False 

Discovery Rate (FDR) correction and significance defined by q < 0.25. PC regression was 

used on the entire gene expression dataset to identify human RNA PCs predictive of 

therapeutic response, with PANTHER pathway enrichment performed on highly loaded 

proteins on predictive PCs (19–21).

Analysis of mouse proteomics datasets

The TCT and TNF-ARE mouse proteomics datasets were obtained from two studies 

examining proteomic changes between inflamed and uninflamed mice (10, 11). The mouse 

protein identifiers were mapped to their coding genes and converted to human gene symbols 
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using the Mouse Genome Informatics databases (51, 52). Only one-to-one mouse-human 

homologs were retained for the analysis.

Translatable components regression

When constructing a PCA model, it is often desirable to project observations from another 

dataset into that model to examine how the variability explained by the model relates to 

those new observations. This requires normalizing the new observation, usually by mean-

centering and scaling by the standard deviation (SD) of the data used to train the PCA 

model. However, if the new observation is measured on a different sequencing platform, 

comes from a different species, or is of a different molecular data type, then this centering 

and scaling by training data factors is not well defined and may distort the projected 

observation. Therefore, cross-species, cross-omic, and cross-platform projections of 

biological datasets and observations should not be undertaken by the standard PCA 

projection method.

The primary component of a PCA model is identification of the eigenvectors of the 

covariance matrix of the training data, that is, the PCs that explain the greatest possible 

amount of variability in the training dataset. Although these vectors define a basis that has a 

particular interpretation for the training dataset, we can ask how the new observations 

project relative to this coordinate system. This is done by first internally normalizing the 

new observations by their own mean and SD, to define the relative spread of each variable, 

and then multiplying these normalized observations by the eigenvectors of the training 

dataset. Once projected, we performed PC regression of the projected data against any 

outcome or phenotypic variable of the new observations to identify the PCs of the training 

data that best explained the phenotype from the new observations. Here, we performed 

TransComp-R for a given mouse model and human IBD cohort pairing and assessed whether 

the model was significantly predictive of patient infliximab response based upon the 

regression P value. If the overall model was significant, then we interpreted the two most 

significant mouse PCs to identify proteins that were significantly loaded on the top two PCs. 

If the overall model P value was not significant, then we considered the model not to be 

predictive and we did not interpret the PCs.

Immune cell proteomics analysis

Quantitative proteomics data from FACS-sorted cells were obtained from the study of 

Rieckmann et al. (31) and analyzed for protein copy numbers of significantly loaded integrin 

pathway proteins identified by TransComp-R (Fig. 5). Immune cell populations not 

expressing any protein from the network were excluded, together with proteins not measured 

in the dataset. Data were z-score–normalized by protein and clustered to identify groups of 

coregulated proteins expressed in similar immune cell types. Analysis was performed in 

MATLAB_R2018b.

Collection of patient samples

The study protocol was approved by the Institutional Review Board at Vanderbilt University 

Medical Center. Written informed consent was obtained for analysis of demographics, 

medication history, serum, and tissue biopsies obtained at the time of endoscopic procedures 
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as part of routine clinical care to evaluate for disease activity and response to therapy in a 

patient with ileo-colonic CD. The patient underwent an overnight fast and received 

polyethylene glycol electrolyte solution for bowel preparation before colonoscopy. At the 

time of colonoscopy, biopsy specimens were obtained from the right and left colon (two 

bites in each location with large capacity biopsy forceps). The specimens were placed in a 

1.5-ml Eppendorf tube with RPMI medium, placed on ice, and transported to the lab for 

further processing for scRNA-seq analysis.

Tissue processing

Biopsies were delivered from endoscopy in cold RPMI and were transferred to DPBS 

(without Ca or Mg) with 4 mM EDTA and 0.5mM DTT to chelate for 1 hour before being 

lightly triturated in DPBS. Tissues were then resuspended in DPBS containing cold-active 

protease (5 mg/ml, Sigma) with DNase (2.5 mg/ml, Sigma) and incubated for 20 min at 4 to 

6˚C with a rocking motion. Trituration with a P1000 pipette needle was performed on the 

dissociated suspension to yield single cells, which were then filtered through a 35-μm mesh 

and washed into DPBS. Essentially, the entire specimen was dissociated and used for 

subsequent steps. Live cell density was counted based on the number of Trypan Blue–

positive cells. Cells were adjusted to a density of 150,000 cells/ml and Optiprep was added 

to a final concentration of 16% immediately before encapsulation.

inDrop single-cell RNA-seq

Single-cell encapsulation of gut epithelial tissue was performed using the inDrop platform 

(1CellBio) with an in vitro transcription library preparation protocol, as previously described 

(53, 54). The inDrop platform uses CEL-Seq in preparation for sequencing and is 

summarized as follows: (i) reverse transcription (RT); (ii) ExoI nuclease digestion; (iii) SPRI 

purification (SPRIP); (iv) second-strand synthesis; (v) SPRIP; (vi) T7 in vitro transcription 

linear amplification; (vii) SPRIP; (viii) RNA fragmentation; (ix) SPRIP; (x) primer ligation, 

(xi) RT; and (xii) library enrichment PCR. The number of cells encapsulated was calculated 

by approximating the density of the single-cell suspension multiplied by the bead loading 

efficiency during the duration of encapsulation. Approximately 3000 cells for each sample 

entered the microfluidic chip. After library preparation, which was performed as described 

earlier, the samples were sequenced using Nextseq 500 (Illumina) with a 150-bp paired-end 

sequencing kit in a customized sequencing run. After sequencing, reads were filtered, sorted 

by their designated barcode, and aligned to the reference transcriptome using the InDrop 

pipeline (55, 56).

Single-cell filtering

scRNA-seq count data were filtered using several steps. First, the cumulative read inflection 

point was plotted. A cutoff of approximately 25 to 30% beyond the inflection point was used 

to exclude low-quality barcodes but retain cells with small library sizes. The filtered data 

were then normalized for library size, transformed, and visualized using t-SNE with 100 

PCs. Density peak clustering was performed, and user-defined thresholds were set to obtain 

10 to 20 clusters. Library size rank and combined mitochondrial gene expression were 

overlaid onto the t-SNE space, and low-quality cells were removed using these criteria. 
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Canonical marker genes of cell types were also overlaid onto the t-SNE space to ensure that 

cell types of interest were not removed during filtering.

Cell type classification and ligand-receptor interaction scoring

Cell type markers were selected from previous single-cell analyses of colonic and intestinal 

tissue contexts and used to train a Gaussian mixture model (GMM) on the log-normalized 

expression data as previously described (32–34). Differential expression analysis was 

performed using the Kruskal-Wallis test (P < 0.05) on infliximab resistance marker genes. 

We then characterized the intercellular signaling network of ligand-receptor (LR) 

interactions between identified cell types by assigning a score based on the product of 

average receptor abundance in a cell type with the average ligand abundance in the 

interacting cell type as previously described (32). LR interaction scores in the top 10% of all 

interaction scores across cell types that contained at least one infliximab resistance signature 

gene were retained for downstream analysis and interpretation.

PBMC stimulation experiments

Peripheral blood mononuclear cells (PBMCs) were isolated from fresh whole blood (male) 

from human donors (Research Blood Components, Watertown MA.) and cryobanked in 

liquid nitrogen until use, as described previously (57). Frozen PBMCs were thawed, seeded 

at 2 × 106/ml in duplicate wells, and stimulated with PMA/ionomycin Cell Stimulation 

Cocktail (Thermofisher cat# 00-4970-93), in the presence or absence of anti-TNF (Bio-rad 

cat#MCA6090) with or without anti-ITGA1 (EMD Millipore cat# MAB1973, clone-FB12). 

Cells were cultured in RPMI, 10% heat-inactivated FBS, 2 mM Glutamax (Thermofisher 

cat#35050061). After incubation for 2, 6, or 10 hours, the cells were centrifuged and the 

supernatant retained for Luminex analysis. Conditioned medium was diluted three-fold in 

sample buffer + 2%(w/v) BSA (Bioplex 27-plex cat# MK500KCAF0Y) and assayed as 

previously described (57). Cytokine amounts were calculated with Bioplex Manager 

software v6.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Tissue-specific signatures of infliximab resistance.
(A to C) Volcano plots of differential gene expression analysis (Wilcoxon Mann-Whitney, 

Benjamini Hochberg False Discovery Rate) from intestinal biopsies from patients with (A) 

Ulcerative colitis (UC, N = 24 patients), (B) colonic Crohn’s disease (cCD, N = 19 patients), 

and (C) ileal Crohn’s disease (iCD, N = 18 patients) comparing infliximab responders (R) 

and nonresponders (NR). Data were jittered for visualization. (D) PC regression coefficients 

predicting infliximab response from PCs explaining 95% variance in the UC, cCD, and iCD 

transcriptomic data. (E) Scores plot for the most predictive RNA PCs from the UC biopsies. 

(F) Scores plot for the most predictive RNA PCs in the cCD biopsies. (G) Scores plot for the 

most predictive RNA PCs in the iCD biopsies. (H) Comparison of pathways enriched for the 

top predictive PCs.

Brubaker et al. Page 17

Sci Signal. Author manuscript; available in PMC 2021 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. TransComp-R methodology.
The various steps involved in TransComp-R are described.
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Fig. 3. TransComp-R of cCD and UC infliximab response against the IBD mouse models.
(A) Scores plot of the cCD-TCT mouse TransComp-R model of 335 infliximab resistance–

associated, differentially expressed orthologous proteins (N = 19 patients). (B) Scores plot of 

the cCD-TNF-ARE mouse TransComp-R model of 810 infliximab resistance–associated, 

differentially expressed orthologous proteins (N = 19 patients). (C) Significant integrin 

pathway protein loadings on TNF-ARE mouse PC1 and PC6 with the non-significant region 

shaded (N = 8 mice). (D) Scores plot of the human UC principal component regression 

model of 368 infliximab resistance–associated, differentially expressed TNF-ARE mouse 

orthologous genes (N = 24 patients). (E) Scores plot of the UC-TNF-ARE mouse 

TransComp-R model of 368 infliximab resistance–associated differentially expressed 

orthologous proteins (N = 24 patients). (F) Scores plot of the human UC principal 

component regression model of 144 infliximab resistance–associated, differentially 

expressed TCT mouse orthologous genes (N = 24 patients). (G) Scores plot of the UC-TCT 

mouse TransComp-R model of 144 infliximab resistance–associated, differentially 

expressed orthologous proteins (N = 24 patients).
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Fig. 4. Cell type–specific signaling characterization of the collagen-binding integrin signatures 
associated with anti-TNF resistance.
(A) Copy numbers of the indicated proteins from FACS-sorted immune cell populations (N 

= 3 or 4 donors). (B) TSNE of colonic CD biopsies (N = 5195 cells). (C) Differential 

expression of the genes ITGA1 and ITGB1 (which encode collagen-binding integrins) in the 

indicated cell populations [Kruskal-Wallis test; Epi, epithelial; Gob, goblet; Str, stromal (N = 

5195 cells)]. (D) Network of significant ligand-receptor (LR) scores between intestinal and 

immune cell types containing at least one infliximab resistance signature gene (N = 5195 

cells). Cell types are connected by edges indicating that a top-ranked (top 10% scores) LR 

interaction was present, whereas edge thickness indicates interaction strength. (E) 

Normalized LR scores within each pair of cell-cell interactions (N = 5195 cells).
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Fig. 5. Luminex cytokine profiling of PBMCs treated with anti-ITGA1, anti-TNFα, or both.
Values indicate a mean of donors (N = 4 biological replicates). P values were determined by 

Kruskal-Wallis and Wilcoxon Mann-Whitney.
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