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Abstract: Ultrasound imaging is a first-line assessment tool for hepatic steatosis. Properties of tissue
microstructures correlate with the statistical distribution of ultrasound backscattered signals, which can
be described by the Nakagami distribution (a widely adopted approximation of backscattered
statistics). The double Nakagami distribution (DND) model, which combines two Nakagami
distributions, was recently proposed for using high-frequency ultrasound to analyze backscattered
statistics corresponding to lipid droplets in the fat-infiltrated liver. This study evaluated the clinical
feasibility of the DND model in ultrasound parametric imaging of hepatic steatosis by conducting
clinical experiments using low-frequency ultrasound dedicated to general abdominal examinations.
A total of 204 patients were recruited, and ultrasound image raw data were acquired using a 3.5 MHz
array transducer for DND parametric imaging using the sliding window technique. The DND
parameters were compared with hepatic steatosis grades identified histologically. A receiver
operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance.
The results indicated that DND parametric imaging constructed using a sliding window with the
side length of five times the pulse length of the transducer provided stable and reliable DND
parameter estimations and visualized changes in the backscattered statistics caused by hepatic
steatosis. The DND parameter increased with the hepatic steatosis grade. The areas under the
ROC curve for identifying hepatic steatosis were 0.76 (≥mild), 0.81 (≥moderate), and 0.82 (≥severe).
When using low-frequency ultrasound, DND imaging allows the clinical detection of hepatic steatosis
and reflects information associated with lipid droplets in the fat-infiltrated liver.
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1. Introduction

Hepatic steatosis, a condition in which excessive fat forms fatty vacuoles and accumulates in
liver cells [1], may progress to nonalcoholic steatohepatitis, fibrosis, cirrhosis, and even hepatocellular
carcinoma [2–4]. Nonalcoholic fatty liver disease (NAFLD) induced by hepatic steatosis has become
the leading cause of chronic liver disease [5], and it is closely related to metabolic syndromes,
including cardiovascular disease, obesity, diabetes, and dyslipidemia [3,6]. Therefore, the diagnosis
and assessment of hepatic steatosis are essential to preventing the further deterioration of liver diseases.

Liver biopsy is the gold standard for diagnosing hepatic steatosis [7,8]; however, it is not
suitable as a routine examination due to limitations, such as sampling error, invasiveness, and other
complications [9]. Thus, noninvasive medical imaging has clinical significance for assisting in the
quantitative diagnosis of hepatic steatosis. Computed tomography (CT) [10], magnetic resonance
spectroscopy (MRS) [11], magnetic resonance imaging, and ultrasound are currently used for the
imaging and analysis of hepatic steatosis [12,13]. Ultrasound B-mode imaging plays a comparatively
first-line role in the clinical evaluation of hepatic steatosis due to its portability, cost-effectiveness,
real-time capability, and nonionizing radiation [12,14,15]. However, ultrasound B-mode imaging based
on the amplitude of the envelopes of beamformed radiofrequency (RF) signals is easily affected by
system settings and user experience [16–18]. To achieve a relatively objective assessment of hepatic
steatosis, the quantitative analysis of raw image data may provide valuable diagnostic clues.

Acoustically, the liver parenchyma may be modeled as microstructures consisting of considerable
scatterers [19,20]. Acoustic scatterers interact with incident ultrasound to contribute ultrasound
backscattered signals and form the corresponding speckle pattern in the ultrasound B-mode image;
considering the randomness of ultrasound backscattering, the envelope statistics (i.e., the echo
amplitude distribution), which depend on tissue microstructures, can be described by using the
statistical distribution models for tissue characterization [21,22]. Homodyned-K distribution is the
general model to encompass various backscattering conditions, including pre-Rayleigh, Rayleigh,
and post-Rayleigh distributions [22]; its approximation is the Nakagami distribution, which has become
the most frequently used model for tissue characterization because it provides a general description of
the backscattered statistics with simplicity and low computational complexity [22]. The Nakagami
parameter, which provides an estimation of the backscattered statistics, has been applied to ultrasound
parametric imaging of hepatic steatosis, demonstrating that Nakagami imaging performs well in the
assessment of the fatty liver [23–25].

Although the Nakagami parameter provides a quantitative description of practical changes in
the echo amplitude distribution caused by hepatic steatosis, its physical meanings are ambiguous
because of confounding information contributed by two scattering sources—normal and fat-infiltrated
hepatocytes. To resolve this problem, the double Nakagami distribution (DND) has recently been
proposed as a new model for describing the backscattered statistics of hepatic steatosis under
high-frequency ultrasound excitation. The DND model combines two Nakagami distributions to
allow the estimation of the Nakagami parameter corresponding to lipid droplets, and the feasibility
of DND-based parametric imaging for detecting the fatty liver was explored through ex vivo animal
experiments [26]. While proposing the DND model as a new approach to detect hepatic steatosis using
high-frequency ultrasound, the diagnostic performance of DND imaging in clinical evaluations of the
hepatic steatosis grade remains unknown.

In this study, we investigated the clinical feasibility of ultrasound DND imaging constructed using
low-frequency ultrasound in the assessment of hepatic steatosis. Abdominal ultrasound examinations
of patients were carried out for validation of the proposed method. The performance of ultrasound
DND imaging in diagnosing hepatic steatosis was reported, and the clinical usefulness of DND imaging
was discussed.
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2. Materials and Methods

2.1. Double Nakagami Distribution

The probability density function (PDF) f (x) of the Nakagami statistical model for the ultrasonic
backscattered envelope signal x is given by

f (x) =
2mmx2m−1

Γ(m)Ωm exp(−
m
Ω

x2)U(x) (1)

where Γ(·) and U(·) are the gamma function and the unit step function, respectively. The scaling
parameter Ω is related to the echo energy. The Nakagami parameter m is associated with the statistical
distribution of the backscattered envelope. The variation of the Nakagami parameter from 0 to
1 corresponds to a change in the envelope statistics from pre-Rayleigh to Rayleigh distributions;
a Nakagami parameter value higher than 1 indicates that the statistics of the backscattered signal
conform to post-Rayleigh distributions.

The details for the initial model and hypothesis can be found in the previous study [26]. In brief,
the Nakagami distribution model assumes that only one type of scatterer exists in the scattered media.
However, the fat-infiltrated liver may be supposed as a mixture of hepatocytes, luminal structures,
and lipid droplets. The percentage of hepatocytes is more than 80% of the entire volume of the liver,
and the number of hepatocytes is much higher than those of the luminal structure. In this condition,
the size and the number density of lipid droplets correlate with the grade of hepatic steatosis, and the
increase in the lipid scatterers further results in the acoustic impedance mismatch to enhance the
backscattering intensity and image brightness. This means that normal and fat-infiltrated hepatocytes
(lipid droplets) are two primary scattering sources with different acoustic properties for fatty liver.
The DND model combines two Nakagami distributions by using a weighted factor α to describe two
scattering sources, as follows [26]:

fmix(x) = (1− α) fL(x|mL, ΩL) + α fF(x|mF, ΩF) (2)

where fL(mL, ΩL) and fF(mF, ΩF) represent the PDFs obtained from normal liver tissue and lipid
droplets, respectively. The parameter mL = 0.8 was used as a fixed priori according to the results
obtained from rat experiments [26] and normal liver measurements [20]. Two methods are available
to estimate the DND parameters (i.e., ΩL, mF, ΩF, and α): (i) optimization of Kullback–Leibler (KL)
divergence and (ii) an expectation-maximization (EM) algorithm [26].

2.2. Clinical Subjects

This study was approved by the Institutional Review Board of the Chang Gung Memorial
Hospital, Taiwan, from August 2017 to July 2020 (Approval No.: 201601928B0C501). All participants
signed informed consent forms, and experimental methods were performed according to the approved
guidelines. A total of 269 patients with confirmed chronic hepatitis B or C infection who were scheduled
for a liver biopsy or partial liver resection were enrolled, and those with a history of liver resection,
medications, abused alcohol, and focal hepatic steatosis were excluded from the data analysis. For the
remaining subjects (n = 204), blood tests were conducted after 8 h of overnight fasting; thereafter,
a clinical ultrasound imaging system (Model 3000, Terason, Burlington, MA, USA) equipped with
a convex array transducer (Model 5C2A, Terason, Burlington, MA, USA) was used for ultrasound
examination of the liver. The pulse length (PL) and the central frequency of the transducer were
2.3 mm and 3.5 MHz, respectively. The liver parenchyma was imaged using the intercostal scanning
approach [27] (segment VIII; focus: 4 cm; depth: 8 cm) by the same experienced radiologist who
was blinded to the medical histories of the study patients; five independent scans were performed
to acquire image data consisting of 128 scan lines of backscattered RF signals at a sampling rate of
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30 MHz. Following examination, liver resection or percutaneous liver biopsy of the same segment was
performed within one week.

2.3. Ultrasound Data Processing

Figure 1 shows the algorithm for the parametric ultrasound imaging based on the single Nakagami
and the DND models. For each set of raw image data, the absolute values of the Hilbert transform of
each backscattered signal were calculated to obtain the envelope image, which was further compressed
with the logarithmic transform of the B-mode imaging at the dynamic range of 40 dB. Concurrently,
the uncompressed envelope image was processed using the sliding window technique [28–30] to
construct ultrasound parametric images based on the conventional Nakagami (estimated using the
statistical moments of backscattered envelopes [23–25], denoted as m image) and DND parameters
estimated using the KL and EM methods (denoted as mF(KL), and mF(EM) images, respectively).
The window overlap ratio was set at 50% to provide a tradeoff between the parametric image resolution
and computational time [29]. The window side length (WSL) corresponding to three times the PL
was used for m imaging [30]. The WSL was set at a varying range, from one to ten times the PL of
the transducer, for clarifying an appropriate window size for DND imaging. A region of interest
(ROI) was manually outlined on the B-mode image, and it was then applied to the corresponding m,
mF(KL), and mF(EM) images to calculate the average of the pixel values (i.e., the m, mF(KL), and mF(EM)

parameters) in the ROI.
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Figure 1. Illustration of the algorithm for ultrasound parametric imaging based on the single Nakagami
and the double Nakagami distribution (DND) models. The sliding window was used to process the
uncompressed envelope image, generating a parametric map to be superimposed on the B-mode image
for the final display of the parametric image.

The reason why the PL of the transducer was used as the unit to describe the WSL is explained
below. Under using a convex array transducer, the sampling interval in the lateral axis for the image
raw data obtained from the system is non-uniform. With increasing the distance from the transducer,
the distance between each scan line increases. However, the axial sampling rate remains unchanged
because it is determined by the analog-to-digital converter in the imaging system. For this reason,
the axial length of the envelope signal is the primary factor to ensure descriptions of the signal
waveform features and stable estimation of the statistical parameter [24]. Therefore, the PL of the
transducer was recommended as the unit of the WSL [28,29].

2.4. Statistical Analysis

Hepatic steatosis grades identified according to histological findings were used for data grouping—
normal (steatosis involving < 5% hepatocytes), mild (5–33%), moderate (33–66%), and severe (>66%) [31].
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The liver fibrosis stage for each patient was also identified by the Metavir score; F0, no fibrosis;
F1, portal fibrosis with no septa; F2, portal fibrosis with few septa; F3, bridging fibrosis with many septa;
and F4, cirrhosis (nodular stage) [32]. The m, mF(EM), and mF(KL) parameters as a function of the grade
are expressed as the median and interquartile range (IQR). The receiver operating characteristic (ROC)
curve analysis with a 95% confidence interval (CI) was used to evaluate the diagnostic performance of
the ultrasound Nakagami and DND imaging in the assessment of hepatic steatosis. The area under
the ROC (AUROC) was used to determine the predictive value of the Nakagami and DND parameter
for diagnosing each grade—normal versus ≥mild, normal to mild versus ≥moderate, and normal to
moderate versus ≥ severe. The sensitivity, specificity, and accuracy were also determined. Furthermore,
the mF(EM) and mF(KL) parameters were compared with the m parameter for performing curve fitting to
confirm whether any differences existed between the conventional Nakagami and DND parameters.
All statistical analyses were performed using SigmaPlot (version 12.0, Systat Software, Inc., San Jose,
CA, USA).

3. Results

Table 1 presents the demographic and blood test data of the recruited patients. Note that the
subjects with hepatic steatosis also had different degrees of liver fibrosis; such a phenomenon is
commonly seen in clinical cases. Figures 2 and 3 applied to the KL and EM methods to reconstruct
the PDFs of DND (i.e., f mix) and the components contributed by normal liver tissue (i.e., f L) and lipid
droplets (i.e., f F) for the examples of different hepatic fat fractions (the backscattered envelope data
were acquired from the ROIs corresponding to the liver parenchyma). The change in f F from the
pre-Rayleigh to Rayleigh distributions was observed when the degree of hepatic steatosis increased.
To determine the appropriate WSL for constructing DND imaging using the KL and EM methods,
the averages and standard deviation (SD) of mF(KL) and mF(EM) with different WSLs for each hepatic
steatosis grade were explored (Figures 4–7). As the WSL was increased from one to ten times the
PL, the average mF(KL) gradually decreased and became relatively stable. Concurrently, the SD of
mF(KL) also decreased, and the fitting curve plateaued when the WSL was more than five times the
PL. These observations were also found for mF(EM), implying that WSL that is five times the PL is
appropriate for ultrasound DND imaging. Figure 8 depicts typical parametric images of m, mF(KL),
and mF(EM) for different hepatic fat fractions. Hepatic steatosis strengthened the brightness in the
Nakagami and the proposed DND images, representing increases in the parameters of m, mF(KL),
and mF(EM). The mF(KL) and mF(EM) images appeared to be brighter than the m image, indicating that
the mF(KL) and mF(EM) parameters obtained from the DND model are higher than those of the single
Nakagami distribution.

Table 1. Demographic data of patients enrolled in the study.

Characteristics Value

Male/Female 129/75

Age, years

Mean ± standard deviation (range) 57.75 ± 11.08 (31–81)

Median 58

BMI, kg/m2

Mean ± standard deviation (range) 25.38± 3.91 (16.82–37.83)

Median 24.91

AST, U/L

Mean ± standard deviation (range) 67.39 ± 68.04 (15–507)

Median 46
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Table 1. Cont.

Characteristics Value

ALT, U/L

Mean ± standard deviation (range) 87.64 ± 99.33 (8–595)

Median 53

Histological grade, no. of patients

Normal 80

Mild 70

Moderate 36

Severe 18

Metavir score, no. of patients

F0 16

F1 40

F2 46

F3 61

F4 41

Note—Unless otherwise noted, data are numbers of patients. BMI: body mass index, AST: aspartate aminotransferase,
ALT: alanine aminotransferase, Normal AST levels for female and male subjects are less than 35 U/L and 50 U/L,
respectively. Normal ALT levels for female and male subjects are less than 19 U/L and 30 U/L, respectively.
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Figure 4. Average of the parameter mF(KL) in the region of interest (ROI) as a function of the window
side length (WSL) obtained with different grades of hepatic steatosis: (a) normal; (b) mild; (c) moderate;
(d) severe. As the WSL increased, the parameter mF(KL) gradually decreased to exhibit a relatively
stable estimation.
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Figure 6. Average of the parameter mF(EM) in the ROI as a function of the WSL obtained with different
grades of hepatic steatosis: (a) normal; (b) mild; (c) moderate; (d) severe. As the WSL increased,
the parameter mF(EM) gradually decreased to exhibit a relatively stable estimation.
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5 PL.
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Figure 8. Ultrasound parametric imaging constructed using the m (a–d), mF(KL) (e–h), and mF(EM) (i–l)
parameters for different grades of hepatic steatosis. The formation of hepatic steatosis strengthened
the image brightness in the Nakagami and the proposed DND imaging, representing increases in the
parameters m, mF(KL), and mF(EM).
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Figure 9 displays the parameters of m, mF(KL), and mF(EM) as a function of the hepatic steatosis
grade and the ROC curves for diagnosing different grades of hepatic steatosis. The median values of m
were 0.65 (IQR: 0.56–0.73) for normal, 0.72 (IQR: 0.61–0.80) for mild, 0.82 (IQR: 0.78–0.85) for moderate,
and 0.83 (IQR: 0.80–0.91) for severe hepatic steatosis. The median values of mF(KL) for normal, mild,
moderate, and severe hepatic steatosis were 0.72 (IQR: 0.64–0.84), 0.83 (IQR: 0.72-0.93), 0.96 (IQR:
0.88–1.04), and 1.00 (IQR: 0.94–1.08), respectively, and those of mF(EM) were 0.84 (IQR: 0.77–0.95),
0.94 (IQR: 0.85–1.03), 1.06 (IQR: 0.98–1.12), and 1.07 (IQR: 1.04–1.20), respectively. The AUROCs of m,
mF(KL), and mF(EM) in diagnosing steatosis grades of ≥mild were 0.75 (95% CI: 0.69–0.83), 0.76 (95% CI:
0.69–0.83), and 0.76 (95% CI: 0.69–0.83), respectively; those of ≥moderate were 0.82 (95% CI: 0.77–0.88),
0.81 (95% CI: 0.75–0.87), and 0.81 (95% CI: 0.75–0.87), respectively, and those of≥severe were 0.82 (95% CI:
0.74–0.90), 0.82 (95% CI: 0.74–0.90), and 0.82 (95% CI: 0.74–0.90), respectively. Table 2 summarizes the
diagnostic performance of m, mF(EM), and mF(KL) parametric imaging in the grading of hepatic steatosis.
Figure 10 shows comparisons of the mF(KL) and mF(EM) parameters with the m parameter, indicating
that the DND parameter is proportional to the conventional Nakagami parameter. To more precisely
describe the relationships between the single Nakagami and the DND parameters, the equations that
are available in SigmaPlot were used to fit the data, and the linear and exponential increasing functions
were found to maximize the correlation coefficients r of m with mF(KL) (r = 0.96) and mF(EM) (r = 0.97),
respectively. Interestingly, a nonlinear relationship existed between the mF(EM) and m parameters.

Table 2. Comparisons of ROC analysis for using DND imaging to diagnose different grades of
hepatic steatosis.

Parameter
m mF(KL) mF(EM)

≥

Mild
≥

Moderate
≥

Severe
≥

Mild
≥

Moderate
≥

Severe
≥

Mild
≥

Moderate
≥

Severe

Cutoff value 0.71 0.77 0.79 0.80 0.88 0.94 0.96 1.03 1.04

Sensitivity, % 73.75 73.33 68.82 68.75 69.33 74.73 68.75 71.33 68.28

Specificity, % 70.16 81.18 83.33 71.77 81.48 77.78 75 77.78 83.33

LR+ 2.47 3.96 4.13 2.44 3.74 3.36 2.75 3.21 4.10

LR− 0.37 0.33 0.37 0.44 0.38 0.32 0.42 0.37 0.38

PPV, % 61.46 91.67 97.71 61.11 91.23 97.20 63.95 89.92 97.69

NPV, % 80.56 52.38 20.55 78.07 48.89 22.95 78.81 49.41 20.27

AUROC (95% CI) 0.75
(0.69–0.83)

0.82
(0.77–0.88)

0.82
(0.74–0.90)

0.76
(0.69–0.83)

0.81
(0.75–0.87)

0.82
(0.74–0.90)

0.76
(0.69–0.83)

0.81
(0.75–0.87)

0.82
(0.74–0.90)
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4. Discussion

4.1. Significance of this Study

The DND model is a novel Nakagami statistics-based approach that was initially developed for
using high-frequency ultrasound to describe the backscattered signals measured from fat-infiltrated
liver tissues. Prior to this study, no reports and literature explored the optimal window size, estimation
methods, and computational procedures for clinical-oriented DND imaging. This study standardized
the algorithmic scheme and confirmed the feasibility of the DND model in the clinical assessment of
hepatic steatosis using low-frequency ultrasound dedicated to abdominal examinations. To provide
stable and reliable DND parameter estimations, an appropriate WSL for using the sliding window
technique to construct ultrasound DND imaging was suggested as five times the PL. Using both the KL
and EM methods, the DND parameters could be estimated to allow imaging and grading of hepatic
steatosis with a promising diagnostic performance. This is the first to clinically reveal the usefulness of
ultrasound DND imaging in diagnosing hepatic steatosis.

4.2. The Dependency of the DND Parameter on Hepatic Steatosis

Compared with the conventional Nakagami parameter, the DND parameter specifically reflects
the statistical distribution of ultrasound signals backscattered from fat-infiltrated hepatocytes in the
liver parenchyma [26]. The effects of hepatic steatosis on the Nakagami parameter have been discussed
by modeling the liver tissue as a scattering medium [23–25]; the same concept could be used to explain
how the DND parameter varies with the degree of hepatic steatosis. In brief, with increasing grades of
hepatic steatosis, the number of lipid droplets increases; thus, this condition could be identified as a
process of increase in the number densities of the scatterers, which alters the backscattered statistics to
develop toward the Rayleigh distribution [25]. This may explain why the DND parameter increases
with the severity of hepatic steatosis. Note that liver fibrosis tends to result in a relatively high
degree of variance in the scattering cross-sections of the scatterers, making the backscattered statistics
change toward the pre-Rayleigh distribution (decreasing the Nakagami parameter) [30]. Consequently,
the confounding effects (due to liver fibrosis and hepatic steatosis) on the backscattered statistics
existing in the current dataset may influence the dependency of the Nakagami and the DND parameter
on hepatic steatosis.

4.3. Comparisons between the Conventional Nakagami and DND Parameters

It has been shown that the DND model can fit the envelope statistics relatively accurately
in cases of small and large numbers of lipid droplets; this advantage over the single Nakagami
distribution is attributed to the increase in the number of degrees of freedom in the data analysis [26].
However, the estimated parameter of the DND model is typically higher than that obtained using the
conventional Nakagami distribution [26]. This phenomenon was also found in the current clinical
results. This may be explained on the basis of the difference between the single Nakagami and
the DND model. The backscattering information contributed by the liver parenchyma (including
hepatocytes and luminal structures) and lipid droplets are considered independently in the DND
model. Some information contributed from the structural components that tend to result in the
backscattered statistics of the pre-Rayleigh distribution could be eliminated when estimating the
DND parameter. In other words, using the conventional Nakagami parameter of the Nakagami
distribution may underestimate the equivalent scatterer concentration corresponding to hepatic
steatosis; in comparison, the curve fitting analysis revealed the nonlinear relationship between the
mF(EM) and m parameters, demonstrating that the DND parameter essentially differs from the single
Nakagami parameter. Although the diagnostic performance of the DND imaging was the same as
that of the conventional Nakagami imaging, the physical interpretations given by the DND model
is more specific to steatosis information, and the EM method was recommended to compensate the
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effect of the parameter underestimation in conventional Nakagami imaging by satisfying the nonlinear
dependency of the DND parameter on the m parameter.

4.4. Limitations and Future Work

This study has some limitations. The DND parameter measured using a high-frequency (14.4 MHz)
ultrasound provided sensitive detection of hepatic steatosis in rats [26]. Comparatively, the clinical
performance of DND imaging constructed using low-frequency ultrasound was not significantly
different from that of conventional Nakagami imaging. Probably, high-frequency ultrasound is a key
factor to endow DND imaging with improved sensitivity to variations in the scatterer properties,
implying that the DND model used clinically needs optimization or modification. The other challenge
would be how we determine the parameter mL more accurately for estimating the DND parameters.
Different subjects may have different mL values because of the differences in tissue microstructures
between individuals. During ultrasound DND parametric imaging, each window location may also
correspond to different mL values. This problem is indeed hard to conclude at the current stage,
and using a constant mL as the prior condition may be temporally a solution. Moreover, the DND
model requires a larger window size (WSL = 5 PL) for acquiring more envelope data to satisfy the
requirements of the estimation methods. However, the conventional Nakagami parameters based on
moment estimation require only WSL = 3 PL to support parametric imaging [30]. Prior to translating
the DND model from animals to clinical applications, the resolution enhancement may be the priority
for future work, and intra- and interoperator reliabilities also require further investigation.

5. Conclusions

This study demonstrated the clinical feasibility of parametric imaging based on the DND model
in the assessment of hepatic steatosis using low-frequency ultrasound. DND imaging constructed
using the sliding window with the WSL = 5 PL provided stable and reliable parameter estimations
and image visualization, endowing the DND parameter with the ability to grade hepatic steatosis and
reflect backscattering information associated with lipid droplets, which benefit interpretations of the
nature of the fat-infiltrated liver. Sensitivity improvement, resolution enhancement, and intra- and
interoperator reliabilities for ultrasound DND imaging require further investigations.
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