
pathogens

Article

Biofilm-Formation in Clonally Unrelated
Multidrug-Resistant Acinetobacter baumannii Isolates

Aisha M. Alamri 1,*, Afnan A. Alsultan 1, Mohammad A. Ansari 2,* and Amani M. Alnimr 3

1 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin
Faisal University, Dammam 34212, Saudi Arabia; afalsultan@iau.edu.sa

2 Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC),
Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

3 Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University,
Dammam 34212, Saudi Arabia; amalnimr@iau.edu.sa

* Correspondence: aiamri@iau.edu.sa (A.M.A.); maansari@iau.edu.sa (M.A.A.)

Received: 18 June 2020; Accepted: 29 July 2020; Published: 2 August 2020
����������
�������

Abstract: This study analyzed the genotype, antibiotic resistance, and biofilm formation of
Acinetobacter baumannii strains and assessed the correlation between biofilm formation, antibiotic
resistance, and biofilm-related risk factors. A total of 207 non-replicate multi-drug-resistant
A. baumannii strains were prospectively isolated. Phenotypic identification and antimicrobial
susceptibility testing were carried out. Isolate biofilm formation ability was evaluated using the
tissue culture plate (TCP), Congo red agar, and tube methods. Clonal relatedness between the
strains was assessed by enterobacterial repetitive intergenic consensus-PCR genotyping. Of the 207
isolates, 52.5% originated from an intensive care unit setting, and pan resistance was observed against
ceftazidime and cefepime, with elevated resistance (99–94%) to piperacillin/tazobactam, imipenem,
levofloxacin, and ciprofloxacin. alongside high susceptibility to tigecycline (97.8%). The Tissue
culture plate, Tube method, and Congo red agar methods revealed that 53.6%, 20.8%, and 2.7% of
the strains were strong biofilm producers, respectively, while a significant correlation was observed
between biofilm formation and device-originating respiratory isolates (p = 0.0009) and between
biofilm formation in colonized vs. true infection isolates (p = 0.0001). No correlation was detected
between antibiotic resistance and biofilm formation capacity, and the majority of isolates were clonally
unrelated. These findings highlight the urgent need for implementing strict infection control measures
in clinical settings.

Keywords: enterobacterial repetitive intergenic consensus-PCR genotyping; risk factors; antimicrobial
susceptibility; nosocomial pathogen

1. Introduction

Acinetobacter baumannii is an opportunistic nosocomial pathogen, frequently causing various infections
in humans, including sepsis, meningitis, peritonitis, urinary tract-, soft-tissue-, and device-related infections,
such as ventilator-associated pneumonia [1].

Antimicrobial resistance represents a great challenge in A. baumannii isolates and is reported
worldwide with notable resistance to major classes and the most frequently utilized antimicrobial agents,
including β-lactams, aminoglycosides, and fluoroquinolones [2,3]. Due to the elevated incidence
of multidrug-resistant A. baumannii (MDRAB), extended-spectrum β-lactams, such as carbapenems,
of which meropenem and imipenem are categorized as the ‘most effective’ therapeutic options,
are currently used to treat complicated infections. Unfortunately, reports indicating the elevated
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A. baumannii resistance to carbapenems are on the rise, which limits the treatment options to drugs
known for their neurotoxicity and nephrotoxicity, such as Colistin [4].

Most of these strains contain carbapenem-hydrolyzing β-lactamase genes (CHDLs), such as class
D and class B metallo-β-lactamases (MBLs) [4]. Along with its elevated multidrug resistance, the ability
of A. baumannii to produce microbial biofilms has caused serious global problems by contributing
toward its survival and transmission in hospital environments on biotic and abiotic surfaces, including
cerebrospinal fluid shunts and catheters [5].

Microbial biofilms are assemblies of microorganisms within a matrix that functions cooperatively
to provide a protected microbial niche and enhanced resistance to various antimicrobial agents by
reducing drug diffusion through bacterial cells, thus facilitating the survival of clinical isolates under
severe environmental conditions with multidrug resistance [6]. Microcolonies in biofilms are complex
bacterial communities with intraspecies communication and adaptation through quorum-sensing,
which regulates virulence [7]. A. baumannii is reportedly tolerant to extracellular stressors in biofilms in
the skin and in soft tissue infections, both within the wound and on occlusive dressings [8]. A. baumannii
can also form biofilms on most abiotic surfaces, including hospital surfaces and equipment, such as
ventilator tubes, catheters, and stainless steel [5]. Strong biofilm-producing A. baumannii strains are
less sensitive to dehydration than weak biofilm-producing strains; thus, biofilm production is critical
for the organism’s survival under dry conditions [6,7].

Although bacteria within biofilm communities express adhesins and surface factors, including
capsular polysaccharides, which contribute to biofilm formation and maturation, these components
are poorly understood [9]. Factors enhancing biofilm formation appear strain-dependent; however,
some have been evaluated, with most biofilm-producing A. baumannii strains associated with intensive
care unit (ICU) admission and the use of medical devices [8,10]. In this study, we investigated antibiotic
susceptibility, biofilm formation, and clonal relatedness of various clinical multidrug-resistant (MDR)
A. baumannii isolates. Moreover, we compared three different biofilm assessment methods and
evaluated the correlation between antibiotic resistance and biofilm formation.

2. Results

2.1. Isolate Characterization

The clinical and epidemiological characteristics of 207 MDR A. baumannii isolates were analyzed.
The strains were isolated from patients aged 2–98 years (mean, 51 years), mostly from male patients
(n = 128, 61.8%). MDR A. baumannii isolates were largely clustered in patients aged 45–74 years (n = 94,
45.4%), with children aged <15 years (n = 7, 3.4%) displaying the least distribution (Table 1). Most MDR
A. baumannii strains were isolated from respiratory specimens (n = 97, 46.9%), followed by skin and
soft tissue specimens (n = 66, 31.9%). Blood isolates accounted for 16 samples (7.7%), and other strains
were isolated from urine and sterile body fluids (n = 28, 13.5%). Of the 207 MDR isolates, most (52.5%)
were recovered from the ICU, followed by medical units (26.8%) and surgical units (20.8%).

2.2. Antibiotics Susceptibility Testing (AST)

All 207 isolates were categorized as MDR, with resistance to ceftazidime and cefepime (n = 207,
100%) and to piperacillin/tazobactam and ciprofloxacin (n = 205, 99%). Furthermore, high carbapenem
resistance, evident from increased resistance to imipenem (n = 203, 98.1%) and meropenem (n = 131,
63.3%), was observed. Other AST profiles revealed 94.7% resistance to levofloxacin and similar resistance
to gentamycin and amikacin (n = 103, 49.8%). Moreover, most isolates displayed trimethoprim resistance
(n = 187, 90.3%) but showed the lowest resistance to tigecycline (n = 17, 8.2%).
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Table 1. Epidemiological data analysis.

Number %

Gender
Male 128 61.8

Female 79 38.2
Age (years)

1–14 7 3.4
15–44 54 26.1
45–74 94 45.4
≥75 52 25.1

Source *
Respiratory tract 97 46.9

Skin and soft tissues 66 31.9
Blood 16 7.7
Others 28 13.5

* In this study, there were 96 device-related infections (8 central lines, 25 peripheral venous cannulas, 56 tracheal
tubes, 4 urinary catheters, and 3 cerebrospinal shunts), while 8 strains originated from a device tip but were not
subsequently isolated from the patient’s samples.

2.3. Biofilm Formation among Clinical MDR A. baumannii Isolates

Of the 207 clinical MDR A. baumannii isolates, 183 were screened for biofilm production using
the Tube method (TM), Congo red agar (CRA), and standard Tissue culture plate (TCP) methods.
Through the reference TCP method, most of these isolates (98, 53.6%) were categorized as strong biofilm
producers, while 72 (39.3%) were categorized as moderate, and 13 (7.1%) lacked biofilm formation
abilities. The TM revealed that 38 (20.8%) isolates were strong biofilm producers, 54 (29.5%) were
moderate biofilm producers, and 91 (49.7%) were weak/non-biofilm producers. Conversely, the CRA
method revealed that five (2.7%) isolates were strong biofilm producers, seven (3.8%) displayed
an intermediate biofilm production phenotype, and the remaining 171 (93.4%) were considered
non-biofilm producers.

2.4. Biofilm Test Performance against the Gold Standard TCP

To compare the performance of each biofilm formation assay with the reference TCP method,
we estimated their sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and overall test accuracy (Table 2). Although the CRA method reported satisfactory specificity
(92.86%) and PPV (92.37%), it reported poor sensitivity (6.51%) and a low NPV (6.96%). Conversely,
the TM reported average sensitivity (52.73%) and specificity (72.22%), elevated PPV (96.21%), and a
poor NPV (10.31%). Moreover, the overall accuracy of the TM and CRA method was significantly
inferior to that of the gold standard TCP method (50.09 and 12.55%, respectively).

Table 2. Comparative analysis of tube method and Congo red agar method relative to the standard
tissue culture plate method.

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

TM 52.73
(44.82–60.54)

72.22
(46.52–90.31)

96.21
(92.23–98.19)

10.31
(7.64–13.77)

54.09
(46.58–61.47)

CRA 6.51
(3.29–11.35)

92.86
(66.13–99.82)

92.37
(62.73–98.86) 6.96 (6.04–8.00) 12.55

(8.12–18.24)

Abbreviations: TM, tube method; CRA, Congo red agar; PPV, positive predictive value; NPV, negative predictive value.

2.5. Biofilm Production in Device- and Non-Device-Related Isolates

We compared the biofilm formation ability of device- and non-device-related MDR A. baumannii
isolates among the major specimen categories herein. Device-related isolates originating from
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respiratory samples displayed a significantly higher biofilm formation ability (p = 0.0009; Figure 1);
however, no significant difference was observed between the device- and non-device-related isolates
among the other types of samples (p = 1 to p = 0.4).Pathogens 2020, 9, x FOR PEER REVIEW 4 of 15 
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Figure 1. Specimen-based distribution of biofilm production in different samples. A statistically
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2.6. Antimicrobial Resistance and Biofilm Production

A comparison between biofilm formation, based on the results of the TCP method in both
antibiotic-resistant and -susceptible strains, was carried out to investigate the correlation between
biofilm formation ability and the level of antibiotic resistance, and no significant difference was
observed in their biofilm production potentials (p = 0.12; Figure 2). Therefore, we assessed any
potential relationship between biofilm formation and the number of antibiotics each strain was
susceptible to; similarly, no significant difference was observed, as more susceptible strains produced
similar patterns of biofilms to less susceptible strains (p = 0.2).
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2.7. Biofilm Formation Versus Colonization, Infection Status, and Location

On comparing biofilm production levels in isolates originating from colonization and true
infections, the strains isolated from true infections displayed a significantly higher biofilm production
potential (p = 0.0001; Figure 3). Furthermore, we assessed the location of isolates as a potential predictor
of biofilm formation; however, no correlation was observed, as biofilm producers were distributed
randomly throughout the ICU, medical, and surgical units (p = 0.47).
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from infection cases. (Data presented is based on the reference TCP method).

2.8. Genotyping of A. baumannii Isolates

To characterize the genotype of the A. baumannii isolates, we performed ERIC-PCR fingerprinting
for a subset of the strains, the meropenem-resistant isolates, which grouped them into different clusters
(Figure 4). Of the 131 strains genotyped, four pairs of strains shared a similar ERIC-PCR pattern and
were found to be genetically related (Table 3).

Similar clones originated from various specimens isolated from different locations with different
chronological spans. Despite being clonally related, some clusters displayed slight differences in
their AST profiles to the two aminoglycosides, gentamicin, and amikacin, in addition to trimethoprim
(Table 3). Interestingly, despite being chronologically apart, identical clusters had comparable
biofilm-forming capacity.



Pathogens 2020, 9, 630 6 of 14

Pathogens 2020, 9, x FOR PEER REVIEW 9 of 15 

 

related genes would further the current understanding of the molecular basis of biofilm development 
and may influence the treatment of biofilm-associated infections. 

 

 
Figure 4. Dendrogram of all carbapenem-resistant A. baumannii isolates from patients admitted to 
intensive care units between 2016 and 2018, as typed by ERIC-PCR. Numbers indicate the 
corresponding strains, followed by meropenem susceptibility status. 

Figure 4. Dendrogram of all carbapenem-resistant A. baumannii isolates from patients admitted to
intensive care units between 2016 and 2018, as typed by ERIC-PCR. Numbers indicate the corresponding
strains, followed by meropenem susceptibility status.



Pathogens 2020, 9, 630 7 of 14

Table 3. Clinical characteristics of the related A. baumannii clones.

Clone Isolate Date Age Sex Location Specimen MRP CAZ TAZ FEP IMIP CIP LEVO GENT AMIK TGC TRIMETH Biofilm

A1
128 May-18 30 F Surgical Unit Urine R R R R R R R R R S R strong
306 Oct-18 63 M medical ICU Sputum R R R R R R R S S S R strong

A2
132 May-18 83 F ER Unit Rectal R R R R R R R R R S R intermediate
304 Oct-18 19 F Medical Unit Throat R R R R R R R R R S S intermediate

A3
65 Feb-17 87 F Medical ICU Transtracheal R R R R R R R R R S R strong
277 Aug-18 60 M Medical Unit Sacral R R R R R R R S S S R strong

A4
262 Jul-18 79 F Medical ICU Rectal R R R R R R R R R S R strong
316 Nov-18 71 F Medical ICU Blood R R R R R R R S S S S strong

MRP: meropenem, CAZ: ceftazidime, TAZ: piperacillin/tazobactam, FEB: cefepime, IMP: imipenem, CIP: ciprofloxacin, LEVO: levofloxacin, GENT: gentamicin, AMIK: amikacin, TGC:
tigecycline, and TRIMETH: trimethoprim.
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3. Discussion

MDR A. baumannii is an opportunistic pathogen associated with several outbreaks in healthcare
and community settings. Herein, we isolated 207 MDR A. baumannii strains from an academic medical
center over 3 years, of which most were obtained from respiratory specimens, and all were resistant
to one or more of ≥3 classes of antibiotics, fulfilling the MDR or extensively drug-resistant (XDR)
consensus definition [11].

Tigecycline is one of the few drugs effective against infections due to XDR A. baumannii, for which
no Clinical laboratory standards institute (CLSI) breakpoints have been reported thus far. In our
cohort, some isolates demonstrated high minimum inhibitory concentrations (MICs) against this
drug (2 µg/mL); however, the AST methods commonly used as diagnostic tools, such as E-test
and automated systems (e.g., VITEK 2), can potentially overestimate tigecycline MICs [12]. Herein,
we observed high overall resistance to most of the antimicrobial agents, including extended-spectrum
β-lactams, carbapenems, and fluoroquinolones; however, strains demonstrated high susceptibility
to tigecycline, which is the “drug of choice” for complex infections caused by MDR Gram-negative
bacteria [13]. While tigecycline is mainly used to treat certain infected sites and is not indicated in
cases of bactermia [14], studies published in Saudi Arabia and other Gulf Cooperation Council (GCC)
countries have reported variable levels of tigecycline resistance among A. baumannii strains [15,16].
In the present MDR strains, tigecycline was an effective therapeutic agent with a susceptibility level of
>95%, being considerably greater than that estimated in various local studies (20–70%) [2,3]. Although
half of the isolates were resistant to aminoglycoside, studies in our region have reported different
levels of gentamicin and amikacin resistance (25–96%) [4], while increased aminoglycoside resistance
has been reported in studies in China and Egypt [17,18]. Furthermore, very high fluoroquinolone
resistance levels were observed in our isolates, concurrent with previous reports from other GCC
countries and Turkey [4,19].

Furthermore, in this study, we compared the performance of various methods for assessing biofilm
production. Concurrent with previous reports, we found that the performance of the TCP method was
superior to that of TM and CRA methods for qualitative analysis of biofilm formation [20,21]. Moreover,
these methods revealed that strong and moderate biofilm production was markedly higher in the
present cohort (53.6% and 39.3%, respectively), concurrent with previous studies reporting a significant
cluster of biofilm-producing A. baumannii isolates [22,23]. Furthermore, we investigated the association
between the antibiotic resistance phenotype and biofilm formation in the A. baumannii clinical isolates
by comparing biofilm formation in resistant and susceptible strains; however, no significant difference
was observed, probably because the present cohort contained MDR strains that are only susceptible to
few antimicrobial agents among those tested herein. Notably, biofilm formation was independently
associated with the number of susceptible drugs; therefore, susceptibility to more than one antibiotic
did not reduce the biofilm formation efficiency (p = 0.2).

Consistently, previous studies have reported an inverse correlation between antibiotic resistance
and biofilm formation in A. baumannii, wherein biofilm-forming isolates are significantly more
susceptible to various antimicrobial agents, including amikacin, gentamicin, ceftazidime, cefepime,
ciprofloxacin, imipenem, and meropenem [24,25]. One such report was generated from a multicenter
study in 2010–2013 and included 272 A. baumannii isolates with variable antibiotic susceptibility [24].
Using a single biofilm detection method (crystal violet, similar to TM in this study), their study
revealed that 79.4% of the strong biofilm-producers were non-resistant isolates, whereas 20.6% were
MDR/XDR [24]. Another study evaluated the adhesive features of A. baumannii isolates from the sputum
of 121 cases of hospital-acquired pneumonia, revealing significantly lower biofilm formation among
strains with high gentamicin, minocycline, and ceftazidime resistance [26]. Conversely, Yang et al.
reported that highly resistant isolates were strongly associated with biofilm formation, with resistance
to certain antibiotics, including penicillin, efficiently promoting biofilm production [23], probably
owing to the activation of genes involved in biofilm formation, thus providing these resistant strains a
fitness advantage [8]. Although both resistant and susceptible isolates included in our study were
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found to produce biofilms at the same efficiency, a correlation between biofilm-producing capacity and
antibiotics resistance was hard to conclude because our cohort comprised of highly resistant isolates
ranging from MDR to XDR with variable antimicrobial resistance profile, so further work is needed
to assess the biofilm-forming ability between highly resistant isolates relative to fully susceptible
strains from a similar geographical area. Together with these previous reports, our results suggest that
biofilm-forming strains rely less on antimicrobial resistance to survive and indicate an independent
association between antibiotic resistance and biofilm formation.

In our cohort, strains isolated from infection cases presented a significantly higher biofilm
production potential than those originating from colonization sites. To our knowledge, this is the first
study that compared biofilm formation between colonization and infection isolates in clinical strains of
MDR A. baumannii. However, isolate’s location was not correlated with biofilm formation ability as
those from the ICU did not tend to produce more biofilms than isolates from other hospital settings.
These findings are consistent with those of Rodríguez-Baño, who reported that ciprofloxacin and
imipenem resistance and treatment in ICU settings were common features of non-biofilm-producing
A. baumannii isolates [5]. Conversely, other studies have reported that microbial communities in an
ICU setting are efficient biofilm producers [8,10].

Furthermore, our study reported that device-related isolates tended to be associated with
significantly higher biofilm production, particularly in respiratory samples; however, this significant
association was not observed among samples derived from other sources. These findings are
concurrent with other observational and retrospective studies reporting that biofilm-producing strains
isolated from the ventilators of patients receiving mechanical ventilation (endotracheal tube aspirates
(ETA)), such as A. baumannii and Pseudomonas aeruginosa, displayed a significant positive correlation
between the length of ventilation and biofilm production capacity [1,27,28]. A descriptive analytical
study of 100 clinically suspected, ventilator-associated pneumonia cases curated and quantitatively
assessed ETAs for the bacterial count and biofilm production, using the same three methods used
herein [29]. The multi-variant analysis revealed that Klebsiella pneumoniae was the predominant
bacterium isolated, followed by A. baumannii, with nearly 72% of isolates displaying strong or moderate
biofilm formation [29]. Similarly, a multicenter cohort study assessed biofilm formation in 92 unrelated
A. baumannii strains using a microtiter plate assay, indicating that biofilm-producing isolates were
obtained from cases of catheter-related urinary infections, bloodstream infections, and shunt-related
meningitis [5].

Herein, we performed ERIC-PCR to identify the molecular type of A. baumannii strains, of which
131 meropenem-resistant isolates are presented in Figure 4. Furthermore, fingerprint analysis identified
the genotypic diversity of these isolates in different hospital locations. Few isolates were groupable at
the 95% discrimination level (Table 3); however, these isolates were chronologically unrelated, making
their direct spread less likely. Some genetically identical strains exhibited variable susceptibility
patterns, particularly towards aminoglycosides (amikacin and gentamicin), with more recent strains
(306, 277 and 316) being susceptible. This finding is potentially associated with variability in the
selective pressure imposed by aminoglycoside use; thus, the elevated fitness cost resulting from
resistance genes may lead to the loss of the mobile element harboring the resistance determinant
or “switch off” their expression in the absence of selective pressure [30]. On examining a smaller
subset of Acinetobacter isolates (n = 85), Al Sultan et al. reported a cluster of eight isolates with a
variable resistance profile among similar clones [31]. Furthermore, previous local studies have reported
carbapenem-resistant A. baumannii isolates (CRAB) belonging to diverse, ungroupable clones [32,33].
Most isolates in this cohort were MDR organisms; therefore, more studies, including fully susceptible
isolates, are needed to compare the genetic determinants involved in biofilm formation in different
A. baumannii strains. Further studies are required to determine the correlation between A. baumannii
adherence, biofilm formation, and its tendency to cause outbreaks and life-threatening, invasive
infections, and to analyze quantitative differences between biofilm formation in clinical isolates and
their association with strain epidemicity and infection severity. Understanding the triggers of biofilm
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formation would help limit and contain biofilm-associated infections and facilitate biofilm-specific
therapeutic measures. Qualitative and quantitative analysis of biofilm-related genes would further the
current understanding of the molecular basis of biofilm development and may influence the treatment
of biofilm-associated infections.

Together, the present results indicate the importance of adhering to the infection control
measures and implementing effective antimicrobial stewardship programs to limit the dissemination
of biofilm-related infections of MDR A. baumannii clones, particularly in critical hospital units [34].

4. Material and Methods

4.1. Strains Characterization

In total, 207 non-replicate A. baumannii isolates were prospectively and serially obtained from the
clinical specimens and indwelling medical devices, including central lines, peripheral venous cannula,
tracheal tubes, peritoneal dialysis catheters, urinary catheters, and cerebrospinal shunt, collected from
patients of all age groups, admitted to a University Hospital between January 2016 and December 2018.
The clinical samples were inoculated onto MacConkey agar and blood agar plates (SPML, KSA) and
incubated overnight at 35 ◦C. Suspected A. baumannii isolates, based on their colony morphology and
oxidase-negative, catalase-positive reactions, were further analyzed to confirm their identity.

4.2. Identification of Phenotypic Species and Antibiotic Susceptibility Testing (AST)

A. baumannii isolates were identified in a Diagnostic Microbiology laboratory using a VITEK
MS system (bioMérieux, Craponne, France) based on matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) technology. AST was performed using a VITEK 2 system (bioMérieux).
E-tests (AB Biodisk, Solna, Sweden) were used to determine the minimum inhibitory concentrations
(MICs) for carbapenems in accordance with the Clinical Laboratory Standards Institute (CLSI 2018)
guidelines, while the MIC for tigecycline was estimated in accordance with US FDA breakpoints.
The following control strains were included in each AST run: Klebsiella pneumoniae (ATCC 700603),
Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853). All isolates displaying an
MDR profile, as defined by non-susceptibility to at least one agent in ≥3 antimicrobial categories,
were further assessed [11]. Glycerol stocks of all bacterial isolates were stored at −80 ◦C prior to biofilm
production analysis and molecular genotyping.

4.3. Detection of Biofilm Formation

4.3.1. Tissue Culture Plate (TCP) Method

Tissue culture plate method was used as a reference method to screen MDR A. baumannii
isolates [35]. Fresh bacterial cultures were inoculated into 10 mL of tryptic soy broth (TSB) supplemented
with 1% glucose and incubated at 37 ◦C. Following overnight incubation, the cultures were diluted
1:100 using a fresh medium, and 0.2 mL aliquots were transferred into flat-bottomed microtiter
plates and incubated for 24 h at 37 ◦C. The cells were then washed four times with 0.2 mL of PBS
(pH 7.2) to remove the planktonic cells, and the bacteria forming biofilms at the bottom of the wells
were subsequently fixed and stained with 2% sodium acetate and 0.1% crystal violet, respectively.
After washing the wells with deionized water to remove the excess stain, the optical density of the
solution was measured at 595 nm using an ELISA reader (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Independent experiments were performed in triplicate, and the results interpreted in accordance
with Ansari et al. [36].

4.3.2. Congo Red Agar (CRA) Method

A. baumannii biofilm formation was assessed in vitro using the CRA method described by
Freeman et al. [37]. Briefly, freshly grown cultures were plated onto Brain Heart Infusion (BHI)
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Agar supplemented with Congo Red (0.8 g/L) and 5% sucrose, followed by aerobic incubation for
24–48 h at 37 ◦C. CRA-positive strains appeared as black colonies with a dry, crystalline consistency,
while CRA-negative producers displayed darkening at the center of the colonies. Colony darkening
without a dry crystalline morphology was interpreted as an indeterminate result, as previously
described [36,37].

4.3.3. Tube Method (TM)

The biofilm formation potential of clinical A. baumannii isolates was qualitatively assessed using
the method of Christensen et al. [36,38]. Fresh bacterial growth was sub-cultured in 10 mL of tryptic
soy broth (TSB) supplemented with 1% glucose in 25 mL tubes for 24 h at 37 ◦C. Following incubation,
the tubes were washed with 1× phosphate-buffered saline (PBS; pH 7.3), dried and tested for evidence
of biofilm formation, as indicated by the appearance of visible film lining the wall and bottom of the
tube. Based on the intensity of the color formed, biofilm formation was scored as negative/weak (-/+),
moderately positive (++), and strongly positive (+++) [36].

4.4. Genomic DNA Extraction, Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR Fingerprinting,
and Cluster Analysis

Analysis of the clonal relatedness of pathogens could further the current understanding of
molecular epidemiology and affect the infection control measures by monitoring the spread of strains
and infection outbreaks. To extract genomic DNA, a single bacterial colony emulsified in 0.250 mL
of molecular Biology grade water was incubated at 95 ◦C in a heating block for 15 min and then
centrifuged at 13,000 rpm for 10 min. ERIC-PCR was carried out with 2 µL of the supernatant as
the DNA template and ERIC1 (5′-TGT AAG CTC CTG GGG ATT CAC-3′) and ERIC2 (5′-AAG TAA
GTG ACT GGG GTG AGC G-3′) primers, as described by Versalovic et al. [39], in a total volume
of 25 µL. ERIC-PCR cycling conditions included initial denaturation at 94 ◦C for 5 min, 35 cycles
at 95 ◦C for 1 min, 52 ◦C for 1 min, and 72 ◦C for 5 min, and a final extension at 72 ◦C for 10 min.
Generated PCR products were loaded on 1.5% agarose gels stained with ethidium bromide and subject
to electrophoresis to separate the bands. Cluster analysis was performed through pairwise comparisons
of ERIC profiles using fingerprinting cluster analysis in the BioNumerics software package Version 7.6.3
(Applied Maths, Belgium). The generated dendrograms from the ERIC-PCR profiles, using Pearson’s
correlation coefficient as a similarity measure and the unweighted pair group method (UPGMA) as a
clustering algorithm with 1% optimization and 1% position tolerance, were used to identify isolates
with a similarity exceeding 95% as clonally related.

4.5. Statistical Analyses

Statistical analyses were performed using Graphpad Prism Version 6.0 for Mac. Two-tailed
p-values of <0.05 were considered statistically significant. Continuous variables were expressed in
median and range values, whereas categorical variables were described as frequencies and percentages.

Fisher’s exact test was used to assess the relationship between categorical variables, namely,
the association between the degree of biofilm formation and presence of indwelling medical devices at
the site of infection, colonization versus infection, and the level of antimicrobial resistance, expressed
as the number of drugs to which the pathogen is resistant.

4.6. Ethical Considerations

This study was a part of a project approved by the ethical committee of the Institutional Review
Board at Imam Abdulrahman Bin Faisal University (IRB-2020-03-163). The material presented is
original, unpublished, and has not been submitted elsewhere.
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5. Conclusions

This study genotyped and analyzed the antibiotic resistance phenotype of various MDR
A. baumannii isolates and used three different techniques to qualitatively estimate their biofilm
formation potential. Although no significant association was observed between antibiotic resistance
and adherence potential of isolates, ventilator-associated strains were potent biofilm producers.
Additionally, strains derived from true infection cases appeared to have higher biofilm-producing
potential than those collected from colonization sites. The frequent use of invasive medical devices,
coupled with the extensive use of antimicrobial agents, could strongly drive selection for highly
virulent and resistant isolates. Unfortunately, this cycle is hard to avoid and represents a significant
risk of infection control. Large scale clinical studies on properties of biofilm-producing isolates may
facilitate attempts to combat drug-resistant organisms.
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