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Abstract: G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process
in the human body and therefore represent an important drug targeting class. Advances in X-ray
crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures
of GPCRs in complex with various signaling partners. However, GPCR functionality is largely
determined by their flexibility and ability to transition between distinct structural conformations.
Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal
transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural
motions of biological processes at atomic resolution. Thus, this technique can incorporate the
missing information on protein flexibility into experimentally solved structures. Here, we review the
contribution of MD simulations to complement static structural data and to improve our understanding
of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to
reach the full potential of this technique.

Keywords: GPCRs; molecular dynamics; ligand binding; receptor (in)activation; receptor signaling;
drug discovery

1. Introduction

G protein-coupled receptors (GPCRs) are a large and versatile family of transmembrane
proteins, encompassing over 800 identified members. These proteins act as receptors for a wide
variety of extracellular stimuli including light, changes of pressure, and chemical ligands, odorants,
neurotransmitters, chemokines, and metabolites among others, transducing their information into
intracellular signaling cascades. Due to their participation in a wide range of pathways and physiological
processes, as well as their druggability, GPCRs have become a drug target of major importance in the
pharmaceutical industry [1].

As a consequence of their relevance for drug discovery, deciphering the molecular basis of GPCR
signaling has become a major research focus. The signaling outcome of GPCRs is determined by
their three-dimensional conformation, which is variable and depends on multiple factors, such as
the binding of orthosteric and allosteric ligands, the lipidic environment, and post-translational
modifications. Understanding how all of these factors contribute to a specific structure, and in turn,
a specific signaling response, would not only expand our knowledge of GPCR biology but also provide
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structural blueprints for the design of novel and better therapeutics. To address this ambitious goal,
numerous endeavors have been undertaken to characterize the three-dimensional structure of GPCRs
and its changes over time.

Important advances in protein engineering, X-ray crystallography, and cryo-electron microscopy
(cryo-EM) during the past decade have led to an exponential growth in the number of known GPCR
structures. Since then, the number of available structures has continued increasing (Figure 1a).
This large data set has been crucial for advancing our understanding of GPCR function. Moreover,
it enabled the application of structure-based drug design approaches, which aid the discovery of novel
drug candidates with improved pharmacological profiles [1–3].
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Figure 1. (a) Number of G protein-coupled receptors (GPCRs) structures available in GPCRdb [4,5] over
time. (b) Number of publications per year indexed at Thomson Reuters’ Web of Science that contain
the topics “molecular dynamics” and (“GPCR” or “GPCRs”). The exponential growth of successful
GPCR research based on molecular dynamics (MD) simulations is evidenced by the rapid upsurge in
the number of publications per year related to this subject.

Despite their enormous utility, high-resolution structures describe proteins mainly as rigid entities,
whereas information about their intrinsic flexibility and conformational plasticity cannot be appreciated.
With the goal to incorporate atomic-level dynamic information to static systems, molecular dynamics
(MD) simulations were introduced several decades ago. The first MD simulation of a biomolecule was
9.2 ps-long and consisted of the bovine pancreatic trypsin inhibitor (~500 atoms) in vacuum [6]. In the
case of GPCRs, the first MD simulation was obtained in 1991, before the first GPCR crystal structure
was resolved [7]. It corresponded to an 80 ps-long trajectory of a rat dopamine D2 receptor, modeled
from its sequence with molecular mechanics. Ever since, MD simulations have greatly improved their
performance, allowing the simulation of larger systems for longer timescales. A major determinant
of these advances has been the development of algorithms optimized for graphical processor units
(GPUs), a technology first designed to improve video game performance [8,9]. GPU exploitation
was a major breakthrough for the field, enabling researchers to perform on commodity hardware
calculations that were previously only possible with the use of supercomputing clusters. Along with
these technological advances, the expansion of free and user-friendly software for the input preparation
(e.g., CHARMM-GUI [10], HomolWat [11]) and analysis (e.g., MDAnalysis [12,13]) of MD simulations
has greatly contributed to the broad application of this technique.

Owing to the aforementioned technical developments, MD simulations currently provide a
combination of temporal and structural resolution greater than what is usually achievable by
experimental methods [14]. As a result, MD simulations are widely used for the study of GPCRs,
as reflected by the continuous increase in publications per year on this topic (Figure 1b). Moreover,
most publications on crystallography now supplement their studies with MD to refine the obtained
structure. Here, we review recent developments in the study of GPCR functionality using MD
simulations to complement static structural data. We discuss the role of receptor dynamics in several
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functional processes, outline the applicability of MD simulations for drug discovery, and describe the
basis of this technique. We also examine the main challenges that still need to be overcome to reach its
full potential. Finally, we discuss the future of the field.

2. Complementing Static Data

Three-dimensional structures derived from experiments via X-ray crystallography or cryo-EM
provide high-resolution information about specific conformational states of GPCRs. However, we need
to be aware that these structures represent low energetic conformational states that are obtained under
experimental conditions that often deviate from native-like conditions. In this scenario, MD simulations
are a useful tool to drive these structures to conformational states that are linked to a more native-like
environment. Moreover, MD simulations incorporate the missing information on structural motions,
yielding insights that can be critical to the understanding of GPCR physiology and pharmacology [14].
In this respect, MD simulations have proven useful to complement static data and expand our
knowledge of processes such as binding of small molecules or drugs to orthosteric or allosteric
receptor sites. We can also determine how a biomolecular system will respond to perturbations such
as mutations, post-translational modifications, and the composition of the cell membrane [15,16].
In addition, we can study the conformational rearrangements that occur during receptor (in)activation,
determine metastable receptor states along the transition pathways or explore the interaction with
intracellular coupling partners [17,18]. Even processes such as receptor dimerization/oligomerization,
which has been implicated in fine-tuning GPCR signaling, can be investigated using different MD
techniques [19].

2.1. Molecular Mechanism of Receptor Activation

From a structural perspective, there are two mechanisms by which a molecule, so-called “agonist”,
can mediate GPCR activation. On the one hand, an agonist can sample and stabilize a subset of
receptor conformations known as “active states”, shifting the conformational equilibrium to an active
receptor (conformational selection mechanism) [20]. On the other hand, the binding of the agonist can
initiate small structural changes in the ligand binding site, which are propagated across the receptor
through rearrangements of specific residues. These rearrangements lead to global structural changes
towards conformational populations of active receptor states (induced fit mechanism) [21]. Most likely,
both mechanisms contribute to a different extent to receptor activation depending on the ligand and
receptor type [14,22]. Finally, receptors in an active state have a higher propensity to interact with
intracellular partners. This leads to the initiation of signaling cascades which ultimately alter the
metabolism of the cell [23].

Experimentally solved structures provide extensive information on the conformation of several
active, inactive, and intermediate states [24,25]. Such structures have been an excellent starting point
for numerous MD simulation-based studies that clarify the activation/inactivation mechanism. By this
means, researchers have been able to probe the flexibility of GPCR-ligand complexes in the initial and
final stages of activation and observe structural fundamentals on how ligands stabilize conformational
states that are related to specific signaling outcomes [26,27]. Furthermore, extending such simulations
it is possible to capture intermediate conformations that are adopted on the transition pathway.

Beyond this, pioneering simulations on the active conformation of the β-2 adrenergic receptor
(β2AR) [28] revealed that the presence of an intracellular coupling partner is crucial to stabilize the
receptor in an active state. Without it, the receptor can revert to a fully inactive state, despite the
presence of an agonist. The study also highlighted multiple structural features related to activation,
which are loosely coupled and do not necessarily occur sequentially. These results were later supported
by NMR data [29]. After these findings, a simulation of unprecedented total length, obtained thanks to
Google’s Exacycle cloud computing platform, allowed the generation of a complete structural statistical
model of GPCR activation [30]. One of the highlights of this study was that GPCRs can follow multiple
pathways towards obtaining an active conformation.
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On a more detailed level, MD simulation also permits the study of more subtle structural
rearrangements related to activation. A notable example includes a comprehensive study carried out
by Li et al. [31]. By simulating complexes of the A2A receptor (A2AR) with multiple ligands, they were
able to obtain a comprehensive view of the activation mechanism of this receptor. Importantly,
they observed that the conserved residue W6.48 attained different conformational states in response to
agonists. Moreover, by studying receptor-ligand contacts, they were able to identify groups of contacts
that lead to a specific signaling response. These interactions promoted local structural changes that led
to the increased mobility of the transmembrane helix (TM) 6. Importantly, these results were in line
with crystallographic [24] and NMR data [32].

Furthermore, post-translational modifications have been described to be critical for the biological
activity of GPCRs. In this respect, Oddi et al. report for instance that the biological activity in terms
of the CB1 receptor is closely linked to palmitoylation of cysteine 415 in helix 8 [33]. MD simulation
revealed that this modification stabilizes helix 8 and promotes the binding of cholesterol molecules in
the vicinity, which likely facilitates the interaction with lipid rafts and caveolin 1. This goes along with
the experimental finding that the C415A mutation impairs the receptor’s ability to functionally interact
with lipid rafts as well as eliminates agonist-dependent internalization of the CB1 receptor. In addition,
the same group shows that palmitoylation of cysteine 415 fine-tunes CB1 receptor interaction with the
Gαi2 protein, which further highlights the relevance of post-translational modifications for receptor
functionality [34].

As integral membrane proteins, GPCRs communicate with the lipid environment, which contributes
to the regulation of GPCR function and dynamics. Membrane phospholipids have been found to
allosterically modulate the activity [35–38] and oligomerization [19] of GPCRs, while membrane
cholesterol can regulate its stability, ligand-binding properties and function [16,39–41]. Still, the precise
nature of lipid implication in GPCR modulation is unclear. Such effects can either be attributed to
changes in membrane biophysical properties (including thickness, curvature, and surface tension) [42,43],
direct interactions [15,44–46], or both. In one of the first MD studies comparing the effects of different
single species lipid bilayers on the dynamical behavior of a GPCR, Ng. et al. showed that the structural
motions of the A2AR may depend on its phospholipid environment [47]. This could be explained by
the physical adaptation of the A2AR to different membrane thicknesses or by molecular interactions
of the lipid headgroups and the protein. Similarly, in a recent study Bruzzese et al. examined how
much different membranes affect the activation process of the A2AR and the functional effect of their
agonists [48]. Based on microsecond-long MD simulations, they revealed an effect of the phospholipid
membrane in the intermediate or active receptor conformations observed, which can be attributed
to phospholipid-mediated allosteric effects on the intracellular side of the receptor. In addition to
identifying potential lipid interaction sites, MD simulations can provide estimates of the free energy of
protein-lipid interactions, which permits to quantify their strength. To test the reliability of MD to study
the energetics of protein−lipid interactions, Corey et al. compared different MD-based approaches
in terms of ease of accuracy and computational cost [49]. They showed that such methods produce
estimates of the strength and specificity of lipid-binding sites that are robust and reproducible.

Finally, a relatively recent finding is that GPCRs can couple to diverse intracellular signaling
partners, including different G proteins and β-arrestins. An interesting observation is that, in some
cases, only a subset of pathways is engaged upon ligand binding, a phenomenon known as “signaling
bias” [50,51]. The underlying molecular mechanism of signaling bias is still poorly understood and
will be addressed in more detail in a later section (Section 2.2.2).

2.2. Ligand Binding to GPCRs

Typically, GPCRs are able to recognize and bind a variety of ligands that modulate the receptor
functional outcome. Deciphering the complex process of receptor modulation, and how specific
interactions in the ligand binding site are linked to the final functional outcome, has been a main goal
of many scientific endeavors. Such information would help us better understand GPCR physiology
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and inform the design of molecules with a specific signaling profile [52]. A valuable resource of ligand
binding dynamics is found in the recently established GPCRmd server [53], which provides intuitive
visualization and analysis tools currently covering 70% of crystallized receptor subtypes (Figure 2).
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2.2.1. Classical Orthosteric Ligands

The use of static structures to understand ligand binding can lead to incomplete information,
especially in receptors with high flexibility. This was highlighted by Ferruz et al. in a study where they
compared the binding poses of several dopamine D3 receptor antagonists obtained with static docking
and with MD simulations [54]. Using large-scale MD simulations and Markov state models (MSMs),
they were able to overcome the limitations of docking in the determination of the ligand binding poses
and revealed a cryptic binding pocket. Virtual screening protocols considering only static structures
would miss compounds binding to this cryptic binding pocket. Thus, the characterization of the
intrinsic flexibility of GPCRs is of great value for the identification or design of new ligands [55],
as discussed also in Section 3.

Similarly, MD studies provide valuable information on the strength of ligand-receptor interactions
in terms of contact frequencies that cannot be obtained by methods that do not account for the
flexibility of the binding site. This information facilitates the identification of the key interactions that
a ligand establishes in the binding pocket and which likely drives the signaling outcome. For example,
a combination of molecular modeling and simulation was used to describe the binding characteristics
of the natural agonist and its derivatives in the oxoeicosanoid receptor 1, providing new insights
into how this receptor is modulated [56]. Moreover, MD simulation provided information on ligand
stability and key interactions that allowed identifying selectivity features of 5-HT2B fluorescent ligands
that retain the agonistic functional behavior of the model ligand [57].

The interaction between a ligand and a GPCR, however, is not only determined by the events that
happen once in the binding site. The ligand needs to pass through a series of intermediate states between
the solution phase and the fully bound pose, known as the ligand binding pathway. Describing this
pathway can lead to the identification of energetic barriers that affect the binding and unbinding rates.
Ultimately, such rates play a pivotal role in drug efficacy, selectivity, and safety [58–60]. The details of
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the binding pathways are difficult to probe by experimental techniques, but MD simulations generate
useful insights on this process [61]. Some highlights in the MD-based characterization of binding
pathways include (S)-alprenolol binding to the β2AR [62], histamine to the histamine H4 receptor [63],
adenosine to the A2AR [64], and clozapine and haloperidol to the dopamine D2 and D3 receptors [65].
Importantly, the case of the β2AR was the first unbiased MD simulation study capturing the full
process of ligands spontaneously binding to a GPCR. Dror et al. were able to achieve final poses
matching those determined crystallographically without the incorporation of any prior knowledge of
the binding site. Results revealed not only the predominant pathway into the binding site, but also the
two main energetic barriers that govern drug binding and unbinding kinetics.

2.2.2. Biased Agonists

Biased agonists are molecules of high interest, as they selectively target a specific signaling pathway
in a cell while maintaining other signals in their physiological state. Biased signaling probes are valuable
tools to interrogate the involvement of the pathway in physiological processes or in the development
of disease symptoms. Furthermore, they are promising starting points for the development of safer
drugs, as they potentially allow selective modulation of pathways associated with disease symptoms
while not engaging counter-therapeutic pathways or those related to debilitating side-effects.

Several studies demonstrated the usefulness of MD simulations to uncover distinct molecular
events that are linked to a biased response [66]. Thus, Martí-Solano et al. characterized the dynamic
receptor interaction fingerprint of biased agonists with a specific signaling response [67]. Based on this
information, this study succeeded in predicting additional ligands with a tailored signaling profile.
Such a strategy has been also successfully applied to ligands targeting the dopamine D2 [68], M2 [69],
and AT1 [70] receptors.

Moreover, MD studies can also capture downstream events related to signaling bias. In this respect,
novel mechanistic insights revealed the connection between ligand binding, conserved micro-switches,
and arrestin bias in serotonin receptors [71]. In particular, simulations showed that interactions of
the ligand with the binding pocket determine the rotational freedom of TM6 which, in turn, impacts
the conformation of the highly conserved P-I-F motif. Consequently, a hydrophobic connector region
between the P-I-F motif and the ionic lock seems to contribute to the formation of a water channel
that determines the degree of receptor opening (disrupted ionic lock). This conditions G protein
coupling and, thus, whether signaling is biased towards arrestin or not. This work highlights the
capacity of MD to shed light on features that cannot be extracted from static structures. Another
relevant example was an extensive study developed by Kapoor et al. aiming to explain the basis
of functional selectivity in the µ-opioid receptor [72]. Among other findings, the study identified
distinct conformational rearrangements in the receptor bound to a balanced or a G protein-biased
agonist. They also highlighted differences in the allosteric communication, with a more pronounced
transfer of information triggered by the G protein-biased agonist. Finally, Nivedha et al. developed a
computational method to predict ligand bias in GPCRs ahead of experiments [73]. For that, they used
MD simulation to calculate the mechanism of allosteric communication from the extracellular region
to the intracellular transducer coupling region. Additionally, they were able to identify functional
hotspot residues that potentiate the ligand-mediated bias, which can greatly aid in the design of biased
ligands for GPCRs.

2.2.3. Allosteric Ligand Binding

When studying ligand binding, traditional efforts have focused on targeting the orthosteric
binding site of GPCRs. The orthosteric binding site of many GPCR subtypes is highly conserved. As a
consequence, orthosteric ligands often target several receptors simultaneously, leading to off-target side
effects. This leads to one important challenge of GPCR drug discovery, which is achieving selectivity,
the ability of ligands to specifically target one receptor subtype over another.
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Contrarily to orthosteric ligands, allosteric ligands bind to sites topographically distinct from the
orthosteric binding site. Such allosteric binding sites are much more variable in terms of the sequence,
which gives allosteric ligands the potential to achieve greater selectivity at GPCR subtypes [23,74].
Allosteric ligands modulate the effect of the orthosteric ligand on the target, which provides a strategy to
fine-tune cellular responses triggered by the orthosteric ligand. These characteristics of allosteric ligands
have invited a growing interest in designing drugs that target allosteric pockets of GPCRs [75,76].

However, targeting allosteric sites comes with some challenges. Allosteric binding sites are not
evident from crystal structures. Moreover, the molecular mechanisms by which these modulators
affect GPCR signaling depend on dynamical properties that are not evident from static structures.
This makes computational methods such as MD simulations a valuable approach to detect hidden
allosteric binding sites and determine the mechanistic basis of allosteric regulation [77]. MD-based
studies have been especially helpful for the identification of allosteric mechanisms in muscarinic
receptors, which are usually paradigmatic for all GPCRs [78–80]. One case is the work from Dror et al.
in which they provided a structural basis of allosteric ligand binding and described mechanisms
of cooperativity between the allosteric and the orthosteric ligand [80]. In another study, Chan et al.
applied long-timescale MD simulations to show that acetylcholine, the endogenous ligand, can go
from the orthosteric binding site into a deeper allosteric binding site [81].

2.3. Revealing the Dynamic Behavior of Water Molecules and Ions

Comparative analysis of available crystal structures pointed to the relevance of waters for receptor
dynamics and function [82]. The unique ability of MD to monitor diffusion and binding events of all
water molecules in a system enabled the further elaboration of this idea. Simulations of the opioid
receptors revealed that GPCR activation correlates with the entrance of waters from the extracellular
side [83,84]. In line with this finding, further studies demonstrated that activation of the A2AR is linked
with the formation of continuous water channels [85,86]. Detailed investigation of the simulation
frames revealed that the formation of this channel is mediated by rearrangements of conserved residues
W6.48 and Y7.53, the latter of which forms the NPXXY motif.

Importantly, water molecules also have a strong impact on ligand binding and unbinding events,
which can be investigated in detail with MD simulations. It is well established that water has a role in
ligand-receptor dissociation. For example, Schmidtke et al. showed that shielding ligand-receptor
hydrogen bonds from water can contribute to long ligand residence time [87]. Interestingly, Magarkar
et al. recently found, based on MD simulations, that shielding of water from intra-protein interactions,
not directly involved in ligand−receptor interactions, is also a relevant factor in ligand binding kinetics,
as such interactions confer the rigidity of the binding site [88]. This opened new opportunities for the
optimization of the residence time during drug development pipelines.

Similarly, MD simulations helped to shed light on the role of ions for GPCR function. Sodium ions
are known to be important allosteric modulators of GPCRs, but the mechanism of this modulation
is still not well understood [89]. Using MD simulations, Selent et al. provided structural details
on the binding of sodium ions in the D2 receptor and proposed the molecular mechanism of the
allosteric sodium-induced modulation [90]. Several studies have been dedicated to revealing atomistic
insights into allosteric sodium ion binding to other class A receptors [91,92]. For example, Selvam et al.
elucidated the sodium binding mechanism of 18 GPCRs based on hundreds-of-microsecond long
simulations [93]. Their analysis of the kinetics of sodium binding to the allosteric site revealed key
residues that act as major barriers for sodium diffusion. Also, they reported that sodium ions can bind
to GPCRs from the intracellular side when the allosteric site is inaccessible from the extracellular side.
Furthermore, Vickery et al., based on MD simulations and free energy calculations, suggested that the
opening of the conserved hydrated channel in the active M2 muscarinic receptor allows the exchange
of a sodium ion from its extracellular binding pocket to the cytoplasm. This exchange of sodium could
be a key step in class A GPCR activation [94]. Beyond allosteric ion effects, a recent study has also
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proposed that sodium ions can stabilize ligand binding in the orthosteric site and by this enhance
receptor signaling in the D2 receptor [95].

2.4. Impact of Natural Genetic Variants

Another factor that impacts GPCR functionality is genetic variants. A huge number of natural
genetic variants are observed in GPCRs, as listed in dbSNP [96] and GPCRdb [4]. To name a few,
missense variants in rhodopsin are responsible for retinitis pigmentosa due to an alteration in receptor
folding and cellular trafficking [97], and missense variants in the C-C chemokine receptor 6 exhibit
loss-of-function effect by decreasing G-protein signaling [98].

Understanding the impact of natural variants on GPCRs is critical, as variants can be responsible
for disease susceptibility, as well as distinct responses to treatments [99]. Such functional differences can
be caused by alterations in dynamic processes of ligand binding pathways, ligand binding interactions,
constitutive receptor activity, or recognition of intracellular effector proteins (e.g., G protein binding).
Hence, MD simulations are a promising approach to elucidate the molecular mechanisms that
explain functional differences between wild type and variant GPCRs, providing genotypic-phenotypic
correlations [100–103]. MD simulations were used, for example, to determine the molecular basis of
the effect of a commonly found variant: the Arg16Gly variant of the β2AR. This variant has been linked
to a differential response to albuterol, a β2AR agonist frequently used in the treatment of asthma.
Results revealed that the Arg variant increased the dynamics of the N-terminal region, where this
polymorphism is located. This change in dynamics leads to long-range effects at the ligand binding
site, altering ligand binding-site accessibility, which is higher in the Gly variant [102]. Similar results
were recently found for the Gln27Glu variant of the same receptor, which perturbs the network of
electrostatic interactions that connects the N-terminal region with the binding site, altering drug
response [103].

2.5. Complementing Experimental Maps

A critical step in X-ray crystallography or cryo-EM of GPCRs is fitting the receptor model to the
experimental density map. After the fitting procedure, certain density areas often remain unmatched,
a piece of information that can be extracted from the so-called difference maps (fo-fc). The discrepancy
between model and experimental density map may arise from the existence of different rotameric states
or the binding of water molecules and ions. Thanks to MD it is possible to complement static structures
with this information by monitoring the dynamics of sidechain rotations and the diffusion/binding of
solvent molecules that can justify unmatched density areas. Moreover, MD allows investigating highly
flexible regions that explain low-resolution areas in density maps.

3. Application of MD in Drug Discovery

The drug discovery process implies an immense cost, high risk, and a long time to move from the
bench to the market [104]. Computer-aided drug design has the potential to de-risk and accelerate this
process [74], and thus it has become an attractive approach for drug discovery targeting GPCRs [105].
Static structures have proven highly effective at aiding drug design [106]. However, due to the high
flexibility of GPCRs, especially in druggable regions such as allosteric sites, the full potential of
structure-based drug design requires a deeper understanding of GPCR dynamics [80,107].

One of the most widely used structure-based drug design strategies is virtual screening,
where libraries of small molecules are screened to identify those structures which most likely bind to
the target. Virtual screening is traditionally based on docking the ligands to a static structure of the
target protein. This approach has been very successful for the discovery of new ligands. Yet, docking
does not consider the flexibility of the binding pocket, thus leading to the identification of only a
subset of binders, namely those similar to the crystallized ligand [14]. Using MD to account for the
dynamic behavior of the binding pocket generally increases the diversity of ligands identified [55,108].
Moreover, it allows exploring rare conformations that can help define drugs with higher specificity
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for the receptor [109]. Overall, MD-based methods are more resource-consuming compared with
traditional docking, but a higher accuracy can be reached. For example, an interesting approach
to include dynamic information in virtual screening protocols is the characterization of the binding
site using MD to construct ensembles with structural diversity, where the ligand candidates are
docked [110–112].

MD can also provide valuable information to guide lead optimization, where the ligand is
modified to improve properties, such as potency, selectivity, or pharmacokinetic parameters. Dynamic
information can be used to identify the key interactions that the lead ligand establishes with the binding
pocket, as well as rearrangements of the binding pocket induced by the ligand [113]. Simulations
can further help test and refine potential ligand poses, or even reveal unknown binding sites [77,114].
They are also valuable to improve selectivity, as they can be used to identify differences in the dynamics
of binding pockets of closely related receptor subtypes [113].

Moreover, simulation-based methods were found to provide substantially more accurate estimates
of ligand binding affinities (free energies) compared to other computational approaches [115]. For now,
it is not possible to sample enough unbinding events to determine rates or affinities by unbiased MD.
However, it is possible to combine MD with specialized free-energy techniques to enhance sampling
for this purpose. This is the case of the free energy perturbation method, which can be used to evaluate
and compare the relative affinity of several compounds, such as derivatives of a particular ligand, on a
target receptor. This was shown to be particularly useful, for example, for fragment optimization [116].
Similarly, this technique can be used to characterize and compare the effect of single-point mutations of
residues in the binding pocket on the binding affinity of a ligand, which helps to determine its binding
mode [117]. Another extended approach is metadynamics simulations. Provasi et al. pioneered the
use of metadynamics [13] to study ligand binding to GPCRs [118] and have successfully applied this
enhanced MD algorithm to predict the binding pose of several orthosteric and allosteric ligands in
opioid receptors [119,120]. Still, automatizing metadynamics protocols in drug discovery workflows is
challenging, since they usually require specific testing and optimization, mainly to select adequate
collective variables [121]. However, efforts are being made to generate accurate and inexpensive
metadynamics protocols that can be applied to a broad range of different GPCRs and ligands. This is
the case of Saleh et al., who proposed a generally applicable metadynamics protocol that uses a single,
optimal CV to accurately and efficiently explore the entire ligand binding path and predict binding
mechanisms and affinities [122].

Another important application of simulation techniques for lead optimization is the optimization
of drug binding and unbinding kinetics, which plays a critical role in drug efficacy, selectivity,
and safety [58–63,65,123]. In fact, the ligand unbinding kinetics (the inverse of its residence time on the
protein) is sometimes better correlated with drug efficiency than binding affinities [124]. Successful
examples like tiotropium demonstrate the potential of kinetic optimization. Tiotropium is a well-known
M3 muscarinic receptor antagonist used as treatment for chronic obstructive pulmonary disease. Its very
slow dissociation rate from the M3 receptor is postulated to be the key to its superior pharmacological
profile. Interestingly, while tiotropium has a similar affinity for the M2 and M3 receptors, it shows
kinetic subtype selectivity towards the M3 [125]. Based on MD simulations, this selectivity was found
to be caused by differences in the electrostatics and flexibility of the extracellular surface [126].

To further decipher the molecular basis of binding and unbinding kinetics, MD simulations can be
used to obtain the whole binding pathway of the ligand, identify metastable binding sites and detect
the energetic barriers that govern drug binding and unbinding kinetics [127]. Ligand dissociation time
scales are often much longer than those accessible by unbiased MD, even when specialized hardware
is used. Thus, enhanced sampling algorithms such as metadynamics are commonly employed.
To increase the applicability of these techniques in drug discovery, several variations of conventional
metadynamics protocols are created, for example by combining metadynamics with adiabatic-bias
MD [128,129].
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When designing a GPCR-targeted drug, one aims to achieve a particular signaling profile. In other
words, the drug needs to be able to stabilize certain conformational states of the receptor. This is a
complex process that requires an understanding of how subtle changes in the binding pocket lead
to different conformations of the intracellular coupling interface and, in turn, different signaling
profiles. Achieving the desired signaling profile is especially challenging in the case of biased ligands.
The successful design of a biased ligand requires knowledge of the conformations associated with G
protein signaling and arrestin signaling. As discussed in previous sections, MD simulations are able to
provide detailed information on binding pocket dynamics and allow us to compare the receptor-ligand
interactions that occur in different conformational states of the receptor and in complex with different
types of ligands (e.g., unbiased agonist, biased agonist, inverse agonist, or antagonists) [14]. This opens
the road for a more tailored and fine-tuned drug development.

4. Workflow for MD Simulation

The procedure for conducting MD simulations can be divided into four stages (Figure 3a).
In the first stage (stage 1), we create the initial coordinates for our simulation system (Figure 3b).
This generally involves the curation of experimentally solved receptor structures (e.g., modeling of
missing residues/loops, reverting thermo-stabilizing mutations to the wild-type, etc.) or the application
of homology modeling. The obtained GPCR model is then embedded into a specific membrane,
solvated, and ionized to a physiological concentration. In this initial stage, one should carefully
consider factors such as atomic resolution (atomic scale versus coarse-grained), absence or presence of
post-translational modifications (palmitoylation, phosphorylation, glycosylation), and the composition
of the membrane environment.
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Figure 3. (a) Flowchart summarizing the stages of a MD simulation. (b) Example of a GPCR molecular
system, including the β-2 adrenergic receptor (β2AR, blue) with a full agonist in the binding site
(orange) in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane (tails in light brown,
heads colored by heteroatom). The system is solvated with water (red) and ionized with sodium (green)
and chloride (purple) ions.

Once the starting structure is obtained, we proceed to simulate the atomic motions of the system.
For that, the forces that act on each atom in the system are calculated (stage 2). This is possible thanks to
the so-called force fields, a set of empirical potential energy functions that include all parameters needed
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to solve both bonded and non-bonded atomic interactions [130,131]. Based on the obtained forces,
the atomic positions at the following timestep are predicted by solving the classical (i.e., Newtonian)
equations of motion (stage 3). Then, the positions of the atoms are updated accordingly (stage 4).
From here, we start an iterative cycle by re-calculating again the forces that act on each atom in the
new conformation of the system (stage 2), solving Newton’s equations (stage 3), and updating the
atomic positions (stage 4). The time length between these iterations, known as the simulation timestep,
should be shorter than the fastest process in the system (typically the vibrations of bonds between
heavy atoms, as we commonly constrain hydrogen atoms) and usually is around 2 fs.

The timescale of the biological process we are interested in defines the number of iteration steps
needed to complete the simulation, which can easily be higher than millions. Knowing when to stop
a MD simulation is not trivial, but one has to ensure that the simulation has efficiently sampled the
conformational space of the biological process studied.

5. MD Analysis—Extracting Data from the Simulations

5.1. Principles of MD Analysis

Due to the extensive amount of information generated by MD simulations, specific computational
tools have become mandatory for their proper analysis. Some of the most popular tools include
python modules such as MDAnalysis [12,13] and MDtraj [132], which allow the automatization of
analysis pipelines using scripts. The visualization and modeling software Virtual Molecular Dynamics
(VMD) [133] also provides a range of analysis tools that can be expanded even further by using plugins.
In addition, simulation software like GROMACS [134] and CHARMM [135] include their own build-in
sets of analysis tools. Even more, there exist online repositories such as Plumed-nest [136], specifically
developed to store scripts used for generating and analyzing MD simulations. Despite the diversity in
available tools, certain parameters are frequently analyzed, as they provide relevant information about
the simulation.

One of the most important parameters is the root mean square deviation (RMSD), which allows a
quantitative evaluation of the structural changes that occur during a simulation. It is based on the
distances between the atoms of the protein at a certain frame and the same atoms at a superimposed
reference frame (Figure 4d). The RMSD is obtained with the following equation:

RMSD =

√√
1
n

n∑
i=1

‖xi
(
t j
)
− xi(t0)‖

2

where xi
(
t j
)

represents the coordinates of atom i at frame j, xi(t0) represents the position of the same
atom i at the reference frame, and n the number of atoms in the system.

RMSD profiles (i.e., RMSD over time) are routinely used to assess the stability of the simulated
protein and detect transitions between different conformations (Figure 4a). It is also useful to compare
the dynamic behavior of the receptor under different conditions, as done by Ozcan et al. to determine
the effect of the intracellular loop 3 in human β2AR [137].

Another widely used parameter is the root mean square fluctuation (RMSF), which describes the
relative mobility of an atom or residue in the simulation. The RSMF is based on the mean square of the
residue or atom position in each frame, which can be obtained using the following equation:

RMSF =

√√√√
1
T

T∑
j=1

(
xi
(
t j
)
− xi

)2

where xi
(
t j
)

represents the coordinates of atom i at frame j, xi the average position of atom i in the
simulation and T the total number of frames in the simulation.
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Figure 4. Example of different parameters analyzed in a 500 ns-long MD simulation of the A2A receptor
(A2AR). (a) Root mean square deviation (RMSD) profile taking as reference the first frame of the
simulation, which is superimposed to the rest of the frames. RMSD values (i.e., structural differences
with respect to the reference frame) increase over the simulation time until the system reaches a stable
conformation after 100 ns. (b) Root mean square fluctuation (RMSF) profile displaying the values of all
the alpha carbons in the protein. Higher RMSF values correspond to flexible loops, while lower ones
belong to transmembrane helices, where residues are stabilized by the secondary structure. (c) Radius of
gyration (RG) profile where the RG fluctuates around the same value during the simulation, indicating
that the system does not suffer any big change in compactness. (d) Superimposition of 25 representative
frames of the simulated receptor. The relative mobility of loop regions contrasts with the rigidness of
the transmembrane helices.

RMSF profiles (i.e., RMSF as a function of atoms/residues) are often employed to describe and
compare the relative mobility of specific regions of the receptor (Figure 4b). For example, Semack et al.
were able to detect specific flexibility profiles for the β2AR and the vasopressin receptor 1A when
bound to different sets of peptides derived from the C-terminus of the G alpha subunit [138].

Furthermore, the radius of gyration (RG) is a valuable parameter to describe the overall
compactness of the protein. Specifically, the RG is defined as the mean square of the distance
between each protein atom and the center of mass of the protein:

RG =

√√
1
n

n∑
i=1

(ri − rcm)
2

where ri − rcm represents the distance between atom i and the center of mass of the molecule and n the
total number of atoms in the system.
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RG profiles (i.e., RG over time) can be used to assess the evolution of the protein compactness
during a simulation (Figure 4c), as done by Davoudmanesh and Mosaabadi to study the effects of
homocysteinylation of the neuropeptide substance P on its binding with the NK1 receptor [139].

In order to obtain a detailed view of the molecular mechanisms that drive general receptor
properties such as protein stability (RMSD), conformational flexibility (RMSF), and compactness (RG),
one needs to analyze the intramolecular interactions. In this respect, non-covalent interactions between
residues play an important role. Also, non-covalent interactions are critical for ligand recognition.
In MD simulations, these interactions and their stability can be predicted based on atom distances
and angles. Using this methodology, Dror et al. were able to discern the importance of an ionic lock
interaction for the conformation change produced during the activation of β2ARs [140].

Most of the aforementioned MD analysis tools (e.g., MDAnalysis, GROMACS, VMD) focus
on hydrogen bond interactions, as this is one of the most abundant and structurally important
interaction types in proteins. However, there are many other interaction types that should not be
neglected, including van der Waals, salt bridges, π-cation, and π-stacking interactions. To analyze
them, more specialized tools have been developed, such as the python module GetContacts [141].
A good example of the capabilities of this module can be found in the Receptor Meta-analysis web tool
(https://submission.gpcrmd.org/contmaps/) included in the GPCRmd platform [53]. This tool analyzes
and compares different types of non-covalent interactions obtained from a large GPCR simulation
dataset using GetContacts scripts, and displays them into a series of interactive plots (Figure 5).
This allows extracting conclusions about the interaction pattern of different GPCRs.
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Figure 5. Pattern of total interaction frequency of several MD simulations of GPCRs, extracted from
the GPCRmd Receptor Meta-analysis tool (https://submission.gpcrmd.org/contmaps/) of the GPCRmd
server [53]. Columns represent interacting residue pairs according to Ballesteros-Weinstein residue
numbering [142], whereas rows represent different simulations. The color of each cell shows the
frequency in which any type of non-covalent interaction occurs during the simulation. Results are
clustered based on the interaction frequencies of the simulations. This clustering is able to separate
simulations according to the receptor subtype, showing that different receptor subtypes present
differentiated interaction patterns.

5.2. Analysis of the Allosteric Communication

Allostery is a property of a protein by which perturbations that take place in one part of its
structure are transmitted to distant parts of it. GPCRs are an excellent example of allosteric proteins.
As described in Section 2.1, the binding of a ligand in a GPCR causes local structural changes in the
binding pocket, which are transmitted across the receptor leading to a global conformational change
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and, in turn, a specific signaling response. This is mediated by a complex allosteric network in which
multiple nodes (i.e., residues) transmit a specific perturbation through the whole protein. Not only
GPCRs present this phenomenon. Multiple studies have explored allostery in many other proteins like
thrombin and PDZ domains among others [143,144].

An accurate model to capture protein allostery is an important focus of current research efforts.
For instance, knowing how a drug candidate affects allosteric communication would be of great help
to fine-tune its potency and efficacy in drug development programs. Moreover, protein engineering
could be considerably improved if we were able to access the repercussion of a mutation in the protein
structure and, thus, its functional outcome.

MD simulation has been used in many studies as a tool to analyze protein allostery. However,
the way in which researchers look at this data is heterogeneous. Numerous studies rely on the
comparison of the structural and dynamic behavior between two or more conditions. Others focus on
analyzing the transition between two conformational states. In this case, the role of metadynamics
is crucial, given that some of these transitions happen in time scales not accessible for classical
(non-biased) simulations [145]. Another approach is to focus on changes in the conformational space,
which is commonly studied using principal components analysis [146]. Others base their studies
on the correlations in the movement of residues [147]. For this, the use of information theory-based
methodologies is the most common approach to measure dependence between residues or groups of
residues [148]. Finally, some researchers pay more attention to variables influenced by the chemical
context of the residues, such as the contacts with other residues [149].

In many cases, some of these relationships are used to build networks. In these networks,
residues are represented as nodes, while edges represent the level of coupling between the residues.
Then, centrality and community analysis can be applied to the network to find the residues that
contribute the most to communication inside the protein [147].

Some of the most influential works in the field combine several of the approaches mentioned.
For example, Dror et al. studied the conformational correlation of β2AR subdomains in different
activation states to propose an activation mechanism of this receptor [28]. Also, Miao et al. analyzed
metadynamics simulations of the M2 muscarinic receptor using a network representation of the
residue cross-correlation [150]. This analysis allowed them to characterize some aspects of the receptor
activation. Finally, Bhattacharya and Vaidehi investigated network representations of the inter-residue
dihedral correlation of the β2AR [151]. The resulting model describing allosteric communication was
able to identify allosteric pockets and identify residues that affected function upon mutation.

Overall, this field has a great potential for understanding GPCR pharmacology but is still
challenging and requires the development of more robust protocols. This robustness might be achieved
by integrating the different methodologies that are being used into a more complete analysis.

6. Current Challenges

The capabilities of MD simulations have broadened substantially thanks to the technological
advances of the last decades. However, there are still some relevant drawbacks that limit the usability
of this technique and must be taken into account.

As described in Section 2.1, the forces of a MD simulation are calculated based on a force field,
which consists of a set of empirical potential energy functions. Force fields are based on quantum
mechanical calculations and experimental measurements, and include some approximations. As such,
force fields are imperfect. Studies comparing simulation results with experimental data indicate that
force fields have improved significantly over the past decade [152], but more remains to be done to
achieve increased accuracy. Another limitation of classical MD is that it is not possible to form or break
covalent bonds during the simulation. As a consequence, protonation states of titratable amino acid
residues are fixed, as well as disulfide bonds. Thus, they have to be set carefully at the beginning of the
simulation [113].
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An important challenge that needs to be taken into account is the simulation timescale.
The simulation timestep, which is the time length between evaluations of the potential, needs to be
small enough to capture the fastest movements in the simulation system. This typically limits the
timestep to around 2 fs. Many relevant molecular events, however, take part in the microsecond to
millisecond scale, or even longer. This implies the calculation of a vast number of timesteps, each of
which involves the calculation of millions of interatomic interactions. As a consequence, reaching long
timescales can be challenging for classical MD. Furthermore, the issue with long-timescale events is that
they imply the transition between free energy states that are separated by high-energy barriers. In this
situation, classical MD simulations tend to get trapped in one of these local minimum-energy states for
a long time, which restrains the sampling process. In turn, this leads to a poor characterization of the
protein’s dynamic behavior [153]. A useful strategy to tackle the sampling problem is the application
of enhanced sampling techniques. Enhanced sampling simulations, including replica-exchange MD,
metadynamics, and simulated annealing, are able to efficiently overcome energetic barriers and
access additional conformational states by including an external bias [22,154]. Simplified models like
coarse-graining can also extend accessible timescales by orders of magnitude, as they are less expensive
computationally [155]. Nevertheless, the problem of achieving relevant simulation timescales with
classical, all-atom MD seems to be within reach of being solved [156]. In recent years, there has been a
dramatic increase in achieved timescales. This tendency is expected to continue, thanks to the advances
in algorithms [8,9,157,158], software [159–162], and hardware [163,164] that we are experiencing. In fact,
it is expected that all-atom, classical MD simulations will be able to reach the second timescale within
the next five years [165–167].

Parallel to the limitation of longer timescales accessible to simulations, there is a limitation in
the size of the systems that can be studied. As the system size increases, so does the computational
power needed to carry out the simulation. In general, the required computational power increases
with the square of the number of atoms involved. Moreover, as molecular systems become bigger,
the biologically relevant timescales tend to increase too [165]. Overall, this challenges the study of
GPCRs in complex with G protein or arrestin. Enhanced sampling techniques are a promising approach
for the study of such systems. However, selecting predefined collective variables for the simulation of
protein-protein interactions is a difficult task, as such processes often involve large-scale translations and
rotations of the binding partners, as well as complex conformational changes. Thus, methods that do
not require predefined collective variables, such as Gaussian accelerated MD, are especially convenient.
In fact, recently Miao et al. successfully applied Gaussian accelerated MD to simulate the intracellular
association between the M2 receptor and a G-protein mimetic nanobody [168]. Their simulations
revealed important insights into the binding mechanism, despite the fact that the calculated free
energies were not converged. Future developments will be needed to achieve converged simulations
of such complex systems.

Given this fast evolution of the capabilities of MD simulation, this technique is gaining more and
more relevance. In view of this, it is becoming increasingly necessary to define standards and best
practices to ensure a reproducible research output [169]. Many challenges remain in order to effectively
reach this goal. One issue is the creation of workflows for simulation production and analysis. The file
formats and force fields supported by different programs are often incompatible. This limits the
combination of software packages that can be used together in a workflow and restricts the choice
of algorithms and force fields based on software compatibility rather than scientific-based reasons.
Luckily, this can be solved with the development and usage of software that converts molecular
information between the different file formats. Still, this does not solve the problem that different
programs, or program versions, may implement force fields and features, such as thermostats and
integrators, in different ways. Thus, the results of a workflow will be influenced by the combination of
programs used [170]. Because of this, it is always important to disclose the version and name of all
programs used. In fact, detailed documentation of the entire workflow should always be provided
when publishing a simulation. The level of detail in documenting the workflows needs to be enough



Int. J. Mol. Sci. 2020, 21, 5933 16 of 26

to ensure the reproducibility of the obtained results. Finally, another challenge that needs to be
overcome to achieve reproducibility is data sharing. Data sharing is still not widely adopted in the
field of MD simulation, partly because of the technical difficulties derived from the increasing size
of the generated trajectories. More efforts should be done to define best practices and guidelines
for simulation data sharing [171]. Luckily, many researchers work to promote it [172], and different
initiatives are addressing this issue. Several software packages [173–176] have been developed to
share trajectories by providing online interactive visualization based on the advantages of the WebGL
API. Moreover, several community-driven projects provide specialized platforms for deposition and
analysis of MD simulations [53,136,177–181]. In the case of GPCRs, GPCRmd [53] is an online resource
specialized in the deposition and analysis of GPCR MD simulations.

7. Conclusions and Perspectives

MD simulations are a potent computational technique capable of generating high-resolution
simulations of the structural motions of a molecular system. They can either capture atomic-level
motions within a specific conformational state or structural transitions between different conformational
populations, bringing within reach information that is difficult, or even impossible, to obtain by
other methods [14]. This makes MD simulation a promising technique for the study of GPCRs,
whose functionality is highly determined by their ability to transition between conformations. In fact,
MD simulations have proven their usefulness for the study of important biological processes in GPCRs
such as ligand binding, allostery, activation, natural genetic variation, and addition of post-translational
modifications, among others. Since GPCRs are drug targets of striking importance in the pharmaceutical
industry [182], all this information generated by MD simulations has the potential to accelerate the
discovery of new and improved drugs targeting these proteins.

In order for MD simulation to reach its full potential, some difficulties need to be overcome.
Fortunately, we are in an era of rapid technological development, which creates great prospects for
the advancement of this field in the following years. Computational power is expected to continue
increasing following Moore’s law, which describes how the performance of integrated circuits has
been increasing exponentially over the past half-century [183]. This would imply a reduction in
computational costs. At the same time, we expect methodological advances in MD algorithms,
including improvements in the fine-tuning of energy calculations, parallelization, GPU exploitation,
and algorithmic methods to increase the sampling of conformational space. Overall, this would cause
an increase in the timescales available to simulations. Several authors propose that we may even reach
the second timescale within the next five years [165–167], bridging the gap between the timescales of
biological processes observed in vivo and those accessible in silico. Parallel to timescales would come a
growth in the size of the systems that can be studied [165]. This, together with an ever-growing accuracy
in the force fields, will grant us the opportunity to extend the application of MD simulations to the study
of processes that were previously difficult to capture. This may open the door to significantly advance
in the study of macromolecule-macromolecule interactions [184], including GPCR oligomerization,
and coupling to intracellular signaling proteins. While coarse-grained MD has been typically used for
this type of study [185,186], it is important to capture the effects of macromolecule-macromolecule
interactions on the structural dynamics and cell signaling through more detailed MD simulations [107].

Finally, as simulations become faster, cheaper, and more widely accessible, new opportunities will
arise for drug discovery. In the past, most drug discovery programs have disregarded MD analysis because
of their computational expenses. With the forthcoming reduction of the computational costs associated
with MD simulations, this technique is expected to be more commonly applied in the pharmaceutical
industry and, eventually, to be commonly included in drug discovery pipelines [184,187,188].
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GPCR G protein-coupled receptor
Cryo-EM Cryo-electron microscopy
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TM Transmembrane helix
MSMs Markov state models
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VMD Virtual Molecular Dynamics
RMSD Root mean square deviation
RMSF Root mean square fluctuation
RG Radius of gyration

References

1. Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug
discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [CrossRef]

2. Congreve, M.; de Graaf, C.; Swain, N.A.; Tate, C.G. Impact of GPCR Structures on Drug Discovery. Cell 2020,
181, 81–91. [CrossRef]

3. Jazayeri, A.; Andrews, S.P.; Marshall, F.H. Structurally enabled discovery of adenosine a2a receptor
antagonists. Chem. Rev. 2017, 117, 21–37. [CrossRef]

4. Pándy-Szekeres, G.; Munk, C.; Tsonkov, T.M.; Mordalski, S.; Harpsøe, K.; Hauser, A.S.; Bojarski, A.J.;
Gloriam, D.E. GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Res. 2018,
46, D440–D446. [CrossRef]

5. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]

6. McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585–590. [CrossRef]
[PubMed]

7. Dahl, S.G.; Edvardsen, O.; Sylte, I. Molecular dynamics of dopamine at the D2 receptor. Proc. Natl. Acad.
Sci. USA 1991, 88, 8111–8115. [CrossRef]

8. Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Hardy, D.J.; Trabuco, L.G.; Schulten, K. Accelerating molecular
modeling applications with graphics processors. J. Comput. Chem. 2007, 28, 2618–2640. [CrossRef] [PubMed]

9. Anderson, J.A.; Lorenz, C.D.; Travesset, A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. J. Comput. Phys. 2008, 227, 5342–5359. [CrossRef]

10. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM.
J. Comput. Chem. 2008, 29, 1859–1865. [CrossRef]

11. Mayol, E.; García-Recio, A.; Tiemann, J.K.S.; Hildebrand, P.W.; Guixà, R.; Guixà-Gonzálezgonz’gonzález, G.;
Olivella, M.; Cordomí, A. HomolWat: A web server tool to incorporate “homologous” water molecules into
GPCR structures. Nucleic Acids Res. 2020, 1, 13–14. [CrossRef] [PubMed]

12. Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of
molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrd.2017.178
http://dx.doi.org/10.1016/j.cell.2020.03.003
http://dx.doi.org/10.1021/acs.chemrev.6b00119
http://dx.doi.org/10.1093/nar/gkx1109
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1038/267585a0
http://www.ncbi.nlm.nih.gov/pubmed/301613
http://dx.doi.org/10.1073/pnas.88.18.8111
http://dx.doi.org/10.1002/jcc.20829
http://www.ncbi.nlm.nih.gov/pubmed/17894371
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1002/jcc.20945
http://dx.doi.org/10.1093/nar/gkaa440
http://www.ncbi.nlm.nih.gov/pubmed/32484557
http://dx.doi.org/10.1002/jcc.21787
http://www.ncbi.nlm.nih.gov/pubmed/21500218


Int. J. Mol. Sci. 2020, 21, 5933 18 of 26

13. Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Domański, J.; Dotson, D.L.;
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