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Abstract

Introduction: Automatic functional volume segmentation in PET images is a challenge that has 

been addressed using a large array of methods. A major limitation for the field has been the lack of 

a benchmark dataset that would allow direct comparison of the results in the various publications. 

In the present work, we describe a comparison of recent methods on a large dataset following 

recommendations by the American Association of Physicists in Medicine (AAPM) task group 

(TG) 211, which was carried out within a MICCAI (Medical Image Computing and Computer 

Assisted Intervention) challenge.

Materials and methods: Organization and funding was provided by France Life Imaging 

(FLI). A dataset of 176 images combining simulated, phantom and clinical images was assembled. 

A website allowed the participants to register and download training data (n=19). Challengers then 

submitted encapsulated pipelines on an online platform that autonomously ran the algorithms on 

the testing data (n=157) and evaluated the results. The methods were ranked according to the 

arithmetic mean of sensitivity and positive predictive value.
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Results: Sixteen teams registered but only four provided manuscripts and pipeline(s) for a total 

of 10 methods. In addition, results using two thresholds and the Fuzzy Locally Adaptive Bayesian 

(FLAB) were generated. All competing methods except one performed with median accuracy 

above 0.8. The method with the highest score was the convolutional neural network-based 

segmentation, which significantly outperformed 9 out of 12 of the other methods, but not the 

improved K-Means, Gaussian Model Mixture and Fuzzy C-Means methods.

Conclusion: The most rigorous comparative study of PET segmentation algorithms to date was 

carried out using a dataset that is the largest used in such studies so far. The hierarchy amongst the 

methods in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or 

combination of metrics). All the methods submitted by the challengers except one demonstrated 

good performance with median accuracy scores above 0.8.
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Introduction

Positron Emission Tomography (PET) / Computed Tomography (CT) is established today as 

an important tool for patients management in oncology, cardiology and neurology. In 

oncology especially, fluorodeoxyglucose (FDG) PET is routinely used for diagnosis, 

staging, radiotherapy planning, and therapy monitoring and follow-up (Bai et al., 2013). 

After data acquisition and image reconstruction, an important step for exploiting the 

quantitative content of PET/CT images is the region of interest (ROI) determination that 

allows extracting semi-quantitative metrics such as mean or maximum standardized uptake 

values (SUV). SUV is a normalized scale for voxel intensities based on patient weight and 

injected radiotracer dose (other variants of SUV normalization exist) (Visser et al., 2010).

More recently, the quick development of the radiomics field in PET/CT imaging also 

involves the accurate, robust and reproducible segmentation of the tumor volume in order to 

extract numerous additional features such as 3D shape descriptors, intensity- and histogram-

based metrics and 2nd or higher order textural features (Hatt et al., 2017b).

Automatic segmentation of functional volumes in PET images is a challenging task, due to 

their low signal-to-noise ratio (SNR) and limited spatial resolution associated with partial 
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volume effects, combined with small grid sizes used in image reconstruction (hence large 

voxel sizes and poor spatial sampling). Manual delineation is usually considered poorly 

reproducible, tedious and time-consuming in medical imaging, and this is especially true in 

PET and for 3D volumes (Hatt et al., 2017a). This imposed the development of auto-

segmentation methods. Before 2007, most of these methods were restricted to selecting 

some kind of binary threshold of PET image intensities, such as for example a percentage of 

the SUVmax, absolute threshold of SUV, or adaptive thresholding approaches taking into 

account the background intensity and/or the contrast between object and background 

(Dewalle-Vignion et al., 2010). Adding dependency on the object volume resulted in the 

development of iterative methods (Nehmeh et al., 2009). However, most of these approaches 

were designed and optimized using simplistic objects (mostly phantom acquisitions of 

spherical homogenous objects in homogeneous background) and usually fail to accurately 

delineate real tumors (Hatt et al., 2017a). After 2007 studies began investigating the use of 

other image processing and segmentation paradigms to address the challenge and over the 

last 10 years, dozens of methods have been published relying on various image segmentation 

techniques or combinations of techniques from broad categories (thresholding, contour-

based, region-based, clustering, statistical, machine learning…) (Foster et al., 2014; Hatt et 

al., 2017a; Zaidi and El Naqa, 2010). One major issue that has been identified is the lack of a 

standard (or benchmark) database that would allow comparing all methods on the same 

datasets (Hatt et al., 2017a). Currently, most published methods have been optimized and 

validated on a specific, usually home-made, dataset. Such validations, considering only a 

single class of data amongst clinical, phantom or simulated images is lacking rigor due to 

the imperfections inherent for each class: unreliable ground-truth (e.g. manual delineation of 

a single expert or CT-derived volumes in clinical images) or unrealistic objects (perfect 

spheres, very high contrast, low noise, no uptake heterogeneity) (Hatt et al., 2017a). 

Typically, no evaluation of robustness versus scanner acquisition or reconstruction protocols 

and no evaluation of repeatability are performed (Hatt et al., 2017a). The reimplementation 

of methods by other groups can also be misleading (Hatt and Visvikis, 2015).

As a result, there is still no consensus in the literature about which methods would be 

optimal for clinical practice, and only a few commercial products include more advanced 

techniques than threshold-based approaches (Hatt et al., 2017a). In order to improve over 

this situation, task group n° 2111 (TG211) of the American Association of Physicists in 

Medicine (AAPM) has worked since 2011 on the development of a benchmark as well as on 

proper validation guidelines, suggesting appropriate combination of datasets and evaluation 

metrics in its recently published report (Hatt et al., 2017a). Another paper was also 

published to describe the design and the first tests of such a benchmark that will eventually 

be available to the community (Berthon et al., 2017).

To date there has been a single attempt at a challenge for PET segmentation. It was 

organized by Turku University Hospital (Finland) and the results were published as a 

comparative study (Shepherd et al., 2012). Although 30 methods from 13 institutions were 

compared, the dataset used had limited discriminative power as it contained only 7 volumes 

1https://aapm.org/org/structure/default.asp?committee_code=TG211
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from 2 images of a phantom using glass inserts with cold walls, which can lead to biased 

results (Berthon et al., 2013; Hofheinz et al., 2010; van den Hoff and Hofheinz, 2013) and 2 

patient images. On the other hand, MICCAI (Medical Image Computing and Computer 

Assisted Intervention) has organized numerous segmentation challenges2 over the years, but 

none of them addressed tumor delineation in PET images.

France Life Imaging (FLI)3, a national French infrastructure dedicated to in vivo imaging, 

decided to sponsor two segmentation challenges for the MICCAI 2016 conference. One was 

dedicated to PET image segmentation for tumor delineation. It was funded by FLI and 

jointly organized with TG211 members, who provided datasets from the future AAPM 

benchmark as well as evaluation guidelines. One novel aspect of these FLI-sponsored 

challenges was the development and exploitation of an online platform to autonomously run 

the algorithms and generate segmentation results automatically without user intervention. 

The main goals of this challenge was to compare state-of-the-art PET segmentation 

algorithms on a large dataset following recommendations by the TG211 in terms of datasets 

and evaluation metrics, and to promote the online platform developed by FLI.

The present paper aims at presenting this challenge and its results.

Materials and methods

1. Challenge organization and sponsorship

The sponsorship and funding source for the challenge and the development of the platform 

used was the IAM (Image Analysis and Management) taskforce of FLI. Members of TG211 

provided methodological advice, evaluation guidelines, as well as training and testing 

datasets. A scientific/clinical advisory board and a technical board were appointed (table 1).

A web portal4 was built to present and advertise the challenge and to allow participants to 

register and download training data. Shanoir (SHAring NeurOImaging Resources)5 served 

as central database to store all datasets, all processed results and scores. Shanoir is an open 

source platform designed to share, archive, search and visualize imaging data (Barillot et al., 

2016). It provides a user-friendly secure web access and a workflow to collect and retrieve 

data from multiple sources, with a specific extension to manage PET imaging developed for 

this challenge. The pipeline execution platform was developed within the Virtual Imaging 

Platform6 (VIP) (Glatard et al., 2013) by FLI-IAM engineers. VIP is a web portal for 

medical simulation and image data analysis. In this challenge, it provided the ability to 

execute all the applications and the metrics computation in the same environment, ensuring 

equity among challengers and results reproducibility.

2https://grand-challenge.org/All_Challenges/
3https://www.francelifeimaging.fr/
4https://portal.fli-iam.irisa.fr/petseg-challenge/overview
5https://shanoir-challenges.irisa.fr
6https://www.creatis.insa-lyon.fr/vip/
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2. Datasets and evaluation methodology

2.1 Overall objectives and methodology—The present challenge was focused on 

PET-only segmentation (no PET/CT multimodal segmentation) and on the evaluation of the 

accuracy (not robustness or repeatability) in delineating isolated solid tumor (no diffuse, 

multi-focal disease). It was also focused on static PET segmentation (no dynamic PET).

TG211 recommends the combined use of three types of datasets for PET segmentation 

validation: synthetic and simulated images, phantom acquisitions, and real clinical images 

(Berthon et al., 2017; Hatt et al., 2017a). Each category of image has a specific associated 

ground-truth (or surrogate of truth), with advantages and drawbacks, which make them 

complementary for a comprehensive and rigorous evaluation of the methods accuracy (table 

2).

With the help from contributing members of TG211, the following dataset was assembled: 

70 synthetic and simulated (GATE, SIMSET) images (Aristophanous et al., 2008; Le Maitre 

et al., 2009; Papadimitroulas et al., 2013), 75 physical zeolites physical phantom images 

(different acquisitions of the same phantom containing 11 different zeolites, for which the 

ground-truth is obtained by thresholding the associated high resolution CT) (Zito et al., 

2012) and 25 clinical images, 19 with volumes reconstructed from histopathology slices 

(Geets et al., 2007; Wanet et al., 2011) and 6 with statistical consensus (generated with the 

STAPLE algorithm (Warfield et al., 2004)) of three manual delineations (Lapuyade-

Lahorgue et al., 2015). All the 176 tumors were isolated in a volume of interest (VOI) 

containing only the tumor and its immediate surrounding background. For simulated cases 

as well as for clinical cases with manual segmentation, the ground-truth was generated for 

the metabolically active volume, i.e. excluding areas with uptake similar as the background 

or without uptake. The training dataset contained such cases. Table 3 provides more details 

for each category.

2.2 Challengers pipelines integration—Contrary to testing data which was never 

available to challengers, a training subset representative of the whole dataset (6 synthetic and 

simulated, 9 phantom and 4 clinical images provided with their associated ground-truth) was 

made available for download to all registered participants so they could evaluate and 

optimize their algorithm(s) offline, on their own systems. All submitted methods had to be 

fully automated, including for parameters initialization, as they had to be run automatically 

without user intervention on the platform.

Pipeline integration and validation in VIP happened as follows. First, challengers bundled 

their applications in Docker containers7 (Merkel, 2014), to facilitate installation on the 

remote platform and to ensure reproducibility. Docker containers were annotated with JSON 

(JavaScript Object Notation) files complying with the Boutiques format8. JSON is a 

versatile format, allowing for a standard description of the command line used to launch 

applications, enabling thus their automated integration in VIP. The VIP team transferred 

input data from the Shanoir database9 and executed the pipelines on training data (available 

7https://docker.com
8http://boutiques.github.io
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to the challengers) to ensure that the results were consistent with the ones computed by the 

challengers in their own environments. Finally, the VIP team executed the pipelines on the 

evaluation data without intervention from the challengers, computed the associated accuracy 

metrics, and transferred the results back to the Shanoir database. Data were transferred 

between VIP and Shanoir because VIP was exploited as a computing platform. Figure 1 

illustrates the overall workflow.

2.3 Accuracy evaluation and comparison of methods—In order to evaluate the 

accuracy of each method, numerous metrics can be considered, including volume difference, 

barycenter distance, Jaccard and Dice coefficients, contour mean distance (CMD), or the 

combination of sensitivity (SE) and positive predictive value (PPV). As recommended by the 

TG211 we used the combination of SE and PPV as it provides the most comprehensive 

information on location, size and shape, as well as information regarding false positives and 

false negatives, for a moderate complexity (Hatt et al., 2017a).

Without consideration for a specific clinical application, both SE and PPV are equally 

important. Creating a single accuracy score to rank the methods thus led us to use the 

score=0.5×SE+0.5×PPV. On the other hand, the use of PET functional volumes for different 

clinical applications could lead to consider either SE or PPV to be more important (Hatt et 

al., 2017a). For instance, in radiotherapy planning, the objective is to reduce the risk of 

missing the target, even if it means delivering higher dose to the surrounding healthy tissues 

and organs-at-risk. Therefore in that case SE could be considered more important than PPV. 

We thus considered an alternative scoreRT=0.6×SE+0.4×PPV. On the contrary, for therapy 

follow-up the goal is to obtain consistent volume measurements in sequential PET scans and 

to avoid including background/nearby tissues in the quantitative measurements used to 

quantify the tumor characteristics, even if it means risking under-evaluation of the true 

spatial extent of the volume of interest. As a result, PPV could be considered more important 

than SE, and we thus considered a third score denoted scoreFU=0.4×SE+0.6×PPV. The 

values 0.4 and 0.6 were chosen arbitrarily on the basis that 0.45 and 0.55 would not lead to 

substantial changes in the scores, whereas 0.35 and 0.65 or 0.3 and 0.7 would put too much 

emphasis on one metric. Since neither of these 3 scores have clinical backing at present, they 

should be regarded as examples for potential clinically derived scores in analogy with the 

medical consideration functions (Kim et al., 2015). Results according to these alternate 

weights, as well as Jaccard, Dice and CMD are provided in the appendix (table A1).

The following analyses were carried out: comparing the methods on the entire dataset, as 

well as separately on each category of images (simulated, phantom, clinical), according to 

score, SE and PPV. Finally, two different consensuses of the segmentations were generated 

through majority voting and STAPLE (Dewalle-Vignion et al., 2015; McGurk et al., 2013).

Ranking of the methods and statistical superiority was determined with the Kruskal-Wallis 

test. This is an extension of the Man-Whitney rank-sum tests for more than 2 groups that 

does not assume a normal distribution and is not based only on the mean or median accuracy 

but takes into account the ranking of all points. Hence methods can be ranked higher even 

9https://shanoir.irisa.fr/Shanoir/
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with a slightly lower mean or median accuracy, if they achieve more consistent (tighter 

distributions) accuracy. P-values below 0.01 were considered significant.

3. Challengers and methods

Sixteen different teams from 7 countries initially registered and downloaded the training 

dataset. Only 4 teams from 4 countries (2 from France, 1 from Poland, and 1 from China and 

USA) submitted papers and thereby provided a commitment to continue with the testing 

phase (table 4). Out of the 12 teams that did not continue after the training phase, 5 justified 

their choice by the fact they did not have the time and/or manpower to deal with the pipeline 

integration and following up the various tasks. The 7 others did not provide explanation. 

Some teams submitted several different methods and as a result 10 pipelines were integrated. 

In addition, the results of three additional methods were generated (in fully automatic mode 

without user intervention for a fair comparison) for reference: two fixed thresholding at 40% 

and 50% of the maximum, and the fuzzy locally adaptive Bayesian (FLAB) algorithm (Hatt 

et al., 2009, 2010). FLAB was included in addition to both fixed thresholds in order to 

provide a comparison with a well-known method that has previously demonstrated higher 

accuracy than fixed-thresholds, as it was not possible to include an adaptive threshold 

method due to the heterogeneity of the datasets in terms of image characteristics. In total, the 

results of 13 methods were produced and compared in the present analysis.

3.1 Short description of each method

3.1.1 Methods implemented by challengers

a. Ant colony optimization (ACO): ACO is a population-based model that mimics the 

collective foraging behavior of real ant colonies. Artificial ants explore their environment (in 

the present case the PET volume) in quest for food (the aimed functional volume) and 

exchange information through iterative update of pheromone quantitative information, which 

attracts other ants along their path. The food source was initialized in two different ways. 

The ACO(s) is the static version initializing the food as a r-radii neighborhood Nr(o) around 

voxels of intensity 70% of the maximum of the SUV. The ACO(d) is the dynamic version of 

the algorithm relying on the Otsu thresholding (Otsu, 1979) for the initialization to extract a 

case-specific food comparison value (70% in the case of the static version). Unlike global 

thresholding, local neighborhood analysis is exploited to enhance the spatial consistency of 

the final volume. After convergence, a pheromone map is obtained with highest density in 

the estimated volume. The method was initially developed using 2 classes (Fayad et al., 

2015), which was the version entered in the present challenge. The algorithm was applied 

with its original parametrization without optimization on the training data, which was simply 

analyzed to verify the algorithm generated expected results.

b. Random forest (RF) on image features: This is a supervised machine learning 

algorithm using Random Forest (RF). The core idea is to consider the PET segmentation 

problem as a two-class classification problem, in which each voxel is classified as either the 

tumor or the background based on image features. The RF is a combination of tree 

predictors such that each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forest (Breiman, 2001). The 
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algorithm follows three steps: feature extraction, training and classification. A total of 30 

features were extracted for each voxel from its 27-neighborhood including one 27-dimension 

gray-level feature (concatenating intensities of its 27-neighborhood), one 27-dimension 

gradient feature (concatenating the gradient magnitude of its 27-neighborhood) and 28 

textural features (the mean and standard deviation of 14 attributes, i.e. Angular Second 

Moment (Energy), Contrast, Correlation, Variance, Inverse Difference Moment 

(Homogeneity), Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, 

Difference Entropy, Information Measure of Correlation I and II, Maximal Correlation 

Coefficient) (Haralick et al., 1973). The building and training of the RF was performed using 

the training dataset.

c. Adaptive region growing (ARG): ARG is an adaptive region-growing algorithm 

specially designed for tumor segmentation in PET (Tan et al., 2017). Particularly, the ARG 

repeatedly applies a confidence connected region-growing (CCRG) algorithm with an 

increasing relaxing factor f. A maximum curvature strategy is used to automatically identify 

the optimal value for f as the transition point on the f-volume curve, where the volume just 

grows from the tumor into the surrounding normal tissues. This algorithm was based only on 

the assumption of a relatively homogeneous background without any assumptions regarding 

uptake within the tumor, and did not require any phantom calibration or any a priori 
knowledge. It is also insensitive to changes in the discretization step Δf. In the present 

challenge, the Δf was set to be 0.001. There was therefore no specific tuning or training 

using the training dataset.

d. Gradient-aided region-based active contour (GARAC): The GARAC model is a hybrid 

level-set 3D deformable model driven by both global region-based forces (Chan and Vese, 

2001) and Vector Field Convolution (VFC) edge-based force fields (EBF) (Li and Acton, 

2007). The originality of the approach lies in a local and dynamic weighting of the influence 

of the EBF term according to a blind estimation of its relevance for allowing the model to 

evolve toward the tumor boundary. Due to their local nature, EBF are more sensitive to noise 

and are thus not well defined everywhere across the PET image domain. The EBF term is 

locally weighted proportionally to the degree of collinearity between inner and outer net 

edge forces in the vicinity of each node of the discretized interface. By doing so, the model 

takes advantage of both global statistics for increased robustness while making a dynamic 

use of the more local edge information for increased precision around edges (Jaouen et al., 

2014). For all images, the model was initialized as an ellipsoid located at the center of the 

field of view. The lengths of its semi-principal axes were set to one third of the 

corresponding image dimension. It was observed on the training data that the method tends 

to underestimate volumes resulting in high PPV but low SE. A 1-voxel dilatation of the 

resulting contour was considered but finally not implemented for the challenge.

e. Spatial distance weighted fuzzy C-Means (SDWFCM): The SDWFCM method is a 3D 

extension of the spatial fuzzy C-means algorithm (Guo et al., 2015). In contrast to the 

regular fuzzy C-means, SDWFCM adjusts similarities between each voxel and class 

centroids by taking into account their spatial distances. The initialization was naive random. 

Parameters of the algorithm, including number of clusters c=2, degree of fuzzy classification 
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m=2, weight of the spatial features λ=0.5, and size of the spatial neighborhood nb=1 (Guo et 

al., 2015) were tuned by maximizing the DSC in the training set.

f. Convolutional neural network (CNN): CNN is a variant of the multilayer perceptron 

network specialized for image processing and widely used in deep learning (Krizhevsky et 

al., 2012; LeCun et al., 2015). Informally, CNN classifies an input image based on higher-

level features extracted from the input using several layers of convolutional filters. In the 

current work, the input of the network is a 3D patch from the image. To account for a 

relatively small number of samples, the training dataset was artificially augmented with 

rotationally transformed samples. The network was trained using the AdaGrad stochastic 

gradient descent algorithm (Duchi et al., 2011). The final binary segmentation was 

reconstructed from binary labels of the overlapping 3D patches using the Otsu thresholding 

(Otsu, 1979). The best network architecture was selected in the 5-fold cross-validation 

process maximizing the DSC in the training dataset.

g. Dictionary model (DICT): The DICT model is a 3D extension of a method for learning 

discriminative image patches (Dahl and Larsen, 2011). The core of the model is the 

dictionary of patch-label pairs learned by means of the vector quantization approach. The 

labeling algorithm assigns each image patch the binarized label of the most similar 

dictionary patch. In the present implementation, the labeling window walks voxel by voxel, 

hence the final label of each voxel is the binarized average from all labels overlapping the 

voxel.

h. Gaussian mixture model (GMM): The GMM model is a well-established probabilistic 

generalization of the K-means clustering, which assumes that each class is defined by a 

Gaussian distribution (Aristophanous et al., 2007). Parameters of the distributions are 

estimated using the Expectation-Maximization (EM) algorithm. Means of the n=4 

distributions were initialized using the K-means algorithm in four tries. Then, the EM 

procedure updated the distribution means during at most 100 iterations. At the end of the 

process the single most intense class was labeled as the tumor.

i. K-Means (KM): The K-means clustering algorithm was implemented with 2 clusters 

(k=2). The cluster means were initialized using the K-means++ algorithm (Arthur and 

Vassilvitskii, 2007). Then, the EM procedure was repeated 10 times for at most 100 

iterations to find the best fit in terms of inertia (the within-cluster sum-of-squares).

Note: In the SDWFCM, DICT, GMM and KM pipelines, images with sharp intensity peaks 

were considered grainy. They were pre-processed with the Gaussian filter (except GMM) 

and post-processed with the binary opening and closing, the approach which was found to 

maximize DSC in the training set.

3.1.2 Additional methods implemented by FLI engineers for comparison

a. Fixed threshold at 40% and 50% of the maximum: Simple binary thresholds of 

intensities at respectively 40% or 50% of the single maximum value in the tumor. SUVmax 

was chosen over SUVpeak as the use of SUVmax is still more widely used in the literature 

and clinical practice.
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b. Fuzzy locally adaptive Bayesian (FLAB): FLAB relies on a combination of Bayesian-

based statistical segmentation and a fuzzy measure to take into account both the spatial blur 

and noise characteristics of PET images when classifying a voxel in a given class (e.g. tumor 

and background). The algorithm relies on a fuzzy C-means initialization followed by an 

iterative estimation of the parameters of each class (mean and standard deviation of the 

Gaussian distribution of each class and fuzzy transition, as well as local spatial correlation 

between neighboring voxels). FLAB was initially published as a 2-class version (Hatt et al., 

2009) and then expanded to 3 classes for highly heterogeneous lesions (Hatt et al., 2010). 

Most of previous studies relied on the user for the choice of 2 or 3 classes. In the present 

work, an automated detection of the number of classes was implemented so it could be run 

without user intervention, as the other methods implemented as pipelines. The algorithm was 

applied with the original parametrization (Hatt et al., 2010) without re-optimization using 

the training data.

Results

The quantitative results are presented with raw data (all points) over box-and-whisker plots 

that provide values for minimum and maximum, median, 75 and 25 percentiles, as well as 

outside values (below or above lower/upper quartile ± 1.5 × interquartile range) and far out 
values (below or above lower/upper quartile ± 3 × interquartile range) that appear in red in 

the graphs. Results in the text are provided as “mean±standard deviation (median)”.

We present the results according to accuracy score (figure 2), SE (figure 3) and PPV (figure 

4). The results by image category are provided for each metric in figures 2b, 3b and 4b. 

Figure 5 shows the results of the two consensuses with respect to the best method. Figure 6 

shows visual examples.

Table A1 in the appendix contains statistics for all the metrics including Dice and Jaccard 

coefficients, CMD, ScoreRT and ScoreFU.

Ranking according to accuracy score, SE and PPV

Table 5 shows the ranking of the 13 methods according to SE, PPV and accuracy score.

According to accuracy score, CNN was ranked first, and had a significantly higher score 

than the nine methods ranked 5th to 13th. KM, GMM and SWDFCM had slightly lower 

scores than CNN, but the difference was not significant. Both significantly outperformed 

ARG, RF, ACO(d), GARAC and the thresholds, but not SDWFCM, ACO(s), DICT and 

FLAB. The first four best methods had no accuracy result below 0.45 in the entire testing 

dataset and provided consistent accuracy, whereas most of the other methods were penalized 

by low accuracy for several cases and exhibited much larger spread. Regarding the MICCAI 

challenge, the methods implemented by team 4 trusted the first four places. Team 1 came 

second with ACO(s), followed by team 2 with ARG and RF and team 3 was last with 

GARAC that performed better than T50 but not T40.

As shown in figures 3 and 4, the low accuracy of GARAC and thresholds is explained by a 

high PPV at the expense of a low SE. The most accurate methods reached a better 
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compromise between both metrics. Except thresholds in the first two places, the method 

with the highest PPV was GARAC (significantly higher than all methods below except 

FLAB, ranked 4th). SWDFCM, KM and GMM were ranked 6th, 7th and 8th with 

significantly higher PPV than the other methods ranked below. ACO (both versions), RF and 

ARG came last in terms of PPV. The ranking according to SE was almost exactly the 

opposite of PPV, with thresholds and GARAC having the lowest values, whereas ACO(s) 

and CNN ranked 1st and 2nd, with statistically higher performance than the 10 methods 

below. FLAB and SWDFCM were in 12th and 11th position, with statistically lower SE than 

all methods above, but significantly higher than GARAC and the thresholds.

Interestingly, the outliers and cases for which each method provided the lowest accuracy in 

each data category were almost never the same, highlighting different behaviors of the 

methods in their failures, and hinting at the potential interest of a consensus approach. Some 

methods also completely failed in some cases, which was mostly due to unexpected 

configurations compared to the training data, leading to failed initialization and/or empty (or 

filled) segmentation maps, leading to 100% specificity and 0% sensitivity (or vice-versa).

Consensus

The majority voting consensus was just above the best method with a score of 0.835±0.109 

(0.853) vs. 0.834±0.109 (0.852) for CNN. The statistical consensus using STAPLE 

(Warfield et al., 2004) led to an accuracy of 0.834±0.114 (0.848), with a slightly better 

ranking according to Kruskal-Wallis test compared to majority voting, thanks to a larger 

standard deviation despite slightly smaller median and mean values. However, both 

differences were small and not statistically significant (p>0.9).

Ranking of methods by data category

As shown in figure 2b, the methods reached the highest accuracy on the simulated images 

(despite some outliers with very low accuracy in some instances), whereas lower 

performance was observed on phantom images (although with a smaller spread due to the 

smaller range of size and shapes included) and even lower performance on clinical images, 

with the largest spread. For example, CNN accuracy in simulated, phantom and clinical 

images was 0.901±0.074 (0.921), 0.818±0.076 (0.835) and 0.665±0.091 (0.678) 

respectively, with significant differences between the three (p<0.0001). Similar observations 

(p≤0.0007 between simulated and phantom, p<0.0001 for clinical with respect to both 

phantom and simulated) were made for all methods except two (ACO(d) and GARAC) for 

which the differences in accuracy between simulated and phantom images were not 

significant. ACO(d) had accuracy 0.781±0.156 (0.843) on simulated and 0.791±0.075 

(0.806) on phantom (p=0.13). GARAC similarly exhibited levels of accuracy that were not 

significantly different between simulated and phantom datasets (0.710±0.206 (0.775) vs. 

0.750±0.059 (0.756), p=0.19). In both cases however, the level of accuracy achieved in 

clinical images (0.633±0.104 (0.628) for ACO(d) and 0.633±0.111 (0.632) for GARAC) was 

significantly lower (p≤0.0008) than in both simulated and phantom datasets.

The hierarchy between the methods observed on the entire dataset remained the same 

whatever category of images was considered, although on clinical images the differences 
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were less striking because of the larger variability of accuracy. Although some methods 

exhibited similar (ACO(s) and DICT) or even better (GARAC and ACO(d)) sensitivity for 

clinical images than on phantom and simulated ones, all methods exhibited low PPV on 

clinical images.

The disagreement amongst the methods was quantified with the standard deviation (SD) of 

the accuracy score. Across the entire dataset this SD was 0.098±0.066 (0.075) and again 

varied strongly between simulated, phantom and clinical images: it was the highest and with 

the largest spread for simulated images (0.123±0.080 (0.097)), whereas for phantom images 

the disagreement was the lowest and also much tighter (0.069±0.022, (0.066)). For clinical 

images it was intermediate but with a larger spread (0.108±0.074, (0.102)). Figure 5 shows 

representative examples of segmentation results with low, intermediate and high 

disagreement between methods that correspond to phantom, clinical and simulated cases 

respectively.

Ranking of methods according to other performance metrics

The hierarchy amongst methods was not strongly altered when considering Dice and Jaccard 

coefficients or CMD (see appendix table A1 for statistics). According to accuracy score with 

alternative weights (scoreRT and scoreFU for emphasis on SE or PPV respectively), the 

hierarchy between the methods remained the same although the differences between 

methods were either increased or reduced, methods with high PPV being favored according 

to scoreFU whereas those with high SE were favored according to scoreRT.

Qualitative visual comparison

Runtime—The pipelines were not optimized for fast execution since it was not an 

evaluation criterion for the challenge. In order to accurately measure execution times, a 

benchmark in controlled conditions after the end of the challenge was conducted: a server 

with 1 Intel Xeon E5-2630L v4 processor (1.8GHz, 10 cores, 2 threads per core) and 64GB 

of RAM was dedicated to the benchmark. All pipelines were executed on all images of the 

testing dataset. Pipelines were executed sequentially to ensure no interference or overlap 

between executions. Execution time, CPU utilization and peak memory consumption were 

measured using Linux command “/bin/time”. Tables A2, A3 and A4 in the appendix show 

the corresponding statistics. The average execution time by image across all pipelines was 

18.9s. However, the execution time across images varied substantially as shown by the min 

and max values. On average, KM was the fastest method and ARG was the slowest. Memory 

consumption remained reasonable, although RF used more than 2 GB of RAM. ACO, on the 

contrary, used only 4MB. CPU utilization shows that some pipelines were able to exploit 

multiple CPU cores. Overall, all pipelines can run on a state-of-the-art computer.

Discussion

This challenge was the first to address the PET segmentation paradigm using a large dataset 

consisting of a total of 168 images including simulated, phantom and clinical images with 

rigorous associated ground-truth, following an evaluation protocol designed according to 
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recent recommendations by the TG211 (Berthon et al., 2017; Hatt et al., 2017a). Despite the 

small number of challengers, several observations can be derived from the results.

All the methods under comparison but three performed quite well (median accuracy scores 

above 0.8) given the size, heterogeneity and complexity of the testing dataset. GARAC, T40 

and T50 were the only methods with median accuracy scores below 0.8 (0.747, 0.786 and 

0.685 respectively). This relatively poorer performance was explained by very high PPV at 

the expense of low SE. Although some methods were clearly superior to others, overall all 

methods implemented by challengers provided satisfactory segmentation in most cases, 

which is encouraging regarding their potential transfer to clinical use. One particularly 

important point is that the disagreement between the methods was high for simulated 

images, but lower for clinical images. For phantom cases that are mostly small homogeneous 

uptakes, the agreement amongst methods was the highest, as could be expected. Our results 

highlight the limited performance of fixed thresholds. We hope it will contribute in 

convincing clinicians and researchers to stop using them and rely instead on more 

sophisticated methods already available in clinical practice, such as gradient-based contours 

and adaptive thresholding approaches. Amongst the best methods in the present comparative 

study, some are quite complex to implement (e.g. CNN), but for others (e.g. GMM or KM 

with associated pre- and post-processing steps) the implementation is quite straightforward. 

These could be made rapidly available to the clinical community to favourably replace basic 

thresholds currently still widely used in clinical workstations. Nonetheless, the variable level 

of accuracy across cases observed for all methods including the best ones, suggests that 

expert supervision and guidance is still necessary in a clinical context (Hatt et al., 2017a). 

The present results cannot be used to directly discuss a clinical impact of the differences 

between accuracy levels achieved by the methods, as this would require a “level III 

analysis”, i.e. with metrics that evaluate the clinical relevance of the disagreement between 

segmentation and ground-truth, such as the dosimetry impact in radiotherapy planning 

(Berthon et al., 2017).

It is important to emphasize that the methods accuracy was seen to decrease along with the 

reliability of ground truth (and as the realism increased), with overall better performance on 

simulated images, compared to phantom acquisitions, and clinical images. This can be 

related with the relatively higher realism and complexity of shapes and heterogeneity of 

clinical images, and the small size of zeolites in the phantom images, compared to simulated 

cases. At the same time the relatively lower reliability of the associated ground-truth (or 

surrogate of truth in the case of clinical images) information for phantom and clinical 

images compared to simulated ones surely also played a role in this trend. In particular, the 

surrogate of truth from the histopathology in some of the clinical images appears clearly to 

be off with respect to the actual voxels grey-levels distribution (see for example in figure 6 

where the contour does not seem to accurately cover the uptake of the tumor especially at 

the borders), and it is thus not fair to expect an automatic algorithm to reach a high accuracy 

in such cases. The definition of the ground-truth for simulated and clinical cases with 

manual delineation excluded areas with uptake similar as (or lower than) the background 

uptake. Thus for the few cases with necrotic cores or areas with low uptake, methods that 

were able to exclude such areas were at an advantage. Note that the training dataset 

contained such a case, so challengers had the opportunity to take this into account. The 
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dataset nonetheless allowed to highlight statistically significant differences between most of 

the methods. The resulting hierarchy did not strongly depend on either the metrics used, on 

the alternative weights for sensitivity and positive predictive values, or on the category of 

images (although the differences were less pronounced for clinical data).

Some of the best performing methods were not necessarily the most complex ones, as 

SWDFCM, GMM and KM can be considered older and less complex than CNN, RF, FLAB 

or ACO. However these were not the “standard” versions of the algorithms, as additional 

pre- and post-processing steps (filtering before segmentation and morphological opening/

closing operations after segmentation) were implemented and parameters were optimized on 

the training dataset, which was representative of the testing data. According to training data, 

the methods that benefited the most from these additional steps were KM and GMM that 

lack spatial consistency modeling. Similar improvements could be applied to the more 

sophisticated methods. For example, GARAC with a simple 1-voxel expansion in all 

directions led to significantly improved accuracy scores of 0.765±0.192 (0.811), vs. 
0.717±0.152 (0.747) (p<0.0001). This simple post-processing step would allow the method 

to rank in 8th position (just below FLAB) instead of 12th. Ideally, a more explicit modelling 

of partial volume effects in the method’s functions could lead to similar or even better 

improvement. Similarly, it was observed that the CNN segmentation results sometimes 

presented holes or irregular contours, owing to its lack of explicit spatial consistency 

constraints, however this occurred in a small number of cases and closing these holes had no 

statistically significant impact on its score.

The various methods under comparison often provide different segmentation results for a 

given case (figure 6). Therefore the approaches combining various different segmentation 

paradigms, either through consensus (McGurk et al., 2013) or by learning automatically to 

choose the most appropriate method on a case-by-case basis such as in the ATLAAS 

(automatic decision tree-based learning algorithm for advanced image segmentation) method 

(Berthon et al., 2016), appear as promising developments for the future. In order to provide 

insights regarding the potential of the consensus approach, we generated a consensus using 

majority voting and STAPLE. Both were ranked just above the best method and STAPLE 

was slightly better than majority voting, in line with previous observations (Dewalle-Vignion 

et al., 2015). However, the differences were not significant, highlighting the fact that 

although complementary, the best methods may already be close to the accuracy limits for 

the present dataset, which can also be related to the limited reliability of the ground-truth in 

some cases, especially the clinical data with histopathology surrogate of truth. It would also 

be interesting in the future to investigate if the use of the alternative approach (ATLAAS) 

could improve the results over a simple consensus. We determined that if an algorithm 

similar to ATLAAS could perfectly select the best method amongst the 13 in each case, this 

would lead to an accuracy of 0.885±0.096 (0.894), significantly higher than CNN alone or 

both consensuses (p<0.0001).

We would like to emphasize that only a small subset of existing methods for PET 

segmentation (Foster et al., 2014; Hatt et al., 2017a) have been evaluated and our results do 

not presume about the potential performance of other, recently developed approaches. We 

can only regret that so few challengers confirmed their initial registration to the challenge, 
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and we hope that in the near future the benchmark developed by the TG211, which will 

contain the same dataset as the present challenge, but also additional data, will provide the 

means for a more comprehensive evaluation and comparison with other methods. Although 

the present challenge was organized with the help of the TG211, the future benchmark will 

likely not be organized as a challenge, but rather as a tool provided to the community to 

facilitate development, evaluation and comparison of segmentation methods. This 

benchmark is expected to continuously evolve with the contributions of the community (new 

methods, data and/or evaluation metrics). Nonetheless its development will benefit from 

lessons learned in this challenge.

The present challenge was the first to allow for running the methods on a platform without 

the possibility for the challengers to tamper with the results or optimize parameters on case-

by-case basis, thereby ensuring a high reliability of the comparison results and conclusions. 

It was also guaranteed that the challengers’ pipelines would be run without modifications, 

due to their execution in Docker containers in a remote platform, allowing for a most 

rigorous comparative study. This obviously penalized methods that may benefit from user-

intervention, such as FLAB for the choice of the number of classes that had to be 

automatized for the present implementation. ACO on the other hand was implemented with 

2 classes only which may have hindered its performance on the most heterogeneous cases. 

Other methods could also benefit from user-guidance, especially regarding initialization of 

parameters and exclusion of non-tumor uptakes in the background. However, this would also 

introduce some user-dependency and thus potentially reduce reproducibility.

The present challenge had some limitations. Algorithms had to be implemented as non-

interactive, automatic pipelines, which is much more time-consuming than simply 

downloading data for processing them in-house. This discouraged several challengers who 

had initially registered. It is also possible that some teams renounced participation in the 

challenge after observing poor performance of their methods on the training set. As a result, 

only 13 methods were included in the present comparative study. This is less than the 

previous comparative study that included 30 methods (Shepherd et al., 2012). However, this 

previous comparison was carried out on only 7 volumes from 2 images of a phantom with 

cold walls glass inserts and 2 clinical images. In addition, the 30 methods actually consisted 

mostly of variants of distinct algorithm types, including for example 13 variants of 

thresholding.

We could not include adaptive thresholds that usually provide more reliable segmentation 

than fixed thresholds because they require optimization for each specific configuration of 

scanner model, reconstruction algorithm, reconstruction parameters and acquisition protocol, 

which was not possible here given the high heterogeneity of the evaluation dataset. The 

future developments of the benchmark by the TG211 will provide new opportunities to carry 

out further comprehensive comparisons of existing methods, on an even larger training/

testing database.

Although we focused on the combination of PPV and SE to evaluate accuracy, other 

quantitative metrics were calculated and are provided in the appendix for completeness, 

although they did not lead to important changes in the ranking. Alternative metrics 
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(Shepherd et al., 2012) or alternative combinations of the available metrics could be further 

explored in future attempts to even better discriminate methods.

The present comparative analysis was also limited to accuracy evaluation, as we did not 

include evaluation of robustness and repeatability. In order to investigate these two criteria 

rigorously, numerous acquisitions of the same object with varying levels of noise, different 

scanner models and reconstruction algorithms are needed (Berthon et al., 2017; Hatt et al., 

2017a). Although data exist that could form the basis of such benchmark, it is still 

insufficient at the moment to carry out a rigorous and comprehensive comparison like the 

one performed here for accuracy. For instance, the 66 images of zeolites used in the present 

analysis are 6 different acquisitions of the same 11 zeolites. We included all 66 images in 

order to increase the testing samples without specifically exploiting them to evaluate 

robustness. Similarly, this was a single phantom acquired in a single scanner, and other types 

of phantom acquired in several scanners models could thus provide additional data for a 

more complete evaluation. Regarding repeatability, although we do not have specific results 

for analysis and this would require an additional study, the pipelines were all run several 

times each on the online platform for practical reasons, as well as to measure runtimes, and 

no significant differences in performance were measured from one run to the next.

Finally, all algorithms were run without any user intervention on images that were pre-

cropped, containing the tumor only. In most cases, the PET segmentation algorithms assume 

that such a pre-selection of the tumor to segment in the whole-body image has been 

performed by an expert as a pre-processing step, and this usually involves graphical interface 

and user intervention for tumor detection and isolation in a 3D region of interest. The 

present challenge did not address the issue of determining this ROI (automatically or 

manually), or the impact of the variability of its determination on the segmentation end 

results, which remains very important for clinical implementation and usability of the 

methods (Hatt et al., 2017a). Some of the methods performance could be enhanced by 

additional user intervention in defining the initial VOI, for instance to exclude nearby non-

tumor uptake that can end up as part of the final segmented volume (see examples in figure 

6).

Conclusions

The MICCAI 2016 PET challenge provided an opportunity to carry out the most rigorous 

comparative study of recently developed PET segmentation algorithms to date on the largest 

dataset (19 images in training and 157 in testing) so far. The hierarchy amongst the methods 

in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or 

combination of metrics) used to quantify the methods accuracy. All the methods submitted 

by the challengers but one demonstrated good accuracy (median accuracy above 0.8). The 

CNN-based method won the challenge by achieving a sensitivity of 0.88±0.09 (0.90) and a 

positive predictive value of 0.79±0.22 (0.88). We hope the present report will encourage 

more teams to participate in future comparisons which will rely on the benchmark currently 

developed by the TG211 to better understand the advantages and drawbacks of the various 

PET segmentation strategies available to date. Such standardization is a necessary step to 

tackle more successfully the difficult problem of segmenting PET images.
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Table A2:

pipeline CPU usage per image. Values above 100 % indicate that the pipeline used multiple 

computing cores.

Pipeline (method) CPU usage (%)

Average Min Max

RF 83 81 87

GARAC 98 74 135

DICT 99 97 99

ACO 99 99 99

ARG 100 84 104

KM 119 95 317

GMM 264 149 672

SWDFCM 312 111 511

CNN 515 291 847

Table A3:

pipeline execution time per image.

Pipeline (method) Execution time (seconds)

Average Min Max

KM 2.1 1.8 3.3

GMM 2.5 1.9 5.4

SWDFCM 7.7 2.4 53.7

ACO 8.6 0.9 83.9

RF 10.5 9.3 13.6

DICT 12.6 3.6 110.2

GARAC 15.7 7.0 159.5

CNN 25.5 16.6 78.5

ARG 84.9 14.4 699.4

Table A4:

pipeline peak RAM use per image.

Pipeline (method) Peak RAM usage (Mbytes)

Average Min Max

ACO 4.5 4.1 8.7

GMM 102.3 99.9 114.9

KM 103.1 101.4 126.4

SWDFCM 104.1 101.9 114.0

CNN 128.7 127.0 139.2
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Pipeline (method) Peak RAM usage (Mbytes)

Average Min Max

DICT 152.5 152.3 152.9

GARAC 169.4 160.9 177.9

ARG 220.3 211.1 251.9

RF 2 280.0 1 430.8 3 159.8
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Highlights

A comparative study of 13 PET segmentation methods was carried out within a MICCAI 

challenge.

The evaluation methodology followed guidelines recently published by the AAPM task 

group 211. Accuracy was evaluated on a testing dataset of 157 simulated, phantom and 

clinical PET images. Most of the advanced algorithms performed well and significantly 

better than thresholds.

A method based on convolutional neural networks won the challenge.
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Figure 1: 
Illustration of the overall challenge workflow. In red, the preparation of the data by the FLI 

and VIP engineers. In blue, the training phase (challengers download training data and train 

algorithms). In green, the actual testing phase: challengers encapsulate their algorithm(s) to 

be run on the platform, which automatically extracts the segmentation results and evaluates 

them with the various metrics, then uploads them back into Shanoir.
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Figure 2: 
Ranking of the 13 methods according to score=0.5×SE+0.5×PPV for (a) the entire dataset 

and (b) by data category. The methods are ranked from highest to lowest performance from 

left to right according to the Kruskal-Wallis test result. Lines on top of (a) show the 

statistically significant superiority (p<0.01).
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Figure 3: 
Ranking of the 13 methods according to SE for (a) the entire dataset and (b) by data 

category. The methods are ranked from highest to lowest performance from left to right 

according to the Kruskal-Wallis test result. Lines on top of (a) show the statistically 

significant superiority (p<0.01).
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Figure 4: 
Ranking of the 13 methods according to PPV for (a) the entire dataset and (b) by data 

category. The methods are ranked from highest to lowest performance from left to right 

according to the Kruskal-Wallis test result. Lines on top of (a) show the statistically 

significant superiority (p<0.01).
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Figure 5: 
Comparison of the consensuses using majority voting and STAPLE, with the best method 

(CNN). The results are ranked from highest to lowest performance from left to right 

according to the Kruskal-Wallis test result.
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Figure 6: 
Visual examples of segmentation (green contours) results from all methods and the two 

consensuses on cases with (a) high (simulated), (b) intermediate (clinical) and (c) low 

(phantom) disagreement. The red contours correspond to the ground-truth.
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Table 1:

members of the scientific/clinical and technical boards.

Name Institution

Scientific / clinical advisory board

Dimitris Visvikis INSERM, Brest, France - TG211 and FLI

Mathieu Hatt INSERM, Brest, France - TG211 and FLI

Assen Kirov MSKCC, New-York, USA (Chair of TG211)

Federico Turkheimer King’s College, London, UK

Technical board

Frederic Cervenansky Université Claude Bernard, Lyon, France

Tristan Glatard CNRS, Lyon, France (VIP)
Concordia University, Montreal, Canada

Michael Kain INRIA, Rennes, France - FLI-IAM

Baptiste Laurent INSERM, Brest, France - FLI-IAM
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Table 2:

A summary of the types of PET images used for validation.

Type of images Associated 
ground-truth or 
surrogate of truth

Realism of image 
characteristics

Realism of 
tumors

Computational 
time

Convenience

Synthetic images (no 
simulation of physics 
beyond addition of blur 
and noise to the ground-
truth)

Perfect (voxel-by-
voxel)

Low Low to high. 
Depends on the 
digital phantom 
used.

Low Easy to produce in large
numbers.

Simulated images (e.g. 
with GATE (Le Maitre et 
al., 2009;
Papadimitroulas
et al., 2013) or SIMSET
(Aristophanous et al., 
2008))

Perfect (voxel-by-
voxel)

Medium to High Low to high. 
Depends on the 
digital phantom 
used.

High Implementation is not
straightforward. Time 
consuming.
A proprietary 
reconstruction algorithm is 
not easily available.

Physical phantom 
acquisitions

Imperfect (relies on 
known geometrical 
properties + 
associated high 
resolution CT).

High (real) Usually 
simplified 
objects. 
Depends on the 
physical 
phantom used.

N/A Requires access to a real 
scanner and phantom. Can 
be time consuming.

Clinical images Approximate High (real) High (real) N/A Rare datasets, difficult to 
generate. Digitized 
histopathology 
measurements are full of 
potential errors.

Approximate 
(Consensus of 
manual delineations 
by several experts).

High (real). High (real). N/A At least three manual 
contours are 
recommended. Time 
consuming.
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Table 3:

Details of the dataset

Type of images Number of images Details Provided by

Training19 Testing157

Synthetic and 
simulated

2 12 Synthetic M. Hatt and D. Visvikis, LaTIM, 
France

2 10 Simulated with GATE (Papadimitroulas et al., 
2013)

M. Hatt and D. Visvikis, LaTIM, 
France

2 48 Simulated with SIMSET (Aristophanous et al., 
2008)

M. Aristophanous, MD Anderson, 
Texas, USA

Physical phantom 9(3×3) 66(6×11) Six different acquisitions of 11 zeolites (no cold 
walls) of various shapes and sizes (Zito et al., 
2012)

E. De Bernardi, Italy

Clinical images 3 16 Images of head and neck or lung tumors with 
histopathology (Geets et al., 2007; Wanet et al., 
2011)

J. A. Lee, UCL, Belgium

1 5 Images of lung tumors with consensus of manual 
delineations (Lapuyade-Lahorgue et al., 2015)

Catherine Cheze Le Rest, CHU de 
Poitiers, France
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Table 4:

Team members, affiliations, country and implemented methods.

Team Members Institution(s) Country Implemented methods

1 A. Ouahabi
V. Jaouen
M. Hatt
D. Visvikis
H. Fayad

LaTIM, INSERM UMR
1101, Brest

France Ant colony optimization 
(ACO) algorithm (Fayad et al., 
2015)
With two different 
initialization schemes

2 S. Liu
X. Huang
L. Li

Key Laboratory of Image Processing and Intelligent Control of 
Ministry of Education of China.
School of Automation,Huazhong University of Science and 
Technology, Wuhan 430074

China
USA

Random forest (RF) exploiting 
image features
(Breiman, 2001)

W. Lu
S. Tan

Memorial Sloan-Kettering Cancer Center, New-York Adaptive region growing 
(ARG)
(Tan et al., 2017)

3 V. Jaouen M. Hatt LaTIM, INSERM UMR
1101, Brest

France Gradient-aided region-based 
active contour (GARAC)
(Jaouen et al., 2014)

H. Fayad

C. Tauber

D. Visvikis

4 J. Czakon
F. Drapejkowski

Stermedia Sp. z o. o., ul.
A. Ostrowskiego 13, Wroclaw
Lower Silesian Oncology Center, Department of Nuclear 
Medicine - PET-CT Laboratory, Wroclaw

Poland Spatial distance weighted 
fuzzy C-Means (SDWFCM)

G. Żurek
(Guo et al., 2015)

P. Giedziun
Convolutional neural network
(CNN)

J. Żebrowski
W. Dyrka (Duchi et al., 2011; 

Krizhevsky et al., 2012)

Dictionary model (DICT)

(Dahl and Larsen, 2011)

Gaussian mixture model 
(GMM)

(Aristophanous et al., 2007)

K-Means (KM) clustering

(Arthur and Vassilvitskii, 
2007)

FLI B. Laurent LaTIM, INSERM UMR
1101, Brest

France Fixed threshold at 40 and 50% 
of SUVmax

FLAB
(Hatt et al., 2009, 2010)
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Table 5:

Ranking of the 13 methods according to SE, PPV, and accuracy score.

Methods Ranking

SE PPV Score

CNN 2 8 1

KM 8 6 2

GMM 7 7 3

SDWFCM 9 5 4

DICT 6 9 5

ACO(s) 1 13 6

FLAB 10 4 7

ARG 4 11 8

RF 5 12 9

ACO(d) 3 10 10

T40 11 2 11

GARAC 12 3 12

T50 13 1 13
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