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Abstract

In recent years, many studies have investigated the correlations between Parkinson’s disease (PD) and vitamin D
status, but the conclusion remains elusive. The present review focuses on the associations between PD and serum
vitamin D levels by reviewing studies on the associations of PD with serum vitamin D levels and vitamin D receptor
(VDR) gene polymorphisms from PubMed, Web of Science, Cochrane Library, and Embase databases. We found that
PD patients have lower vitamin D levels than healthy controls and that the vitamin D concentrations are negatively
correlated with PD risk and severity. Furthermore, higher vitamin D concentrations are linked to better cognitive
function and mood in PD patients. Findings on the relationship between VDR gene polymorphisms and the risk of
PD are inconsistent, but the FokI (C/T) polymorphism is significantly linked with PD. The occurrence of FokI (C/T)
gene polymorphism may influence the risk, severity, and cognitive ability of PD patients, while also possibly influencing
the effect of Vitamin D3 supplementation in PD patients. In view of the neuroprotective effects of vitamin D and the
close association between vitamin D and dopaminergic neurotransmission, interventional prospective studies on
vitamin D supplementation in PD patients should be conducted in the future.
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Introduction
Parkinson’s disease (PD) is the most common type of
parkinsonism, a syndrome characterized by bradykinesia,
postural instability, rigidity, and resting tremor [1]. The
pathophysiological cause of PD is the progressive loss of
dopaminergic (DA) neurons in the substantia nigra (SN)
of the midbrain [2–4] and the formation of Lewy bodies,

which are neuronal inclusions mainly consisting of α-
synuclein protein aggregations [5–7]. In high-income
countries, the annual incidence of PD is 14 per 100,000
in the general population, and rises to 160 per 100,000
in the population aged 65 years or older [8]. A system-
atic review estimated that there were 6.1 million PD pa-
tients worldwide in the year 2016, a significant increase
from 2.5 million in 1990, with further projected in-
creases in the future. Moreover, the increase cannot en-
tirely be explained by the growth of number of older
people [9]. The etiology of PD remains unknown and is
presumably multifactorial [10]. The exact mechanism of
neurodegeneration in PD is not yet fully elucidated, but
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it likely involves a series of events including interactions
between genetic and environmental factors, oxidative
stress, mitochondrial dysfunction, inflammation, im-
mune regulation, and others [11–22]. Due to the unclear
etiology, no medications have been proven to cure PD
[1]. Therefore, there is a critical demand for new and
targeted drugs that focus on protecting DA neurons
from degeneration in PD.
Vitamin D obtained via sun exposure or through the diet

is converted by 25-hydroxylase mainly located in the liver
into 25-hydroxyvitamin D (25(OH)D), the major circulating
form of vitamin D. The 25(OH)D can be used as a serum
marker to measure vitamin D levels in PD patients, how-
ever, it is biologically inactive and must be transformed into
the active form 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)
by 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) in the
kidney. Increased concentrations of 1,25(OH)2D3 can raise
the expression of 25-hydroxyvitamin D-24-hydroxylase
(CYP24A1) to catabolize 1,25(OH)2D3 into calcitroic acid
[23–25]. The biological functions of 1,25(OH)2D3 are medi-
ated by the vitamin D receptor (VDR), a member of the nu-
clear receptor superfamily of transcription factors [25, 26].
Upon ligand binding, the VDR interacts with the retinoid X
receptor (RXR) to form a heterodimer, which then binds to
vitamin D response elements (VDREs) in target genes to
promote their expression [27, 28]. It has been predicted
that 1,25(OH)2D3 regulates more than 200 genes, influen-
cing a variety of cellular processes (Fig. 1) [29]. There is
ample evidence from in vitro and animal studies that vita-
min D plays an important role in cell proliferation and dif-
ferentiation, neurotrophic regulation and neuroprotection,
neurotransmission, immune regulation, and neuroplasticity
[30–33]. Studies have confirmed the presence of vitamin D
metabolites, their metabolizing enzymes CYP27B1 and
CYP24A1, as well as VDR in the human brain. This indi-
cates that the human brain can regulate 1,25(OH)2D3 levels,
and vitamin D may play a key role in the maintenance of
normal nervous system function [34, 35]. Moreover, VDR
and CYP27B1 expression is most abundant in the substan-
tia nigra (SN; a brain region rich in dopaminergic neurons)
according to immunofluorescence [36]. Studies have also
found that the earliest time of VDR expression in the mid-
brain is on embryonic day 12 (E12), which coincides with
the time of development of a majority of dopaminergic
neurons in the SN region [37, 38]. Vitamin D is a fat-
soluble hormone that can pass the blood-brain barrier,
which supports its significance in the central nervous
system [39].
Considering the neuroprotective effect of vitamin D in

the human brain, researchers have proposed a ‘two-hit
hypotheses’ to explain how low vitamin D levels make
the nervous system more susceptible to secondary harm-
ful effects, which may aggravate the development of dis-
eases such as PD and cerebrovascular disease [40–42].

Notably, many studies have indicated that vitamin D me-
tabolism may be directly or indirectly related to the
pathogenesis of PD [30, 31, 33, 39, 42–44]. Further,
vitamin D can act as a neuroprotective agent to provide
partial protection for DA neurons [45]. Accordingly, in-
adequate vitamin D status may play a significant role in
PD, resulting in a progressive loss of DA neurons in the
human brain [46]. However, experimental data from the
Asymptomatic Parkinson Associated Vitamin D Intake
Risk Syndrome cohort were not consistent with the
hypothesis that chronically inadequate levels of vitamin
D threaten the integrity of the DA system, leading to the
pathogenesis of PD [47]. The conundrum of the connec-
tion between serum vitamin D levels and PD therefore
remains unsolved. In this paper, we review the serum
vitamin D concentrations in PD patients, the relation-
ships of serum vitamin D concentrations and VDR gene
polymorphisms with PD risk, the relationship between
serum vitamin D concentrations and clinical manifesta-
tions of PD patients, as well as the preventive and thera-
peutic roles of vitamin D in PD.

Main text
PD patients often have low serum vitamin D
concentrations
Vitamin D insufficiency is prevalent in the elderly world-
wide [48], and it is also a common health problem in
neurodegenerative diseases such as PD and Alzheimer’s
disease (AD). Recently, it has been reported that vitamin
D insufficiency is more common among PD patients
than healthy controls [49–51]. If the insufficiency of
vitamin D is a consequence of neurodegenerative dis-
ease, the incidence of vitamin D insufficiency in AD and
PD patients should be similar, but a study revealed that
vitamin D insufficiency in PD patients was more pro-
nounced than that in AD patients and controls (55% ver-
sus 41% and 36%, respectively) [52]. The 1,25(OH)2D3

levels were normal in all PD patients, whereas the serum
levels of 25(OH)D were insufficient (< 20 ng/mL) in 49%
of patients in a prospective cohort study [53]. This can
be explained by the fact that circulating 25(OH)D levels
are 1000 times higher than 1,25(OH)2D3, and that the
25(OH)D can be converted into 1,25(OH)2D3 by 1a-
OHase [29, 53].
PD patients experience mobility problems more fre-

quently, and the typical course of PD is longer than that
of AD. Both factors may decrease sunlight exposure,
thus reducing the cutaneous synthesis of vitamin D.
Many studies have reported that the more severe the
motor symptoms, the lower the 25(OH)D concentrations
in PD patients [53–57]. The reduced mobility and sun-
light deprivation may be responsible for the higher inci-
dence of vitamin D deficiency in PD patients. However,
compared with controls, there are significantly lower
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levels of 25(OH)D in PD patients with sufficient sunlight
exposure [51]. This may be because that as some vitamin
D should be from the diet [29], the gastrointestinal dys-
function in PD patients may result in chronically inad-
equate vitamin D intake [58, 59]. Interestingly, a
longitudinal cohort study discovered that the 25(OH)D
concentrations were slightly increased over the study
period, which means that these patients did not have di-
gestive dysfunction. The study also reported that there
was a high incidence of vitamin D insufficiency in sub-
jects with early PD who did not require symptomatic
therapy [60].
However, another study showed that compared with

controls, the PD patients had slightly yet not significantly

lower serum vitamin D concentrations [61]. There may be
two factors that affect the results. First, the case-control
study was conducted in the Faroe Islands at a high latitude
and with harsh climate and frequent cloud cover, which
may have decreased sunlight exposure. Second, Faroese
food is not rich in vitamin D, which resulted in the com-
mon vitamin D insufficiency in the Faroe Islands.

The relationship between vitamin D deficiency and PD
risk
Lower vitamin D levels may be a result of PD due to the
limited mobility and digestive symptoms of PD patients.
However, several studies suggested that vitamin D defi-
ciency may be associated with the etiology of PD [46, 54].

Fig. 1 Vitamin D metabolism. DBP, Vitamin D-binding protein; RXR, retinoid X receptor; VDREs, vitamin D response elements; VDR, vitamin D
receptor; 1-OHase, 25-hydroxyvitamin D-1α- hydroxylase; 24-OHase, 25-hydroxyvitamin D-24-hydroxylase
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A study showed that the prevalence of vitamin D defi-
ciency was higher among patients with PD, even if they
had normal ambulation and gastrointestinal functions
[60]. Newmark and colleagues concluded that chronic
vitamin D deficiency is likely to be linked to the pathogen-
esis or progression of PD rather than only being a conse-
quence of the disease [46, 54]. This hypothesis was also
supported by a 29-year prospective study in Finland,
which confirmed that those who had higher vitamin D
concentrations were less likely to develop PD. When com-
paring probands in the highest and the lowest quartiles of
vitamin D levels, the relative risk of PD was 0.33 for the
highest quartile (95% confidence interval, 0.14–0.80) [62].
In line with these findings, a large case-control sample
study revealed a negative correlation between PD risk and
the level of 25(OH)D, and additionally showed an inverse
correlation between 25(OH)D2 and PD [59]. Moreover,
Danish and Chinese case-control studies both suggested
that outdoor work can reduce the risk of PD in later life
[63–65]. One possible protective mechanism of outdoor
work is to increase sunlight exposure, which contributes
to vitamin D3 synthesis in the skin. Interestingly, a
nationwide ecological study in France showed that in-
creasing sunlight exposure can reduce the risk of PD
in the young population [66]. However, a population-
based prospective study with 17 years of follow-up
and a Mendelian randomization study did not explore
the association between 25(OH)D concentrations and
the prevalence of PD [67, 68].

The relationship between VDR gene polymorphisms and
PD risk
The VDR is the key mediator of the functions of vitamin
D. A transcriptome-wide scan indicated that the VDR
gene expression is increased in the blood cells of early-
stage PD patients [69]. Consequently, it is reasonable
that the VDR polymorphic variants might also have an
effect on the pathogenesis of PD. In recent years, the
polymorphisms of BsmI (rs1544410), FokI (rs10735810),
ApaI (rs7975232), and TaqI (rs731236) have been most
widely studied in research on the correlation between
VDR gene variants and PD, but the results were incon-
sistent [70–72]. A polymerase chain reaction-based re-
striction analysis of VDR gene polymorphisms in Korea
indicated that the BsmI (B/b) polymorphism is a candi-
date allele influencing the pathogenesis of PD. The study
further showed that the bb genotype was more common
in the group with predominant postural instability and
gait disorders than in the tremor-predominant group
and the healthy controls [73]. In addition, Hungarian,
Japanese and Chinese studies suggested that the FokI (C/
T) polymorphism located in exon 2 in the 5′ coding re-
gion of the gene was significantly linked with PD, and
the C allele can increase the risk of PD [74–77].

The most significant start codon polymorphism of the
VDR gene is the functional FokI polymorphism, which
results in different translation initiation sites, one produ-
cing a long version of the VDR protein (the T-allele) and
the other producing a protein shortened by three amino
acids (the C-allele) [70]. In spite of the small difference,
the functional characteristics of the two forms of VDR
(C-VDR and T-VDR) are significantly different. Com-
pared with T-VDR, the C-VDR has a better capacity for
intestinal calcium absorption [70, 78]. Therefore, the C
allele may forecast higher vitamin D levels and reduce
the risk of PD. However, research findings have sug-
gested that the C allele is a risk factor for PD rather than
being a protective factor [74–77]. Suzuki et al. revealed
that there was a stronger association of the FokI CC
genotype with milder forms of PD (odds ratio, 0.32; 95%
confidence interval, 0.16–0.66) [53]. Moreover, the
Parkinson Environment Gene study, a population-based
case-control study of PD in the Central Valley of California,
showed that FokI polymorphism was linked to cognitive
decline in PD [79].
In 2015, a study in California with higher ultraviolet

radiation levels than in previous studies of VDR gene
polymorphisms showed that the major allele TaqI TT
genotype and the ApaI GG genotype are associated with
decreased risk of PD [80]. However, some studies did
not find any association between the VDR genotypes
(BsmI, FokI, ApaI, and TaqI loci) and PD risk [61, 81].
The different results may be explained by a number of
reasons. First, the effect of VDR gene polymorphism on
PD risk may be related to the vitamin D levels. Second,
these studies involved different ethnicities, environmen-
tal factors, gene-gene and gene-environment interac-
tions, or small sample sizes. Therefore, future studies
should shift to the interactions of vitamin D levels and
VDR gene polymorphisms in PD, and take into account
the environmental factors.

The relationship between vitamin D level and clinical
manifestations of PD patients
There is accumulating evidence that the PD patients
have an increased prevalence of osteoporosis and osteo-
penia [82–84], and PD is recognized as a cause of sec-
ondary osteoporosis [85]. In a study conducted in Korea,
researchers found that 6542 (18.3%) of 35,663 PD pa-
tients experienced osteoporosis, and that fractures oc-
curred most commonly within 6 months after PD onset
and decreased after 3 years from PD diagnosis [86].
Other studies have shown that bone loss and fractures
in PD patients are multifactorial [87–89], with causes in-
cluding vitamin D deficiency [90]. As PD patients ex-
perience more bone loss, more falls and more fractures
(particularly at the hip) [91] than controls, osteoporosis
should be screened and treated early [51, 82, 84, 92–94],
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particularly for older female patients within 3 years of
PD diagnosis [86]. A meta-analysis of randomized con-
trolled trials found that daily supplementation of 700 IU
to 1000 IU of vitamin D could reduce the risk of falls by
19%, and that this advantage may not be dependent on
additional calcium supplementation [95].
Many recent studies have confirmed the significant

negative correlation between the severity of PD evaluated
using the Hoehn & Yahr scale or Unified Parkinson’s
Disease Rating Scale (UPDRS) and the circulating serum
25(OH)D levels [53–57, 96]. Prospective observational
studies have also found a negative association between the
vitamin D status at baseline and severity of PD motor
symptoms during disease progression [41, 97]. Therefore,
supplementation of vitamin D may delay the worsening of
symptoms in PD patients. A cross-sectional, observational
study supported the relationship between postural balance
and serum vitamin D levels. Further analysis showed that
among balance measures, vitamin D levels were associated
with an automatic posture response to backwards transla-
tion, particularly with response strength and weight-
bearing asymmetry [98].
PD patients often ignore nonmotor symptoms, which

may, however, have been present for years before diag-
nosis. A large population-based sample of French older
people found a strong relationship of lower 25(OH)D con-
centrations with cognitive decline, as well as increased risk
of dementia and AD over 12 years of follow-up [99]. Like-
wise, in a sample of PD patients without cognitive impair-
ment, higher vitamin D levels were associated with better
cognition and mood [100]. The impact of vitamin D on
cognition can partially be explained by its effect on amyl-
oid beta (Aβ) [101], which has been shown to deposit in
PD as well, probably leading or contributing to cognitive
decline [102]. Interestingly, vitamin D has been reported
to affect the Aβ-producing enzymes BACE1 and γ-
secretase to reduce Aβ anabolism and elevate Aβ catabol-
ism. Furthermore, vitamin D3 could reduce the cytotox-
icity of Aβ peptide by ameliorating the decrease of the
sphingosine-1-phosphate/ceramide ratio caused by Aβ
[103]. A randomized double-blind trial found that vitamin
D supplementation can effectively reduce the levels of Aβ,
amyloid precursor protein (APP), BACE1, APP mRNA,
and BACE1 mRNA [104]. Vitamin D and its receptors are
important components of neuronal amyloid processing
pathways [105]. Mayne et al. found that vitamin D defi-
ciency may affect synaptic plasticity, leading to a decline
of cognition [31]. Studies have shown that vitamin D sig-
naling can affect the expression of L-type voltage-gated
calcium channels, which are involved in neurotransmitter
release, neuronal excitability change, learning and mem-
ory, etc. [31, 106]. Treatment of aging rodents with high-
dose vitamin D3 could prevent cognitive decline and
enhance hippocampal synaptic excitability [107].

Many studies have shown that brain regions involved
in regulating olfactory function are closely related to
cognitive decline, and the severity of olfactory disorder
in PD patients may precede dementia [108–110]. In
2018, Kim et al. firstly demonstrated that the 25(OH)D3

levels were correlated with the severity of olfactory dys-
function in PD [111]. According to the Braak model of
neuropathological staging of PD, the early stages 1 and 2
start from the medulla and the olfactory bulb [112], sup-
porting a relationship between vitamin D and early PD.
In addition to being associated with dementia and olfac-
tory function in PD patients, serum 25(OH)D3 concen-
trations can also affect the gastric emptying time [113]
and orthostatic hypotension [114].

Preventive and therapeutic effects of vitamin D in PD
The pathophysiology of PD is affected by 1,25(OH)2D3

via genomic (Table 1) and non-genomic routes (rapid
vitamin D-dependent membrane-associated effects)
[120]. 1,25(OH)2D3 can increase or decrease the expres-
sion of a number of genes, thereby affecting intracellular
signaling pathways. Recent pieces of evidence suggest
that there is an inverse correlation between vitamin D
concentrations and PD risk.

1,25(OH)2D3 affects PD by genomic actions mediated by
VDR
Neuroprotective effects of vitamin D
Glial cell-derived neurotrophic factors (GDNFs) facilitate
neuronal regrowth and protect dopaminergic nerve ter-
minals, which make them a very promising candidate for
neuro-restoration therapy of PD [121, 122]. GDNF binds
to the GDNF family receptor alpha 1 (GFRa1) and then
associates with the proto-oncogene tyrosine-protein kin-
ase receptor Ret (C-Ret). This complex enables GDNF
to exert intracellular signaling in DA neurons [115].
However, GDNF cannot pass the blood-brain barrier,
and injecting GDNF into the CNS has many negative ef-
fects [121]. As a fat-soluble vitamin, 1,25(OH)2D3 can
pass the blood-brain barrier, which consolidates the im-
portance of this hormone in PD [39]. Upon VDR bind-
ing, 1,25(OH)2D3 directly upregulates the transcription
of genes targeted by C-Ret and GDNF. There is a posi-
tive feedback between GDNF and C-Ret, and both can
suppress GFRa1 production [115]. Depletion of 1,
25(OH)2D3 results in decreased expression of GDNF,
Nurr1 and p57kip2 [123, 124], which may alter the dif-
ferentiation and maturation of DA neurons in the devel-
oping rat brain [116, 117]. Nurr1 is also crucial for the
expression of C-Ret [115], which in turn triggers Src-
family kinases and tyrosine kinase, activating several
downstream signaling cascades, including the phosphoi-
nositide 3-kinase (PI3K) pathway, the phospholipase Cγ
(PLC-γ) pathway, and the p42/p44 mitogen-activated
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protein kinase (MAPK) pathway [125, 126]. The activa-
tion of the MAPK pathway requires a basal activity of
the PI3K pathway [126]. The activation of these path-
ways may promote the survival and differentiation of
midbrain DA neurons (Fig. 2). In conclusion, 1,
25(OH)2D3 exerts its neuroprotective effects by increas-
ing the expression of GDNF gene and then activating
several downstream intracellular signaling cascades.
In addition, 1,25(OH)2D3 is also an antioxidant, which

may further contribute to its neuroprotective effects.
Studies have demonstrated that 1,25(OH)2D3 increases
the expression of GDNF, a powerful antioxidant that can
reduce reactive oxygen species (ROS). GDNF markedly
increases the levels of superoxide dismutase, glutathione
peroxidase and catalase in the striatum (Fig. 2) [127]. In
addition to the upregulation of GDNF expression, 1,
25(OH)2D3 can also exert its antioxidant effect through
genomic and/or nongenomic activation. Under inflam-
matory stimulation, microglial cells can produce 1,
25(OH)2D3 in situ, where it potentiates the mRNA ex-
pression of gamma-glutamyl transferase (γ-GT) and γ-
GT activity induced by proinflammatory stimuli. γ-GT
mediates the import of glutathione (GSH) into the cell,
after which the intracellular GSH reduces the produc-
tion of reactive nitrogen species and hydrogen peroxide
[128]. In addition, 1,25(OH)2D3 also increases the ex-
pression of the nuclear factor erythroid 2-related factor
2 (Nrf2). When ROS rise, they bind to antioxidant re-
sponse elements (AREs) in the nucleus, enhancing the
expression of antioxidant genes, detoxifying enzymes
and various signaling components. By increasing the
expression of Fos and JUN, Nrf2 also increases the
expression of both VDR and RXR [129]. Moreover, 1,
25(OH)2D3 can directly inhibit lipid peroxidation as a
membrane antioxidant, which protects the membranes
of normal cells from ROS-induced oxidative damage
[130, 131]. Therefore, 1,25(OH)2D3 contributes to the
enhancement of antioxidative systems by increasing the
expression of GDNF, γ-GT and Nrf2 (Fig. 3).
It has also been reported that 1,25(OH)2D3 has anti-

inflammatory properties. It can attenuate pro-inflammatory
and upregulate anti-inflammatory processes [132]. In the 6-

OHDA-induced PD model, pre- or post-treatment with 1,
25(OH)2D3 reduced tissue immunopositivity for TNF-α,
partially restored tyrosine hydroxylase (TH) immunoreac-
tivity, and prevented the decrease of VDR immunoreactivity
in the lesioned striatum [133, 134]. Cell culture studies
revealed that the increased intracellular free calcium can
induce the aggregation of α-synuclein, and proved that the
increase of intracellular calcium and oxidative stress
can act cooperatively to promote α-synuclein aggrega-
tion [135–138]. By reducing the expression of L-type
Ca2+ channels and increasing the expression of the
plasma membrane Ca2+ ATP-ase, NCX1, anti-apoptotic
factor Bcl-2 and buffering protein calbindin D28k, 1,
25(OH)2D3 can maintain the low cytosolic Ca2+ con-
centrations and thereby protect against Ca2+-induced
oxidative damage in SN dopaminergic neurons [106,
129]. High concentrations of divalent metal ions exhibit
toxic effects that may cause an elevation of ROS levels
and mitochondrial dysfunction, and even induce neur-
onal cell death. Notably, 1,25(OH)2D3 can maintain
zinc, iron and manganese homeostasis by regulating the
expression of related genes. It can transactivate SLC30A10
to increase the expression of zinc and manganese trans-
porter ZnT10. It can also decrease the expression of
SLC39A2, which encodes the ZIP (SLC39) protein impli-
cated in zinc, iron and/or manganese transport. The ZnT
(SLC30) protein reduces the cytoplasmic concentrations
of metal ions, while ZIP (SLC39) transporters lead to an
increase (Fig. 3) [118]. In short, 1,25(OH)2D3 can maintain
the homeostasis of calcium, zinc, iron and manganese by
regulating the expression of some genes, thereby reducing
oxidative stress and mitochondrial damage.

Vitamin D is closely associated with dopaminergic
neurotransmission
Studies have shown that 1,25(OH)2D3 and VDR are dir-
ectly involved in regulating the expression of genes in
dopaminergic neurons [139]. Many studies have found
that VDR protein levels and TH expression are en-
hanced in the brains of rats following 1,25(OH)2D ad-
ministration [119, 140]. Notably, TH is the rate-limiting
enzyme of dopamine synthesis. It has been reported that

Table 1 Effects of 1,25-dihydroxyvitamin D3 exposure on gene expression in PD

Gene name Gene location Involvement in brain function Expression change

C-Ret [115] 10q11.2 Neuroprotective effects and antioxidation Up

GDNF [115] 5p13 Neuroprotective effects and antioxidation; dopaminergic neurotransmission Up

Nurr1 [116, 117] 2q22–23 DA neuronal differentiation and maturation Up

p57kip2 [116, 117] 11p15.5 DA neuronal differentiation and maturation Up

SLC30A10 [118] 2q32.3 Maintenance of homeostasis of calcium, zinc, iron and manganese Up

SLC39A2 [118] 14q11.2 Maintenance of homeostasis of calcium, zinc, iron and manganese Down

TH [119] 11p15 Dopaminergic neurotransmission Up

C-Ret proto-oncogene tyrosine-protein kinase receptor Ret, GDNF glial cell-derived neurotrophic factor, TH tyrosine hydroxylase
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a likely mediator of the regulation of TH expression by
vitamin D is N-cadherin [141]. In line with these find-
ings, researchers found that pre- or post-treatments
with 1,25(OH)2D3 restored the decreased DA content,
and increased the expression of TH and dopamine
transporter in 6-OHDA-lesioned rats according to stri-
atal neurochemical and immunohistochemical assays
[133]. GDNF can act directly on DA neurons to en-
hance their activity and increase DA release [127]. In a
word, 1,25(OH)2D3 may participate in dopaminergic
neurotransmission via TH expression regulation and
the direct effect of GDNF on DA neurons, which medi-
ates the relationship between vitamin D concentrations
and the severity of PD.

1,25(OH)2D3 affects PD by rapid vitamin D-dependent
membrane-associated effects
Protein disulfide isomerase 3 (PDIA3), also known as
the endoplasmic reticulum stress protein 57 (ERp57),
acts as another 1,25(OH)2D3 membrane receptor [142].
Compared to the kidney and liver, PDIA3 is highly
expressed in all types of brain cells and can be consid-
ered as the main VDR in the brain [143]. It is a multi-
functional protein that can not only control the quality
of protein processing, but also maintain Ca2+ homeosta-
sis and regulate cellular stress responses [144, 145]. In
the PD model induced by 6-OHDA, the level of PDIA3
protein in the striatum is increased, which may be a cel-
lular response to oxidative stress. In this case, PDIA3

Fig. 2 1,25(OH)2D3 exerts neuroprotective effects via GDNF. CAT, catalase; C-Ret, proto-oncogene tyrosine-protein kinase receptor Ret; DA,
dopaminergic; GFR α1, GDNF family receptor alpha 1; GPx, glutathione peroxidase; MAPK pathway, p42/p44 mitogen-activated protein kinase
pathway; PLC-γ pathway, phospholipase Cγ pathway; PI3K pathway, phosphoinositide 3-kinase pathway; ROS, reactive oxygen species; RXR,
retinoid X receptor; SOD, superoxide dismutase; VDR, vitamin D receptor; VDREs, vitamin D response elements. The arrows indicate signaling
components that are either enhanced (red arrows) or reduced (green arrows)
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Fig. 3 1,25(OH)2D3 also exerts neuroprotective effects through genomic and/or non-genomic activation. ARE, antioxidant response element; GFR
α1, GDNF family receptor alpha 1; γ-GT, gamma-glutamyl transferase; GSH, glutathione; GSNOH, S-nitrosoglutathione; RXR, retinoid X receptor;
ROS, reactive oxygen species; PMCA, plasma membrane Ca2+ ATP-ase; Nrf2, nuclear factor erythroid 2-related factor 2; VDR, vitamin D receptor;
VDREs, vitamin D response elements. The arrows indicate signaling components that are either enhanced (red arrows) or reduced (green arrows)
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may act as a chaperone to prevent the misfolding and
aggregation of α-synuclein [144]. After generation of
ROS by 6-OHDA, protein oxidation occurs first, and
early in the protein oxidation process, the PDIA3 rapidly
forms juxtanuclear aggresome-like structures (ERp57/
DNA) in dopaminergic cells, which may induce down-
stream sequelae such as the unfolded protein response,
cell stress, and apoptosis [146, 147]. ERp57 has an affin-
ity for Ref-1, which has a synergistic effect and jointly
regulates the gene expression mediated by redox-
sensitive transcription factors and the adaptive responses
of cells to oxidative damage [147]. As a result, it is likely
that vitamin D functions in the PD through PDIA3.

Vitamin D supplementation in PD patients
The most important studies on vitamin D supplementa-
tion in PD patients are shown in Table 2. An interven-
tional trial supported the role of vitamin D in postural
balance of PD patients and suggested that daily supple-
mentation of vitamin D could improve the balance of
younger PD patients [148]. Other studies have also con-
firmed that supplemental 25(OH)D has beneficial effects
on strength and balance in older adults [149]. Therefore,
there is a debate on whether vitamin D supplementation
can specifically delay the progression of motor symp-
toms in PD patients, or only lead to a non-specific im-
provement in muscle strength and balance. However,
the complex automatic postural response not only re-
quires muscle function, but also involves the spinal cord,
midbrain/brainstem, and cerebellum/basal ganglia/cere-
bral cortex [150, 151]. In addition, vitamin D3 supple-
mentation has an age-dependent effect on PD [148].
Another randomized controlled trial of vitamin D sup-
plementation found that vitamin D3 supplementation
may retard the progression of PD for a short period in
patients with FokI CT and TT genotypes [41]. Therefore,
the extensive roles of vitamin D in the skeletal muscle
and neural systems suggest that vitamin D can affect the
symptoms of PD.

Conclusions and future directions
In summary, the most consistent view at present is
that the concentration of vitamin D is low in PD pa-
tients. Higher vitamin D concentrations are linked to
reduced risk and severity of PD, as well as better cog-
nition and mood of the patients. Furthermore, the
VDR gene phenotypes may influence the risk and se-
verity of PD, as well as the effect of vitamin D

supplementation in PD patients. Although there are
limited data on the effectiveness of vitamin D3 sup-
plementation in PD patients, related studies have
highlighted the effectiveness of vitamin D3 supple-
mentation in preventing osteoporotic fractures in the
aging population and retarding the progression of PD
for a short period.
A recent study has found that vitamin D has the po-

tential to be used as a biomarker for PD [152], inspiring
great interest in the relationship between PD and
vitamin D. Vitamin D can improve protein homeostasis
and slow down the aging process [153], but vitamin D
insufficiency is prevalent worldwide [48]. Moreover, vita-
min D supplementation is readily available, affordable
and safe. The earliest detectable side-effects of vitamin
D supplementation are hypercalciuria and hypercalce-
mia, which are only a concern when 25(OH)D levels
exceed 88 ng/mL (220 nmol/L) [154, 155]. Vitamin D
supplementation in PD patients at a dose of 1200 IU/day
for 12 months [41] or 10,000 IU/day for 16 weeks [148]
did not lead to obvious adverse events such as hypercal-
cemia (Table 2). Therefore, vitamin D supplementation
in PD patients seems to be promising, although the dose
of vitamin D that may cause toxicity remains unclear.
Despite the limited long-term safety data, in 2010, the
Institute of Medicine (IOM) defined a safe upper limit
dosage for vitamin D of 4000 IU/day, although practi-
tioners should keep in mind the intake of other dietary
supplements [156]. The possibility of neuroprotection is
the most exciting aspect of vitamin D therapy in PD.
Considering the neuroprotective effects of vitamin D
and the role of vitamin D in dopaminergic neurotrans-
mission, interventional prospective studies on vitamin D
supplementation in PD patients should be conducted in
the future.
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D3; 1-OHase: 25-hydroxyvitamin D-1α-hydroxylase; 24-OHase: 25-
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Table 2 Vitamin D3 supplementation in PD patients

Author Country Type of study Number of participants (T/C) Intervention Follow-up Adverse events

Hiller et al. 2018 [148] USA RCT 27/24 Vitamin D3 10,000 IU/day 16 weeks None

Suzuki et al. 2013 [41] Japan RCT 56/58 Vitamin D3 1200 IU/day 12 months None

T treatment group, C control group, PD Parkinson’s disease
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