Skip to main content
. 2020 Aug 12;21(16):5797. doi: 10.3390/ijms21165797
Algorithm 1:The ssPCA algorithm
 Given the cluster labels y, scRNA-seq data X, similarity (kernel) matrix KX and hyperparameter λ:
  1. Recode y into a binary matrix Y, calculate KY=YYT, and compute       KX from X if KX is not available.
  2. Find W, the eigenvectors of (1λ)KXHKX+λKXHKYHKX corresponding to       the k largest eigenvalues.
  3. Project to low-dimension with Z=KXW for cluster visualization.