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Abstract

Objective: To determine the inter-rater agreement (IRA) of a standardized nomenclature for EEG 

spectrogram patterns, and to estimate the probability distribution of ictal-interictal continuum (IIC) 

patterns vs. other EEG patterns within each category in this nomenclature.

Methods: We defined seven spectrogram categories: “Solid Flames”, “Irregular Flames”, 

“Broadband-monotonous”, “Narrowband-monotonous”, “Stripes”, “Low power”, and “Artifact”. 

Ten electroencephalographers scored 115 spectrograms and the corresponding raw EEG samples. 

Gwet’s agreement coefficient was used to calculate IRA.

Results: Solid Flames represented seizures or IIC patterns 69.4% of the time. Irregular Flames 

represented seizures or IIC patterns 38.7% of the time. Broadband-monotonous primarily 

corresponded with seizures or IIC (54.3%) and Narrowband-monotonous with focal or generalized 
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slowing (43.8%). Stripes were associated with burst-suppression (37.2%) and generalized 

suppression (34.4%). Low Power category was associated with generalized suppression (94%). 

There was “near perfect” agreement for Solid Flames (κ = 94.36), Low power (κ = 92.61), and 

Artifact (κ = 93.72). There was “substantial agreement” for all other categories (κ = 74.65–79.49).

Conclusions: This EEG spectrogram nomenclature has high IRA among 

electroencephalographers.

Significance: The nomenclature can be a useful tool for EEG screening. Future studies are 

needed to determine if using this nomenclature shortens time to IIC identification, and how best to 

use it in practice to reduce time to intervention.
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1. Introduction

Seizures and ictal-interictal continuum (IIC) EEG patterns occur in up to 40% of critically ill 

patients monitored with continuous EEG (cEEG) (Claassen et al., 2007; Oddo et al., 2009; 

Kurtz et al., 2014; Sivaraju and Gilmore, 2016). Higher seizure and IIC burden are 

associated with worse functional outcomes (De Marchis et al., 2016; Zafar et al., 2018), and 

delay in diagnosis and treatment of non-convulsive seizures has been shown to be associated 

with higher mortality (Young et al., 1996). However, implementation of real-time screening 

of seizures and IIC using cEEG has been challenging given the limited availability of experts 

with training in clinical neurophysiology and the time consuming nature of raw EEG review 

(Gavvala et al., 2014; Moura et al., 2014).

Several studies have shown that quantitative EEG displays can streamline seizure detection 

by expert electroencephalographers with reasonable sensitivity and specificity (Swisher et 

al., 2015; Amorim et al., 2017). Nurses and other bedside providers’ ability to screen 

seizures using quantitative EEG displays, in particular spectrograms, has also been tested, 

and initial reports indicate that sensitivity for seizure screening performance might be 

comparable to expert electroencephalographer review, despite lower specificity and overall 

accuracy (Amorim et al., 2017; Kang et al., 2019).

However, implementation and education on seizure screening using spectrograms and other 

quantitative EEG displays has been limited by lack of a standardized approach to identifying 

spectrogram signatures associated with seizures or IIC EEG patterns on raw EEG. A recent 

study evaluating seizure screening performance by expert electroencephalographers and 

critical care nurses using spectrograms proposed categorizing EEG spectrogram patterns into 

five categories that appear to be associated with high, intermediate, or low risk of seizures 

(Amorim et al., 2017). This proposed nomenclature for EEG spectrogram patterns provided 

preliminary estimates of the probability that each pattern would turn out to be an 

electrographic seizure upon inspection of the corresponding raw EEG. However, these 

estimates were considered tentative because they relied on a small number of seizure and IIC 

cases and only four expert electroencephalographers.
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To be clinically useful, a nomenclature needs to be validated as reliable. That is, it must be 

possible for providers evaluating the same EEG independently to apply the nomenclature 

consistently. Determining whether this is the case requires a formal study of inter-rater 

agreement (IRA). We hypothesized that a standardized “easy to use” nomenclature will have 

high inter-rater agreement. Herein, we extend our prior work by proposing a refined version 

of the standardized nomenclature for EEG spectrogram patterns. Our primary objective was 

to assess the inter-rater agreement of our proposed nomenclature. Our secondary objective 

was to evaluate the performance of the nomenclature by assessing the probabilities that each 

category on the nomenclature represents IIC patterns vs. other EEG patterns encountered in 

ICU patients (slowing, suppression and burst suppression). We developed a lookup table or 

“atlas” of spectrogram patterns to 1) provide both clinical neurophysiologists and bedside 

providers without EEG expertise the probabilities of seeing IIC patterns vs. other patterns 

and expediting raw EEG review when needed, 2) serve as an educational resource on 

quantitative EEG analyses for trainees and other bedside providers, 3) provide a common 

lexicon for research questions.

2. Methods

2.1. Spectrogram EEG nomenclature

We utilize and refine the standardized nomenclature for spectrograms developed in previous 

published work from our group (Amorim et al., 2017). The following 7 categories have been 

defined: “Solid Flames”, “Irregular Flames”, “Broadband-monotonous”, “Narrowband-

monotonous”, “Stripes”, “Low Power” and “Artifact”. Representative examples of each 

category are shown in Fig. 1.

• “Solid flames”: This pattern is characterized by an abrupt appearance of 

spectrogram segments with high-power and bandwidth, rising “up” from the 

delta range into theta and often into the alpha frequency range, similar in 

appearance to candle flames. Solid flames have smooth edges. When they recur, 

they are stereotyped and each instance appears similar to the others.

• “Irregular flames”: These events have a flame-like shape, but are characterized 

by edge “choppiness” or “irregularity”. They tend not to be stereotyped.

• “Broadband-monotonous”: Spectrograms with this pattern are characterized by 

minimal variation over time or gradual waxing and waning of sustained high 

power (yellow/red/white) extending across a broad band of frequencies, 

extending up to high (>5 Hz) frequencies.

• “Narrowband-monotonous”: Spectrograms with this pattern have a sustained 

band of high-power (yellow/red/white) restricted to low (<5 Hz) frequencies. 

There is minimal variation within the high-power band.

• “Stripes”: This pattern is essentially synonymous with burst suppression, and is 

characterized by alternation between diffuse low power (suppression), and high 

power “stripes” (bursts). In other words, sequential events with high power 

across a range of frequencies (bursts) give the spectrogram a striped appearance.
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• “Low power”: These spectrograms are characterized by diffuse low power, and 

appear monotonous. There is often a narrow band of dark blue/cyan/green (low 

power), which should be distinguished from the higher power yellow/red band 

seen in narrowband-monotonous.

• “Artifact”: This pattern is characterized by irregular high-power signal 

saturating the spectrogram colormap across a broad range of frequencies.

2.2. EEG acquisition and samples

Under a protocol approved by the Institutional Review Board, EEG samples were taken from 

a database of adult patients who underwent cEEG monitoring at Massachusetts General 

Hospital (MGH) between 2012 and 2017. All cEEG recordings were obtained using 21 scalp 

electrodes and the conventional International 10–20 system. Raw EEG data was reviewed 

and reported in the medical record by two clinical neurophysiologists per institutional 

protocol. Three clinical neurophysiologists independently reviewed raw EEG data to classify 

findings based on the standardized American Clinical Neurophysiology Society (ACNS) 

Intensive Care Unit (ICU) EEG terminology (Hirsch et al., 2013).

We selected 115 raw EEG samples that comprised 10–12 examples each of the commonly 

encountered cEEG patterns: seizures, lateralized and generalized periodic discharges (LPDs, 

GPDs), lateralized and generalized rhythmic delta activity (LRDA, GRDA), focal or 

generalized slowing, burst suppression, generalized suppression and artifact. Each raw EEG 

sample was 10 seconds in duration.

For each 10-s raw EEG sample selected, we extracted a one-hour segment of cEEG data that 

contained the 10-s sample. The initial sampling rate was 512 Hz. However, for our purposes 

200 Hz was adequate (spectrograms were computed only up to 20 Hz), and a lower sampling 

rate was slightly more computationally convenient. Therefore segments were resampled to 

200 Hz and used to compute spectrograms. We divided the scalp into 4 different regions for 

spectrogram construction: Left lateral (Fp1, F7, T3, T5, O10; Right lateral (Fp2, F8, T4, T6, 

O2); Left Parasagittal (Fp1, F3, C3, P3, O1); Right Parasagittal (Fp2, F4, C4, P4, O2). 

Spectrogram images were computed using multitaper spectral estimation (Thomson, 1982; 

Bokil et al., 2010), with a window size of 2 seconds and a 1 second overlap. All signal 

processing was performed using MATLAB (Natick, MA). The spectrograms generated by 

MATLAB were similar in appearance and color scheme to the quantitative EEG and 

spectrogram displays provided by standard bedside EEG software typically used in real time 

clinical practice.

2.3. Inter-rater agreement: survey and raters

We used a web-based testing system (SurveyMonkey, Inc; San Mateo, CA) to evaluate inter-

rater agreement of the proposed spectrogram nomenclature and to quantify associations 

between spectrogram and raw EEG patterns. The test was comprised of 230 images (115 

raw EEG samples and the corresponding 115 spectrogram images), each with multiple 

choice answer options. The spectrogram and raw images were presented in random order, 

such that consecutive spectrogram and raw EEG images were not related. Each raw EEG 

image included a 10 second clip provided with multiple choice options: 1) Seizure, 2) 
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Lateralized Periodic Discharges (LPDs), 3) Generalized Periodic Discharges (GPDs), 4) 

Lateralized Rhythmic Delta Activity (LRDA), 5) Generalized Rhythmic Delta Activity 

(GRDA), 6) Focal Slowing, 7) Generalized Slowing, 8) Burst-Suppression, 9) Generalized 

Suppression, 10) Artifact. Raters were provided the option “other” if in their opinion the raw 

EEG clip did not fall into any of the pattern categories listed in the choices. Each 1-hour 

spectrogram image was associated with the following multiple-choice options: 1) Solid 

flames, 2) Irregular flames, 3) Broadband-monotonous, 4) Narrowband-monotonous, 5) 

Stripes, 6) Low power, 7) Artifact. A green arrow in each spectrogram identified the segment 

from which the corresponding raw EEG clip was obtained (Fig. 2). Raters were asked to 

choose the spectrogram pattern that in their opinion was representative of the pattern 

immediately below the green marker (Fig. 2). A reference guide with a representative 

spectrogram image for each nomenclature category was provided and could be used while 

completing the survey.

Additionally, the survey had questions pertaining to EEG training and experience for each 

rater. Ten fellowship trained electroencephalographers from 6 centers completed the survey. 

Raters were blinded to the original EEG reports and findings.

2.4. Statistical analysis

We calculated inter-rater agreement using Gwet’s multi-rater agreement coefficient AC 

(Feinstein and Cicchetti, 1990; Gwet, 2008, 2010). We categorized j values following the 

convention: slight agreement 10–20%; fair agreement 20–40%; moderate agreement 40–

60%; substantial agreement 60–80%; near perfect agreement 80–100% (Landis and Koch, 

1977). 95% confidence intervals were calculated for the estimated κ values.

We plotted agreement matrices to identify sources of disagreement. The “gold standard” or 

“best answer” for both spectrogram and raw EEG images was defined to be the majority 

response.

Finally, we tabulated the frequency with which each raw EEG pattern corresponded with 

each spectrogram category as an estimate of the probability. These frequencies serve as an 

estimate of the probability that, when one sees a given spectrogram pattern, that review of 

the corresponding raw EEG will reveal seizures, IIC or other patterns.

3. Results

Rater characteristics for the 10 electroencephalographers who participated in the study are 

shown in Table 1. All had at least two years of experience reading ICU EEG, had passed the 

ACNS ICU EEG certification test, and routinely used quantitative EEG.

Fig. 3 shows the percentages of observed agreement and estimated chance-corrected level of 

IRA (κ value) with 95% confidence intervals for spectrograms and raw EEG. For 

spectrogram patterns, there was “near perfect” agreement for solid flames, low power, and 

artifact categories. There was “substantial agreement” for all the other spectrogram 

categories. As two of the raters (MBW and ESR) had been involved in the design and 

execution of prior work on the nomenclature (Amorim et al., 2017), we repeated analysis 
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after excluding these raters and found similar inter-rater agreement: Solid flames: kappa 

94.56 [91.36–97.76]; Irregular flames: kappa 77.97 [71.10–84.38]; broadband-monotonous: 

kappa 78.40 [71.26–85.54]; narrowband-monotonous: kappa 74.77 [67.28–82.27]; stripes: 

kappa 79.49 [ 73.08–85.90]; low power: kappa 93.16 [89.52–96.80]; artifact: kappa 94.10 

[91.26–96.94].

For raw EEG patterns, there was “near perfect” agreement for GPDs, LRDA, GRDA, 

seizures, burst-suppression and artifact. The remaining patterns all showed “substantial 

agreement”.

Agreement matrices showing patterns of disagreement are shown in Fig. 4. For both 

spectrogram and raw EEG the incorrect responses were generally close or similar to the 

correct or gold standard. For example, when the majority choice was solid flames, a small 

minority chose irregular flames. Similarly, when the majority answer was broadband-

monotonous, most deviant responses were either irregular flames or narrowband-

monotonous. A similar pattern was seen for raw EEG ratings (Fig. 4b). For example, when 

the majority response was seizures, the majority of the incorrect responses were for periodic 

and rhythmic patterns. When the majority response was generalized slowing, most incorrect 

responses were GRDA or suppression. This is likely a result of the challenge in choosing 

between categories for borderline or overlapping cases.

Fig. 4c shows the frequency with which raw EEG patterns correspond to each spectrogram 

category. Solid flames represented seizures or IIC EEG patterns 69.4% of the time. Irregular 

flames represented seizures or IIC EEG patterns 38.7% of the time, and focal or generalized 

slowing 32.3% of the time. Broadband-monotonous spectrograms primarily represented 

seizures or IIC patterns (54.3%) and focal/generalized slowing (32.9%). Narrowband-

monotonous spectrograms primarily represented focal or generalized slowing (43.8%), 

followed by IIC EEG patterns (24.2%). Stripes primarily represented burst suppression 

(37.2%), and generalized suppression (34.4%). Low power spectrograms almost entirely 

represented generalized suppression (94%). The atlas provided in Supplement 1 shows 

examples of spectrogram patterns and the frequency of corresponding raw EEG findings.

Although the study was not designed to determine sensitivity of spectrogram patterns, we 

evaluated the diagnostic accuracy of solid flames for detection of seizures. The “gold 

standard” for seizures on raw EEG clips was determined by majority consensus (i.e. when 

seizures was the single most common response). The “gold standard” for solid flames as 

determined by majority consensus (i.e. solid flame was the single most common response). 

The Solid flames had a sensitivity of 87.5% (7/8) and specificity of 92.5% (99/107) for the 

detection of seizures. The positive likelihood ratio (LR+) was 12 and the overall accuracy of 

solid flames for detection of seizures was 92.2%. The pre-test probability of seizures was 

7% and post-test probability was 47% (Fagan’s nomogram shown in Supplement 2).

4. Discussion

This study indicates that a spectrogram nomenclature for EEG patterns has a high inter-rater 

agreement and can be reliably used by expert electroencephalographers. In evaluating the 
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performance of the nomenclature we found that seizures were nearly always categorized as 

solid flames, supporting our preliminary study that this is a very sensitive spectrogram 

signature (Amorim et al., 2017). Not surprisingly, there was more variability in the 

spectrogram categories attributed to IIC EEG patterns; however those were nearly always 

categorized under the flames or broadband categories, supporting the potential use of this 

nomenclature not only to screen for seizures, but also for IIC EEG patterns. Though not the 

primary focus of our study, we also found a high inter-rater agreement for raw EEG patterns; 

this high agreement may be because participating raters were all familiar with the 

standardized ACNS nomenclature which has now been available for several years and is 

being increasingly utilized for critical care EEG reporting.

The atlas we developed (Supplement 1) can serve as a tool to support more nuanced 

screening, seizure surveillance and “alarm activation” by bedside providers. Once an EEG 

spectrogram category is identified, the atlas can be used as a benchmark to gauge the 

likelihood of seizure or IIC risk for that pattern, allowing providers to go beyond an “all or 

none” approach to seizure screening and to calibrate the level of concern for events that 

might be actionable or require further investigation. For example, a solid flame alarm carries 

a very different seizure risk compared to a stripes or low power pattern. A prospective study 

of comparing use of the proposed nomenclature and atlas with current standard EEG 

screening practices both among expert neurophysiologists and non neurophysiologist bed 

side providers is needed to better define the potential clinical impact of the nomenclature.

Identifying the specific EEG spectrogram pattern that corresponds with a seizure already 

identified on raw EEG, and vice-versa, has the potential to reduce the frequency of false 

alarms and increase specificity and reduce timing of seizure recurrence diagnosis. This study 

showed high inter-rater agreement for both our EEG spectrogram nomenclature system and 

for the corresponding raw EEG classification using the ACNS ICU EEG terminology, 

supporting previous studies showing that the spectrogram and raw EEG signatures rating is 

consistent despite the heterogeneity of the raw EEG examples (Gerber et al., 2008; Mani et 

al., 2012; Gaspard et al., 2014; Amorim et al., 2017). That was true for EEG spectrograms 

associated with seizure and IIC EEG patterns (flames and broadband), but also for those 

infrequently associated with epileptiform abnormalities (stripes or low power). This result 

further motivates the implementation of this nomenclature in future studies of seizure 

screening by expert and non-expert bedside providers in the critical care setting.

Raw EEG review is a time-intensive task for expert electroencephalographers. Review of 24-

hours of raw EEG data by an experienced neurophysiologist requires 38 minutes on average 

(Moura et al., 2014). The reviewing time can be further reduced to an average of 8 minutes 

when spectrograms or quantitative EEG displays are used (Moura et al., 2014). Moreover, 

several studies have shown that quantitative EEG displays can aid rapid and early detection 

of seizures both by neurophysiologists and non-neurophysiologists (Stewart et al., 2010; 

Williamson et al., 2014; Swisher et al., 2015; Haider et al., 2016). Sensitivity of quantitative 

EEG guided seizure screening in these studies varies widely between clinicians (66–92%) 

and nurses (64–95%), highlighting the heterogeneity in study methodology, training of non-

experts, and examples of seizure and IIC EEG patterns included. False alarms are an 

important limitation of seizure screening systems using quantitative EEG alone, and 
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previous studies identified up to one false alarm every 6-h (Amorim et al., 2017). Our 

spectrogram atlas may simplify training for and implementation of seizure screening with 

quantitative EEG, and may assist bedside providers - both expert electroencephalographers 

and non-experts - in shortening EEG screening time and streamline earlier identification, 

confirmation on raw EEG, and treatment of seizures or IIC EEG patterns.

There are limitations to this study. First, the 115 examples selected aimed to cover a wide 

range of variations of seizures and IIC EEG patterns. The prevalence of these EEG findings 

in our study may not reflect routine clinical practice, and the increased difficulty of adding 

more challenging-to-categorize patterns might mean that the estimates provided in our atlas 

underestimate the true level of inter rater agreement and seizure/IIC risk that can be achieved 

in practice. Second, the inter-rater agreement evaluation was restricted to expert 

electroencephalographers, and did not include trainees, nurses or other bedside providers. 

However, the high interrater agreement of our EEG spectrogram nomenclature and atlas 

indicate that this tool might be useful in training non-expert providers in workshops as done 

in previous studies. Third, experts involved in the evaluation of the study were blinded to 

patient history and were only provided with 1-h of spectrogram data, therefore it is possible 

that real-world interrater agreement performance could have been further improved by 

collateral information and additional EEG data. Finally, raters in our study had to categorize 

spectrogram and EEG patterns by selecting from a limited number of options. It is possible 

that inter-rater agreement would be different if the options had been different, or if raters had 

been permitted to answer using free form responses.

5. Conclusion

A simple nomenclature for screening EEG for IIC vs. other patterns using EEG 

spectrograms has high inter-rater agreement among expert electroencephalographers. The 

seizure and IIC risk score/probabilities provided in the atlas is expected to be able to help 

experts and non-expert bedside providers who have quantitative EEG tools available to 

screen the EEG more rapidly, and to better recognize which types of changes in EEG 

spectrogram patterns are more likely to be seizures or IIC patterns, and thus warrant more 

urgent direct review of the raw EEG. Future prospective studies are needed to test if this 

decision support tool may improve early and accurate identification of seizures, expedite 

treatment, and reduce false-alarm rates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank members of the Critical Care EEG Monitoring Research Consortium for valuable feedback 
on the study.

Funding/Disclosures

This research was supported by funding from NIH-NINDS K23NS114201 (PI- SFZ). MBW received funding from 
NIH-NINDS (NIH-NINDS 1R01NS102190, 1R01NS102574, 1R01NS107291) not related to this work. SFZ, ESR, 
JJ, and MBW received funding from SAGE Therapeutics not related to this work. JWL does contract work for 

Zafar et al. Page 8

Clin Neurophysiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SleepMed/DigiTrace, Advance Medical; Site PI for Engage Therapeutics; Research funding from NINDS, not 
related to this work. HAH received consultant support from Ceribell, Inc.; author royalties from UpToDate Inc. and 
Springer Publishing not related to this work. EA received funding from the Neurocritical Care Society, American 
Heart Association, and Massachusetts Institute of Technology-Philips Alliance not related to this work Amorim et 
al., 2017; Bokil et al., 2010; Claassen et al., 2007; De Marchis et al., 2016; Feinstein and Cicchetti, 1990; Gaspard 
et al., 2014; Gavvala et al., 2014; Gerber et al., 2008; Gwet, 2010, 2008; Haider et al., 2016; Hirsch et al., 2013; 
Kang et al., 2019; Kurtz et al., 2014; Landis and Koch, 1977; Mani et al., 2012; Moura et al., 2014; Oddo et al., 
2009; Sivaraju and Gilmore, 2016; Stewart et al., 2010; Swisher et al., 2015; Thomson, 1982; Williamson et al., 
2014; Young et al., 1996; Zafar et al., 2018.

Abbreviations:

ACNS American Clinical Neurophysiology Society

cEEG continuous EEG

GRDA generalized rhythmic delta activity

GPDs generalized periodic discharges

ICU intensive care unit

IIC ictal-interictal continuum

IRA Inter rater agreement

LPDs lateralized periodic discharges

LRDA lateralized rhythmic delta activity

MGH Massachusetts General Hospital

References

Amorim E, Williamson CA, Moura LM, Shafi MM, Gaspard N, Rosenthal ES, et al. Performance of 
spectrogram-based seizure identification of adult EEGs by critical care nurses and 
neurophysiologists. J Clin Neurophysiol. 2017;34:359–64. [PubMed: 27930420] 

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural 
signals. J Neurosci Methods 2010;192(1):146–51. 10.1016/j.jneumeth.2010.06.020. [PubMed: 
20637804] 

Claassen J, Jette N, Chum F, Green R, Schmidt M, Choi H, et al. Electrographic seizures and periodic 
discharges after intracerebral hemorrhage. Neurology 2007;69:1356–65. [PubMed: 17893296] 

De Marchis G, Pugin D, Meyers E, Velasquez A, Suwatcharangkoon, Park S, et al. Seizure Burden in 
Subarachnoid Hemorrhage Associated With Functional and Cognitive Outcome. Neurology 
2016;86:253–60. [PubMed: 26701381] 

Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J Clin 
Epidemiol. 1990;43:543–9. [PubMed: 2348207] 

Gaspard N, Hirsch LJ, LaRoche SM, Hahn CD, Westover MB. Critical Care EEG Monitoring 
Research Consortium. Interrater agreement for critical care EEG terminology. Epilepsia. 
2014;55:1366–73. [PubMed: 24888711] 

Gavvala J, Abend N, LaRoche S, Hahn C, Herman ST, Claassen J, et al. Continuous EEG monitoring: 
a survey of neurophysiologists and neurointensivists. Epilepsia 2014;55:1864–71. [PubMed: 
25266728] 

Gerber PA, Chapman KE, Chung SS, Drees C, Maganti RK, Ng Y-T, et al. Interobserver agreement in 
the interpretation of EEG patterns in critically ill adults. J Clin Neurophysiol 2008;25:241–9. 
[PubMed: 18791475] 

Zafar et al. Page 9

Clin Neurophysiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J 
Math Stat Psychol 2008;61:29–48. [PubMed: 18482474] 

Gwet KL. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement 
among raters. Gaithersburg, MD: Advanced Analytics, LLC; 2010.

Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ, Lee JW, et al. Sensitivity of quantitative 
EEG for seizure identification in the intensive care unit. Neurology 2016;87:935–44. [PubMed: 
27466474] 

Hirsch LJ, LaRoche SM, Gaspard N, Gerard E, Svoronos A, Herman ST, et al. American clinical 
neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin 
Neurophysiol. 2013;30:1–27. [PubMed: 23377439] 

Kang JH, Sherill GC, Sinha SR, Swisher CB. A trial of real-time electrographic seizure detection by 
neuro-ICU nurses using a panel of quantitative EEG trends. Neurocrit Care 2019;20:1–9.

Kurtz P, Gaspard N, Wahl AS, Bauer RM, Hirsch LJ, Wunsch H, et al. Continuous 
electroencephalography in a surgical intensive care unit. Intensive Care Med 2014;40:228–34. 
[PubMed: 24240843] 

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 
1977;33:159–74. [PubMed: 843571] 

Mani R, Arif H, Hirsch LJ, Gerard EE, LaRoche SM. Interrater reliability of ICU EEG Research 
Terminology. J Clin Neurophysiol 2012;92:203–12.

Moura LM, Shafi MM, Ng M, Pati S, Cash SS, Cole AJ, et al. Spectrogram screening of adult EEGs is 
sensitive and efficient. Neurology 2014;83:56–64. [PubMed: 24857926] 

Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the 
medical intensive care unit. Critical Care Med 2009;37:2051–6. [PubMed: 19384197] 

Sivaraju A, Gilmore EJ. Understanding and managing the ictal-interictal continuum in neurocritical 
care. Curr Treat Options Neurol 2016;18:8. [PubMed: 26874841] 

Stewart CP, Otsubo H, Ochi A, Sharma R, Hutchison JS, Hahn CD. Seizure identification in the ICU 
using quantitative EEG displays. Neurology 2010;75:1501–8. [PubMed: 20861452] 

Swisher CB, White CR, Mace BE, Dombrowski KE, Husain AM, Kolls BJ, et al. Diagnostic accuracy 
of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult 
ICU using a panel of quantitative EEG trends. J Clin Neurophysiol 2015;32:324–30. [PubMed: 
26241242] 

Thomson DJ. Spectrum estimation and harmonic analysis. Proc IEEE 1982;70:1055–96.

Williamson CA, Wahlster S, Shafi MM, Westover MB. Sensitivity of compressed spectral arrays for 
detecting seizures in acutely ill adults. Neurocrit Care 2014;20:32–9. [PubMed: 24052456] 

Young BG, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit 
using continuous EEG monitoring: an investigation of variables associated with mortality. 
Neurology 1996;47:83–9. [PubMed: 8710130] 

Zafar SF, Postma EN, Biswal S, Boyle EJ, Bechek S, O’Connor K, et al. Effect of epileptiform 
abnormality burden on neurologic outcome and antiepileptic drug management after subarachnoid 
hemorrhage. Clin Neurophysiol 2018;129:2219–27. [PubMed: 30212805] 

Zafar et al. Page 10

Clin Neurophysiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• The proposed standardized spectrogram EEG nomenclature has high inter-

rater agreement.

• The probability of ictal-interictal continuum (IIC) vs. other patterns with each 

nomenclature category can aid EEG screening.

• Prospective studies will determine if the nomenclature can expedite IIC 

detection and treatment.
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Fig. 1. 
Quantitative EEG Spectrogram Nomenclature. Representative examples of the spectrogram 

nomenclature are shown. The scalp is divided into 4 different regions for spectrogram 

construction: Left lateral (Fp1, F7, T3, T5, O10; right lateral (Fp2, F8, T4, T6, O2); left 

parasagittal (Fp1, F3, C3, P3, O1); right parasagittal (Fp2, F4, C4, P4, O2). Each 

spectrogram image has four panels: left lateral (LL), right lateral (RL), left parasagittal (LP), 

right parasagittal (RP). Each spectrogram image shows one hour of recording. The vertical 

axis represents the spectrogram frequency from 0–20 Hz. “Solid flames” are characterized 

by an abrupt appearance of higher power and bandwidth, and have regular and have smooth 

edges. “Irregular flames” are characterized by choppiness and do not have smooth edges or a 

regular appearance. “Broadband-monotonous” is characterized by sustained higher power at 

low frequencies with minimal variation or very gradual waxing and waning of frequencies 

within the high-power band. “Narrowband-monotonous” is characterized by a sustained <5 

Hz band of high power (yellow/red) with minimal variation within the high-power band. 

“Stripes” represent a burst suppressed background and characterized by rapid alternation 

between diffuse low power and high power and high frequencies. “Low power” 

Zafar et al. Page 12

Clin Neurophysiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spectrograms are characterized by diffuse low power, and appear monotonous. “Artifact” is 

characterized by irregular high-power signal saturating all frequencies. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
Example of spectrogram image and corresponding raw EEG clip. Each spectrogram image 

has four panels: Left lateral (LL), right lateral (RL), left parasagittal (LP), right parasagittal 

(RP). We divided the scalp into 4 different regions for spectrogram construction: Left lateral 

(Fp1, F7, T3, T5, O10; Right lateral (Fp2, F8, T4, T6, O2); Left Parasagittal (Fp1, F3, C3, 

P3, O1); Right Parasagittal (Fp2, F4, C4, P4, O2). Above each image is a small green arrow 

that represents the segment from which the corresponding raw EEG clip was obtained. 

Raters were asked to choose the spectrogram nomenclature that in their opinion was 

representative of the pattern immediately below the green arrow. The raw EEG image shows 

a 10 second clip of recording in a longitudinal bipolar montage. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 3. 
Inter-rater agreement for quantitative and raw EEG. In inter-rater agreement calculation, a 

portion of the observed percent agreement (PA), is assumed to be chance attributed (PC). 

The inter-rater agreement statistical methods are used to determine the percent agreement 

beyond chance (kappa). Fig. 3a. PA, PC, κ and CI for quantitative EEG spectrogram 

nomenclature are shown. Fig. 3b. PA, PC, κ and CI for raw EEG are shown. PA: Percent 

agreement; PC: Percent chance; CI: confidence interval; κ: kappa; κ 10–20% = slight 

agreement; κ 20–40% =fair agreement; κ 40–60%=moderate agreement; κ 60–

80%=substantial agreement; κ 80–100%= near perfect agreement (Landis and Koch, 1977). 

GPD: generalized periodic discharge; GRDA: generalized rhythmic delta activity; LPD: 

lateralized periodic discharges; LRDA: lateralized rhythmic delta activity.
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Fig. 4. 
Agreement matrices. a. Agreement matrix showing sources of disagreement for spectrogram 

nomenclature is presented as a heat map. The spectrogram nomenclature categories are 

shown along the vertical and horizontal axes. Heat map intensities show the percentage of 

times each nomenclature option on the horizontal axis was chosen when the correct response 

(gold standard determined by majority consensus) was the one on the vertical axis. 100% 

agreement would produce a diagonal white line from upper left to lower right, with all the 

remaining squares not on that line being black. The figure demonstrates the majority had 

agreement in rating the spectrogram nomenclature. Any disagreement noted was primarily 

for patterns close or similar to each other. For example, when the gold standard response 

was solid flames, a small minority chose the incorrect response of irregular flames. Similarly 

when the correct answer was broadband-monotonous most incorrect responses were either 

irregular flames or narrowband-monotonous. BB-monotonous: Broadband-monotonous; 

NB-monotonous: Narrowband-monotonous. b. Agreement matrix showing sources of 

disagreement for raw EEG is presented as a heat map. The raw EEG categories are shown 

along the vertical and horizontal axes. Heat map intensities show the percentage of times 

each option on the horizontal axis was chosen when the correct response (gold standard 

determined by majority consensus) was the one on the vertical axis. 100% agreement would 
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produce a diagonal white line from upper left to lower right, with all the remaining squares 

not on that line being black. The figure demonstrates the majority had agreement in rating 

the raw EEG. Similar to spectrogram nomenclature, any disagreement was noted primarily 

for patterns close to each other. For example when the correct or gold standard response was 

seizures, the small number of incorrect responses were periodic and rhythmic patterns. 

When the correct response was generalized slowing, incorrect responses were GRDA or 

suppression. BS: burst suppression; Foc slow: focal slowing; Gen slow: generalized slowing; 

Gen supp: generalized suppression; GPD: generalized periodic discharge; GRDA: 

generalized rhythmic delta activity; LPD: lateralized periodic discharges; LRDA: lateralized 

rhythmic delta activity. c. Agreement matrix showing relation of spectrogram nomenclature 

with raw EEG patterns is presented as a heat map. Heat map intensities show the frequency 

(in percent) each option on the horizontal axis was chosen when the correct spectrogram 

response (gold standard determined by majority consensus) was the one on the vertical axis. 

SZ/IIC: The frequency with which seizure or any other IIC pattern (i.e. LPDs/GPDs/LRDA/

GRDA) were selected. SZ only: The frequency with which seizure was selected; Other IIC 

only: The frequency with which IIC patterns other than seizure (i.e. LPD/GPDs/LRDA/

GRDA) were selected; Foc/Gen Slow: The frequency with which focal or generalized 

slowing were selected; BS: The frequency with which burst suppression was selected. BB: 

broadband; BS: burst suppression; Foc slow: focal slowing; Gen slow: generalized slowing; 

Gen supp: generalized suppression; GPD: generalized periodic discharge; GRDA: 

generalized rhythmic delta activity; IIC: Ictal-interictal; LPD: lateralized periodic 

discharges; LRDA: lateralized rhythmic delta activity; NB: narrowband; SZ: seizures.
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Table 1

Characteristics of Electroenncephalographers.

N (%)

Role group: Attending/faculty 10 (100%)

Years of experience reading EEGs:

<2 years 0 (0%)

2–5 years 3 (30%)

5–10 years 5 (50%)

>10 years 2 (20%)

Years of experience reading quantitative EEGs:

<2 years 0 (0%)

2–5 years 3 (30%)

5–10 years 5 (50%)

>10 years 2 (20%)

Quantitative EEG routinely incorporated in clinical practice

Yes 10 (100%)

No 0 (0%)

Passed ACNS ICU EEG certification test 10 (100%)

Confidence in quantitative EEG interpretation

Not confident 1 (10%)

Somewhat confident 1 (10%)

Very confident 5 (50%)

Extremely confident 3 (30%)

ACNS: American Clinical Neurophysiology Society; ICU: Intensive Care Unit.
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