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Abstract

Background—Longevity as a phenotype entails living longer than average and typically 

includes living without chronic age-related diseases. Recently, several common genetic 

components to longevity have been identified. This study aims to identify additional genetic 

variants associated with longevity using unique and powerful analyses of pedigrees with a 

statistical excess of healthy elderly individuals identified in the Utah Population Database 

(UPDB).

Methods—From an existing biorepository of Utah pedigrees, six independent cousin pairs were 

selected from four extended pedigrees that exhibited an excess of healthy elderly individuals; 

whole exome sequencing (WES) was performed on two elderly individuals from each pedigree 

who were either first cousins or first cousins once removed. Rare (<0.01 population frequency) 

variants shared by at least one elderly cousin pair in a region likely to be identical by descent were 

identified as candidates. Ingenuity Variant Analysis was used to prioritize putative causal variants 

based on quality control, frequency, and gain or loss of function. The variant frequency was 

compared in healthy cohorts and in an Alzheimer’s disease cohort. Remaining variants were 

filtered based on their presence in genes reported to have an effect on the aging process, aging of 

cells, or the longevity process. Validation of these candidate variants included tests of segregation 

on other elderly relatives.

Results—Fifteen rare candidate genetic variants spanning 17 genes shared within cousins were 

identified as having passed prioritization criteria. Of those variants, six were present in genes that 
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are known or predicted to affect the aging process: rs78408340 (PAM), rs112892337 (ZFAT), 

rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 (NUP88 and 

RABEP1). ESPL1 rs61737629 and CEBPE rs141903485 show additional evidence of segregation 

with longevity in expanded pedigree analyses (p-values=0.001 and 0.0001, respectively).

Discussion—This unique pedigree analysis efficiently identified several novel rare candidate 

variants that may affect the aging process and added support to seven genes that likely contribute 

to longevity. Further analyses showed evidence for segregation for two rare variants, ESPL1 
rs61737629 and CEBPE rs141903485, in the original longevity pedigrees in which they were 

initially observed. These candidate genes and variants warrant further investigation.
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INTRODUCTION

Aging is a major risk factor for various chronic diseases (Franceschi et al., 2018), but can 

also be considered as a phenotype (e.g. healthy aging with no chronic disease or exceptional 

longevity) (Lara et al., 2013). Genome-wide association studies have identified factors 

associated with longevity (Deelen et al., 2019; Pilling et al., 2017; Sebastiani et al., 2017). 

Genome-wide association studies identify associations between genotypes and phenotypes 

by testing individual genetic variants across a genome (Tam et al., 2019). However, they 

often lack sufficient power to identify rare variants because small effect sizes are diluted 

across thousands of individuals (Maher, 2008).

Pedigree-based analyses provide additional power to identify rare variants because they 

control for parent-of-origin effects, population stratification, and other hidden effects (Ott et 

al., 2011). Atzmon et al. (2006) capitalized on familial relationships in a case-control 

analysis of Ashkenazi Jews to identify variants specific to longevity. This study included 213 

cases defined as individuals 95–107 years old living independently and in good health, and 

participants were required to have a child participate in the study. The offspring group, 

which was used to increase sample size and perform additional analyses, consisted of 216 

individuals. An age-matched Ashkenazi control group consisted of 258 individuals This 

study suggested that pathways involved in lipoprotein metabolism appear to influence 

longevity in humans.

An additional study on longevity was conducted as part of the Hawaii Lifespan Study, and 

included healthy elderly individuals from the original population of the Honolulu Heart 

Program and Honolulu Asia Aging Study (Willcox et al., 2008). The Honolulu Heart 

Program is a population-based, prospective study that began in 1965 by studying 

cardiovascular disease among 8,006 Japanese American men. This study contained 213 

cases who survived to at least 95 years of age. The mean age of death for the 402 control 

individuals in the Honolulu Asia Aging Study and the Hawaii Lifespan Study who died near 

the mean death age for the 1910 U.S. birth cohort was 78.5 years of age. This study 

identified common, natural genetic variation strongly associated with longevity in the 

FOXO3A gene.
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The Long Life Family study also contains a multi-center family-based cohort that was used 

to identify genetic components of longevity. This study demonstrated the use of sequencing 

within pedigrees to identify 24 inherited rare variants in two long-lived families influencing 

healthy aging (Druley et al., 2016).

The Utah Population Database (UPDB) includes extensive sets of demographic and medical 

records for more than 11 million individuals, three million of whom are linked to Utah 

genealogy data (Cannon-Albright, 2008). From an existing collection of stored DNA for 

Utah individuals identified in the UPDB over many decades, clusters of related sampled 

healthy elderly individuals (age at death greater than 90 years) that exhibited a statistical 

excess of individuals who died at an age older than 90 years (high-risk pedigrees) were 

identified. Six sampled elderly cousin pairs selected from four of these extended pedigrees 

were sequenced. Putative causal variants were identified using an efficient and powerful 

analytical approach previously used to identify rare variants that influence risk and resilience 

to Alzheimer’s disease (Patel et al., 2019; Ridge et al., 2017), melanoma (Teerlink et al., 

2018), Osteoporosis (Teerlink et al., 2020), and colorectal cancer (Thompson et al., 2020) in 

UPDB pedigrees.

MATERIALS AND METHODS

Data

Utah Population Database (UPDB)—The UPDB includes population-based resources 

linking demographic and health data to the genealogical records of the 19th century founders 

of Utah and their descendants to modern day (Cannon-Albright, 2008). The 

multigenerational pedigrees represented in UPDB were constructed from data provided by 

the Genealogical Society of Utah and have been expanded extensively based on Utah State 

vital records. There are currently over 11 million individuals included in the database, 

including approximately three million people with at least three generations of family 

history connected to the original Utah settlers. Age at death was calculated from death dates 

provided in genealogy records and from over 900,000 death certificates linked to the UPDB 

genealogy.

Longevity Pedigrees—Among a collection of approximately 36,000 individuals from the 

UPDB for whom stored DNA samples exist from high-risk disease pedigree studies 

performed over many decades we identified all healthy elderly individuals (sampled for 

research at age greater than 90 years; n=214). These 214 sampled healthy elderly individuals 

were related in 25 independent descending pedigrees among whose descendants there was a 

statistical excess of individuals dying at an age older than 90 years. Four of these sampled 

high-risk pedigrees that also included at least one sampled healthy elderly cousin pair were 

selected for analysis; a sampled cousin pair was selected from each for sequencing. One 

selected member of a cousin pair was a member of two independent pedigrees, through 

different ancestors, so an additional sampled case (cousin) from one pedigree was also 

included for a total of eight individuals sequenced. Figure S1 depicts the six independent 

pedigrees consisting of eight sequenced individuals. For the purpose of identifying shared 

variants, each of the six cousin pairs with sequence data was analyzed. All samples had 
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proper consent and all data collection and analysis was approved by the University of Utah 

Institutional Review Board.

Alzheimer’s Disease Genetic Consortium—Additional filtering and validating of 

variants was conducted using the Alzheimer’s Disease Genetic Consortium (ADGC) 

datasets compiled by Naj et al. (2011). ADGC is a collection of 30 merged datasets spanning 

1984 to 2012, and was established to help identify genetic markers of late-onset Alzheimer’s 

disease (Boehme et al., September 2014). ADGC contains imputed SNP array data for 

28,730 subjects (58.34% female), including 13,042 Alzheimer’s disease cases and 13,410 

healthy controls. ADGC imputed the 30 datasets to the Haplotype Reference Consortium 

(HRC) reference panel, which includes 64,976 haplotypes and 39,235,157 SNPs (Loh et al., 

2016; Naj et al., 2017). Genotyped markers with a minor allele frequency less than 0.01 and 

markers that deviated from Hardy Weinberg Equilibrium were removed. All aspects of the 

study were approved by institutional review boards, and each applicant signed a written form 

of consent for their genetic data to be used for research purposes.

The Wellderly Study—The Wellderly Study, an ongoing Scripps Translational Science 

Institute research project, includes more than 1,400 individuals over the age of 80 with no 

chronic disease or chronic use of medication (Erikson et al., 2016). The purpose of this 

study was to determine whether genetic factors underlie the phenotype of exceptional 

longevity. Researchers performed whole genome sequencing on 511 Wellderly participants 

and compared their results to whole genome sequencing data from 686 young adults from 

the Inova Translational Medicine Institute (ITMI), which served as an ethnicity-matched 

control group that simulated the general population (Bodian et al., 2014).

Wellderly individuals had significantly reduced genetic risk for coronary artery disease (p-

value=2.54 × 10−3) and Alzheimer’s disease (p-value=9.84 × 10−4), although there was no 

decrease in the number of identified rare pathogenic variants. These findings suggest the 

presence of other disease-resistant factors (e.g., protective rare variants) within this longevity 

cohort to overcome the deleterious effects of these pathogenic variants.

Bioinformatic Analysis—Whole exome sequencing for the eight elderly individuals 

selected as cousin pairs was performed at the Huntsman Cancer Institute’s Genomics Core 

facility. A DNA library was prepared from 2μg of DNA per sample using the Agilent 

SureSelect XT Human All Exon + UTR (v5) capture kit. Samples were run on the Illumina 

HiSeq 2000 sequencer that generates paired-end reads of up to 150 base pairs in length. Raw 

reads were mapped to the human genome v37 (GRCh37) reference genome using BWA-

MEM (Li, 2013; Li and Durbin, 2009). Variants were called using Genome Analysis Toolkit 

3.5.0 (GATK) (McKenna et al., 2010) software following Broad Institute Best Practices 

Guidelines. Variants occurring outside the exon capture kit intended area of coverage were 

removed. Variants were annotated with ANNOVAR (Wang et al., 2010). Candidate variants 

were filtered on the criteria of being rare in population (minor allele frequency less than 

0.01) and shared by a cousin pair.

Genetic Support for Pedigree Enrichment—In order to evaluate the effectiveness of 

pedigree enrichment for longevity, a polygenic risk score analysis was conducted for each of 
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the eight individuals in the dataset. A polygenic risk score calculates the cumulative risk for 

a certain phenotype determined from aggregating the effect sizes of multiple genetic loci 

(Sugrue and Desikan, 2019). The polygenic risk score was calculated from the following 

equation, where ai is the number of alleles at the ith locus, ri is the odds ratio at the ith locus, 

and p is the p-value of the odds ratio:

PRS = exp ∑
0

i ai * ln(ri), p < 1 * 10−5

0, p ≥ 1 * 10−5

For each sample, the polygenic risk score for Alzheimer’s disease was calculated using the 

odds ratios from Lambert et al. (2013), coronary artery disease using the odds ratios from 

Schunkert et al. (2011), and heart failure using the odds ratios from Shah et al. (2020). The 

same genome-wide association studies were used to calculate polygenic risk scores for each 

individual in the ADGC controls.

Segregation Validation using Rare Variant Sharing—Candidate variants were 

assayed with TaqMan in a set of 196 sampled individuals who consented and were sampled 

after 90 years of age, as well as in 11 additional longevity samples (individuals consented 

and sampled after age 85 years) who were members of the pedigree in which both of the 

variants were originally observed. The RVsharing program (Bureau et al., 2014) was used to 

statistically assess segregation of candidate rare variants in other sampled affected relatives. 

RVsharing calculates the probability of seeing rare variants in the observed pattern of 

carriage for a specified pedigree structure based on a relatedness matrix between cases, 

based on genealogy data. A p-value threshold of 0.05 effectively discriminates between rare 

variants that segregate (Teerlink et al., 2016).

RESULTS

Whole exome sequencing data was generated for the six elderly cousin pairs with a 

statistical excess of long-lived individuals in their pedigrees. Using UPDB pedigrees to 

identify candidate predisposition variants for a phenotype of interest allows efficient 

generation of the set of rare variants that are shared in related (typically cousin) pairs of 

individuals with the phenotype of interest who are also members of pedigrees that have been 

established to be at “high-risk” for the phenotype. Since the affected cousin pairs are 

members of the same high-risk pedigree, they are hypothesized to share the predisposition 

variant of interest. The set of rare variants shared in any of the cousin pairs from the high-

risk pedigrees therefore constitute likely candidate predisposition variants. Using a small set 

of six independent cousin pairs from four extended “high-risk longevity” pedigrees, 83 rare 

variants with a minor allele frequency less than 0.01 in the general population that were 

shared within at least one cousin pair were efficiently identified.

Polygenic Risk Score Analysis

Figure 1 displays the distribution of polygenic risk scores for Alzheimer’s disease, coronary 

artery disease, and heart failure in the longevity dataset (n=8) against the distribution of risk 

scores for ADGC controls (n=13,410). Although the first cousins and first cousins once 
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removed are related, on average they are expected to share a relatively low proportion of 

their genomic variants (12.5% for first cousins and 6.25% for first cousins once removed), 

which allows most common variants used in calculating polygenic risk scores to maintain 

the same degree of independence between cousins as between unrelated individuals. In all 

but one instance, the most similar polygenic risk score for an individual in the dataset for 

any of the three tested diseases was not with their cousin, but with a different unrelated 

individual in the dataset. Therefore, a Welch’s two-sample t-test was performed to reveal a 

significant difference between the mean scores of the longevity cousin pairs and the ADGC 

controls for coronary artery disease (t=−30.192; p-value = 7.35×10−9) and heart failure (t=

−21.746; p-value = 9.78 × 10−8). No significant difference in mean Alzheimer’s disease 

scores between the longevity cousin pairs and the ADGC controls was revealed (t=−1.139; 

p-value=0.292. These analyses indicate that the cousin pairs have fewer common variants 

that contribute to common heart-related diseases in elderly individuals than the ADGC 

control group, suggesting that the pedigree identification effectively selected families 

enriched with exceptional longevity that might be attributed to decreased risk for coronary 

artery disease and heart failure. Supplemental Table S1 outlines the polygenic risk scores for 

each individual in the dataset, including the prioritized variants present in each person. A 

similar analysis was conducted on the ADGC Alzheimer’s disease cases, and Figure S2 

shows that significant differences in polygenic risk scores for coronary artery disease, heart 

failure, and Alzheimer’s disease exist between the cousin pairs and a cohort with 

Alzheimer’s disease.

Variant Prioritization—A rare variant analysis was performed on the cousin pairs by first 

limiting selection to variants that were shared by at least one cousin pair. A Common 

Variants Filter in Ingenuity® Variant Analysis™ software from QIAGEN, Inc. was used to 

remove all variants with a minor allele frequency greater than 0.01 in 1000 Genomes (Auton 

et al., 2015), Exome Aggregation Consortium (ExAC) (Karczewski et al., 2017), The 

Genome Aggregation Database (gnomAD) (Karczewski et al., 2019), or the NHLBI GO 

Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/) 

[March 2018]. Text S1 describes these datasets in more detail. This step identified 83 rare 

candidate variants spanning 95 genes, including 12 variants that each affect two genes. A 

series of filtration methods on these 83 variants using Ingenuity Variant Analysis was used 

to prioritize a candidate list of variants associated with longevity (see Figure 2). Variants 

remaining after each filter are listed in File S1.

Predicted Deleterious Filter—After the Common Variants Filter, the Predicted 

Deleterious Filter in Ingenuity Variant Analysis was applied to select variants that were 

associated with the loss or gain of gene function or were considered ‘Pathogenic’, ‘Likely 

Pathogenic’, or ‘Unknown’ according to the American College of Medical Genetics and 

Genomics (ACMG) Guidelines for variant classification (Richards et al., 2015). This 

analysis excluded only one variant, rs140824939 in SPG11, refining the list to 82 variants 

spanning 94 genes.

Alzheimer’s Disease Risk Gradient Filter—The purpose of this filter was to identify 

rare variants that are present more frequently in healthy cohorts than diseased cohorts, since 
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it is expected that protective rare variants that positively impact longevity will not be present 

as frequently in diseased cohorts. Each variant was compared to the Wellderly dataset and 

the ADGC dataset to ensure that variants followed expected population allele frequencies 

based on the number of healthy individuals in each elderly cohort. For this filter, the minor 

allele frequency of each rare variant was required to be higher in the Wellderly cohort than 

the ADGC control group, and have a higher minor allele frequency in the ADGC control 

group than the ADGC Alzheimer’s disease cases. Although rare genotypes (minor allele 

frequency < 0.01) were previously removed from ADGC for quality control, which may 

artificially limit the number of prioritized rare variants impacting longevity, genetic variants 

that passed this filter indicate a higher variant occurrence in healthy individuals than 

diseased individuals and are the most likely to directly affect longevity. Fifteen variants 

spanning 17 genes passed this filter.

Biological Context Filter—The final filter evaluated the biological function of each of 

the 15 remaining variants. This filter included only variants in genes that were known or 

predicted to affect the aging process, aging of cells, or the longevity process. This filter 

prioritized six variants spanning seven genes. Recognizing that the biological context filter 

depends on an accurate understanding of the biological functions of each of the 17 genes 

that passed the Alzheimer’s Disease Risk Gradient Filter, it is possible that all 15 candidate 

variants that passed the Alzheimer’s Disease Risk Gradient Filter also positively affect 

longevity. However, the following six variants that passed the Biological Context Filter are 

the most supported candidate variants: rs78408340 (PAM), rs112892337 (ZFAT), 

rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 
(NUP88 and RABEP1).

Rare Variant Segregation Analysis—Two rare variants passing all filters were also 

pursued with segregation analysis. ESPL1 rs61737629 was selected because it was the only 

variant to be observed in more than one cousin pair, and CEBPE rs141903485 was selected 

because it has a regulomeDB score of 2b, which indicates that this variant is likely to affect 

the binding of transcription factors. These two variants were assayed in 196 additional 

healthy elderly individuals (sampled after age 90 years) from the UPDB-linked sample 

collection and in 11 additional longevity samples in the pedigree in which both of the 

variants were originally observed and in 175 sampled Alzheimer’s disease cases (confirmed 

by Utah death certificate) from the UPDB. ESPL1 rs61737629 was observed in four 

additional longevity cases. CEBPE rs141903485 was observed in seven additional longevity 

cases and three Alzheimer’s disease cases. Analyses of individuals sampled after age 85 

years in the original longevity pedigree in which both variants were identified also identified 

two additional carrier of ESPL1 rs61737629 and three additional carriers of CEBPE 
rs141903485. The Rare Variant Sharing test for ESPL1 rs61737629 (p-value = 0.001) and 

CEBPE rs141903485 (p-value = 0.0001) reveal that there is a low probability of these 

variants being shared within healthy elderly individuals in this pedigree by random chance. 

The constellation of variant carriers of ESPL1 rs61737629 and CEBPE rs141903485 within 

this extended pedigree was used to calculate the Rare Variant Sharing value for each variant 

and provides statistical evidence that ESPL1 rs61737629 and CEBPE rs141903485 
segregate significantly with longevity.
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DISCUSSION

Prioritized Variants

Familial relationships and previously sampled individuals ascertained in the UPDB were 

leveraged to identify rare candidate variants that influence exceptional longevity. The rare 

variant analysis pipeline identified six candidate variants located in seven genes that 

demonstrate a convincing case for association with longevity (see Table 1).

Missense mutation rs78408340 in the PAM gene was identified to have potential association 

with longevity and is categorized by SIFT (Sim et al., 2012) as ‘Damaging.’ PAM protein 

catalyzes the conversion of neuroendocrine peptides to active alpha-amidated products. 

Variants associated with type-2 diabetes in PAM, including rs78408340, reduce the gene’s 

function, which alters the amidation of peptides critical for insulin secretion. Therefore, 

rs78408340, along with other alleles in PAM, confers higher risk for type-2 diabetes 

(Fuchsberger et al., 2016; Steinthorsdottir et al., 2014). One cousin pair shared the variant 

PAM rs78408340, which may account for these individuals’ shared phenotype.

The individuals in the same cousin pair are also carriers of the variant rs112892337 in the 

ZFAT gene, which is also labelled by SIFT as ‘Damaging.’ Little is known about the 

function of this specific allele. However, ZFAT is expressed in B and T lymphocytes and has 

shown to be a critical transcription regulator involved in apoptosis and cell survival 

(Fujimoto et al., 2009). Bourguiba-Hachemi et al. (2016) found that another variant, 

rs733254, in ZFAT is a risk marker for multiple sclerosis (MS) in women. Multiple studies 

have also detected an association between ZFAT and the severity of autoimmune thyroid 

disease (Inoue et al., 2012; Sakai et al., 2001).

Missense mutation rs61737629 in ESPL1 was prioritized by the filtration pipeline and 

shared by two cousin pairs. SIFT also predicts this variant to be ‘Damaging.’ ESPL1, which 

encodes separase, initiates the final separation of sister chromatids before anaphase by 

cleaving the subunit SCC1. Disruption of the separase function leads to chromosomal 

instability, and increasing or reducing the expression of this gene results in severe medical 

consequences (Gurvits et al., 2017; Mukherjee et al., 2011) including luminal cancers 

(Finetti et al., 2014). Currently, the behavior of ESPL1 rs61737629 is unknown. This study 

may lend additional support to luminal cancer studies exploring this variant for its protective 

benefits because breast cancer can cause death before patients attain the exceptional 

longevity criteria to be included in this study.

Three individuals, representing two independent cousin pairs, shared CEBPE rs141903485, 
a missense variant labelled as ‘Damaging’ by SIFT. CEBPE encodes a bZIP transcription 

factor and plays a role in gene regulation in myeloid and lymphoid lineages (Antonson et al., 

1996). The loss of CEBPE function influences the pathogenesis of myeloid disorders, 

including acute myeloid leukemia (Truong et al., 2003) and pediatric B-cell acute 

lymphoblastic leukemia (Gharbi et al., 2016; Studd et al., 2019; Sun et al., 2015; Wang et 

al., 2015). The variant rs141903485 is associated with pediatric B-cell acute lymphoblastic 

leukemia susceptibility (Xu et al., 2013; Xu et al., 2015).
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The missense variant rs144369314 located in UTP4 was shared by one cousin pair. UTP4 
encodes a WD40-repeat-containing protein that is localized to the nucleolus. Variation in 

UTP4 is significantly associated with North American Indian childhood cirrhosis (Freed and 

Baserga, 2010; Yu et al., 2005).

Individuals in one cousin pair carry the missense mutation rs61753103 in the gene NUP88. 

NUP88 regulates the flow of macromolecules between the nucleus and the cytoplasm, is 

overexpressed in malignancies, and is considered a putative marker for tumor growth 

(Hashizume et al., 2010; Lang et al., 2017; Martinez et al., 1999). Increased expression of 

this gene is associated with tumor aggressiveness in uterine and breast cancer (Agudo et al., 

2004; Schneider et al., 2010) and higher risk for colorectal cancer (Zhao et al., 2012).

This same variant, rs61753103, is located in the RABEP1 gene. RABEP1 is involved in 

endocytic membrane fusion and membrane trafficking. A recent genome-wide association 

study identified RABEP1 to be associated with increased Alzheimer’s disease risk (Jansen et 

al., 2018).

Most prioritized variants identified here are located in genes that directly affect chronic 

diseases. While additional biological validation is required to better characterize the 

relationship between these loci and the longevity process, it is promising that the prioritized 

variants are located on genes previously implicated in disease. Under the assumption that 

exceptional longevity is often caused by not having a fatal disease earlier in life or a cascade 

of end-of-life diseases (e.g., Alzheimer’s disease, heart disease, cancer, etc.), these 

prioritized variants are more likely to have a protective effect against mortality because they 

affect the same genes that have previously been associated with fatal diseases. Therefore, 

these variants not only affect longevity, but likely contribute to decreased mortality due to 

common diseases and may be viable drug targets for disease-specific studies.

Variants in Previously Identified Longevity Candidate Genes

Strict filters were used to identify the most likely causal variants in this set of six 

independent cousin pairs. However, the filtering criteria likely contribute to a high false 

negative rate and therefore it is unlikely that this analysis has provided an exhaustive list of 

all variants associated with longevity in these pedigrees. Furthermore, the use of whole 

exome sequencing data limits the ability to detect any significant variants that reside outside 

the protein-coding regions of genes. Five additional variants that were shared in at least one 

cousin pair were identified in genes previously implicated in longevity: PROX2, SEMA6D, 
MARK4, MEF2A, and EBF1. These variants, in addition to the other variants identified in 

this study, may drive the exceptional longevity of these pedigrees and should not be 

discounted.

PROX2 is a transcription factor specific to RNA polymerase II implicated in lens fiber cell 

morphogenesis and lymphatic endothelial cell differentiation and associated with parental 

longevity (Pilling et al., 2017). One cousin pair carried a frameshift variant at position 

75321938 on chromosome 14 (no accession) implicated in this locus. This variant was not 

prioritized here because there was no information about its frequency in the ADGC dataset.
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Pilling et al. (2017) also identified variation in SEMA6D associated with longer parental 

lifespan. SEMA6D is involved in the immune response, and is responsible for the 

maintenance and modification of neuronal connections (He et al., 2002). Multiple studies 

have found SEMA6D to be related to tumor angiogenesis and to play an important role in 

the development of gastric cancer (Qu et al., 2019; Zhao et al., 2006). One cousin pair 

shared the missense mutation rs769450413 located in this gene. However, the Alzheimer’s 

Disease Risk Gradient Filter also failed to prioritize this variant because it was not 

genotyped in the ADGC dataset.

MARK4 regulates the transition between stable and dynamic microtubules and plays a role 

in cell cycle progression (Rovina et al., 2014). MARK4 also regulates tau protein 

phosphorylation and is proposed to be functionally important to the progression of 

Alzheimer’s disease (Gu et al., 2013; Seshadri et al., 2010; Sun et al., 2016) and parental 

longevity (Pilling et al., 2017). Multiple studies also provide evidence for the expression of 

MARK4 as a potential marker for breast and prostate cancer (Heidary Arash et al., 2017; 

Jenardhanan et al., 2014; Pardo et al., 2016). One cousin pair shared the missense variant 

rs753496642 in this gene, which SIFT categorizes as ‘Damaging.’ This mutation was also 

excluded by the Alzheimer’s Disease Risk Gradient Filter because there was no information 

about its frequency in the ADGC dataset.

DMAC2 variant, rs139204637, passed all but the Biological Context filter, because DMAC2 
has not previously been implicated in the aging process. MEF2A and EBF1 are regulators 

for the DMAC2 gene, which was implicated in one cousin pair. MEF2A conveys significant 

association with healthy aging (Druley et al., 2016). MEF2A is a transcriptional activator 

involved in muscle development, neuronal differentiation, cell growth control, and apoptosis. 

Variants in the 3’-UTR region of this gene are associated with coronary artery disease 

(Huang and Wang, 2015; Xiong et al., 2019; Xu et al., 2016). EBF1 is a transcriptional 

activator which identifies changes in the palindromic sequence. EBF1 is involved in the 

regulation of metabolic and inflammatory signaling pathways, and the loss of gene function 

results in impaired insulin and inflammatory signaling (Griffin et al., 2013). EBF1 plays a 

role in a variety of diseases including breast cancer (Fernandez-Jimenez et al., 2017; Garcia-

Closas et al., 2013; Michailidou et al., 2013), coronary artery disease (Ehret et al., 2011; Li 

et al., 2017; Singh et al., 2015; Wain et al., 2011), Hodgkin lymphoma (Bohle et al., 2013), 

multiple sclerosis (Martinez et al., 2005; Sombekke et al., 2010), and leukemia (Heltemes-

Harris et al., 2011; Mesuraca et al., 2015; Welsh et al., 2018).

Efforts to understand the genetic basis of longevity phenotypes have yielded few definitive 

findings to date. As is the case with other traits, heterogeneity in the diagnosis and etiology 

of these phenotypes creates significant challenges. For example, longevity is clearly 

influenced by genetics, epigenetics, environment, and chance (e.g., no fatal accidents early 

in life). The high-risk pedigree-based approach minimizes genetic heterogeneity and may 

also reduce other sources of heterogeneity; recall bias was reduced by the existence of 

extensive genealogy data. This analysis of whole exome sequences in longevity pedigrees 

identified six putative causal variants, including two that showed evidence of segregation in 

extended pedigree analyses. Biological validation of these candidates is necessary to 

characterize variant effects, the filtering criteria used might have allowed for false positive 
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results due to chance sharing of rare variants among relatives. These findings suggest that 

further evaluation of these candidate variants is warranted and highlight the utility of this 

unique pedigree-based approach to gene discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Polygenic Risk Scores for UPDB cousins. The distribution of risk scores for the longevity 

cousins are plotted against the polygenic risk score distribution of the ADGC controls. The 

density distribution shows the likelihood of observing the values given the continuous 

distribution of polygenic risk scores (y-axis). The asterisk (*) shows significant differences 

(p-value<0.05) between the population means calculated from a Welch’s two-sample t-test.
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Figure 2: 
Pipeline for Rare Variant Analysis in Cousin Pairs. Flowchart explaining the filters that we 

used on our dataset, including the number of variants and genes that passed each filter.
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Table 1:

Final Six Prioritized Variants associated with Longevity from the Six Cousin Pairs.

Chromosome Position in 
GRCh37 Reference Alternate Accession 

Number Gene Name SIFT Function 
Prediction

Translation 
Impact

5 102338739 C G rs78408340 PAM Damaging missense

8 135614553 G C rs112892337 ZFAT Damaging missense

12 53682043 C G rs61737629 ESPL1 Damaging missense

14 23587838 G T rs141903485 CEBPE Damaging missense

16 69170741 G T rs144369314 UTP4 Tolerated missense

17 5289554 T C rs61753103 NUP88, 
RABEP1 Tolerated missense

This table shows the results of the final Ingenuity Variant Analysis Biological Context Filter.
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