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Abstract

In this paper, we present a novel scanning algorithm, called Covariance Optimization Garnering 

Noise for Active Cancellation (COGNAC), for magnetoencephalography (MEG) and 

electroencephalography (EEG) source localization. COGNAC uses a probabilistic graphical 

generative model for describing sensor data. This novel generative model partitions contributions 

to sensor data from sources at a particular scan location and from sources outside the scan 

location, with corresponding multi-resolution variance parameters that are estimated from data. 

Maximizing a convex upper bound on the marginal likelihood of the data under this generative 

model results in a cost function that can be optimized efficiently. Importantly, this generative 

model enables learning of sensor noise without the need for additional baseline or pre-stimulus 

data. The resulting inference algorithm is quite robust to reconstruction of highly correlated 

sources and to the effect of high levels of interference and noise sources. Algorithm performance 

was compared to representative benchmark algorithms on both simulated and real brain activity. In 

simulations, performance of our novel algorithm is consistently superior to benchmarks. We also 

demonstrate that the new algorithm is robust to correlated brain activity present in real MEG/EEG 

data.

I. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalography (EEG) are two popular non-

invasive techniques for detecting brain activity by measuring magnetic fields or electric 

potentials from on or near the scalp surface with excellent temporal resolution. Brain activity 

can then be reconstructed from MEG/EEG recordings. The reconstruction of brain sources is 

a challenging problem because it involves solving for unknown brain activity across 

thousands of voxels from the recordings of just a few hundred sensors. To circumvent this 

nonuniqueness, various estimation procedures incorporate prior knowledge and constraints 

about source characteristics.

Most of the source reconstruction algorithms can be viewed in a Bayesian framework [1]. 

This perspective is useful because at a high level, the prior distribution, implicitly or 

explicitly imposed, can be used to differentiate and compare the various source localization 

sri@ucsf.edu. 

HHS Public Access
Author manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 September 
01.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2019 July ; 2019: 4803–4806. doi:10.1109/EMBC.2019.8856953.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods. Recently, we have developed Champagne, a novel tomographic source 

reconstruction algorithm, that is derived in an empirical Bayesian and incorporates deep 

theoretical ideas about sparse-source recovery from noisy, constrained measurements. 

Champagne improves upon existing methods of source reconstruction in terms of 

reconstruction accuracy, robustness, and computational efficiency [2]. Experiments with 

preliminary simulated and real data, presented in [3], show that compared to other 

commonly-used source localization algorithms, Champagne is more robust to correlated 

sources and noisy data. However, baseline data is necessary for accurate noise estimation 

and reconstruction of source activity. In certain source configurations, such as in the resting 

state, such baseline or pre-stimulus information is not available for analysis. Thus, it is 

unclear how reconstruction methodologies such as Champagne should be implemented in 

these scenarios.

In order to solve the problem above, we present a novel Bayesian scanning algorithm, called 

Covariance Optimization Garnering Noise for Active Cancellation (COGNAC), for 

magnetoencephalography (MEG) and electroencephalography (EEG) source localization, 

which uses a probabilistic graphical generative model for describing sensor data 

measurements. Our novel generative model partitions contributions to the sensor data from 

sources at a particular scan location and from sources outside the scan location, with 

corresponding Gaussian variance parameters that are estimated from data. Bayesian 

inference of this generative model, i.e. maximing the marginal likelihood of the data, results 

in a cost function that can be optimized efficiently using convex bounding techniques. The 

resulting inference algorithm is quite robust to reconstruction of highly correlated sources 

and to the effect of high levels of interference and noise sources. The performance of the 

algorithm is tested in simulations and real data.

II. Theory

The generative model for the observed MEG and EEG data which use an array of sensors to 

take electromagnetic field (or voltage potential) measurements from on or near the scalp 

surface with excellent temporal resolution is as follows. In both cases, the observed sensor 

data y(t) = [y1(t), y2(t),…, yM (t)]T at time point t is used for mapping from source activity 

which is generated by the same synchronous, compact current sources located within the 

brain, where M is the total number of sensors. We express the whole sensor time courses as 

y = y(t1), y(t2),…, y(tK) where tκ refers to the κ-th time point. Typical brain activity source 

models apply voxel discretization over a whole brain volume, and assume a fixed source at 

each voxel. The sources’ activities are denoted by s(t) = [s1(t)T, s2(t)T ,…, sN (t)T]T, and N is 

total number of voxels. s(t) is called the voxel vector and the whole sources time courses are 

expressed as s = s(t1), s(t2),…, s(tK) where K is the number of time-samples. The source at i-

th voxel is expressed using a dc dimensional vector si(t) ∈ ℜdc × 1 where dc denotes the 

number of directions1. We define the lead-field matrix as l = [l1,…, lN] and for i-th voxel as 

li ∈ ℜM × dc; The p-th column of li represents the signal vector that would be observed at the 

1It is common to assume dc = 2 (for MEG) or dc = 3 (for EEG). For simplicity, we assume dc = 1 during derivation.
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scalp given a unit current source/dipole at the i-th voxel with a fixed orientation in the p-th 

direction.

We assume that the whole brain activity can be represented by one source at a particular 

scan location (grid point) plus sources at other locations in the brain. The data vector can be 

expressed as:

y(t) = lisi + ∑
j = 1, j ≠ i

N
ljsj(t) + ε . (1)

The model in Eq. (1) is converted into a probabilistic model when we specify prior 

distributions for the unknown variables, such that

p si(t) = N si(t) ∣ 0, vi−1 . (2)

We divide the non-scan voxel space into R a priori specified regions (or tiles). The 

specification of regions could be based on either anatomical or functional criteria and the 

algorithm is agnostic about that. We assume that regions are non-overlapping, i.e., each 

voxel belongs to exactly a single region, and the r-th region contains Nr voxels. Importantly, 

we assume that voxels within the same region have the same prior regional variance.

p sj(t) = N sj(t) ∣ 0, Ωr
−1 , (3)

where vi ∈ ℜdc × dc and Ωr ∈ ℜdc × dc are the prior precisions for i-th scanning voxel activity 

and for the r-th region. The Gaussian noise is assumed as that

p(ε) = N ε ∣ 0, λ−1 , (4)

where λ is a diagonal precision matrix. The i-th scanning source vector is estimated as its 

posterior mean si tk  which is given by

si tk = E si tk ∣ y = vi−1liTΣi
−1y tk , (5)

where Σi is the data model covariance, expressed as

Σi = λ−1 + livi−1liT + ∑
r = 1

R
∑

j ∈ ζr, j ≠ i
ljΩr

−1lj
T , (6)

∑j ∈ ζr, j ≠ i indicates summation of voxels belonging to the r-th region while excluding the 

i-th scanning voxel. Estimating the parameters of the model, vi, Ωr involve minimizing a 

convex upper bound of the marginal likelihood of the data [4], ℱ vi, ψi, Ω, Λ  such that
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ℱ = 1
K ∑

k = 1

K
λ y tk − Is tk T y tk − Is tk

+si tk Tvisi tk + ∑
r = 1

R
∑

j ∈ ςr, j ≠ i
sj tk TΩrsj tk

− ψiTvi−1 − ∑
r = 1

R
tr Λr

TΩr
−1 + const,

(7)

where the posterior mean of s(tκ) is denoted as si tk  The update rules for parameters vi and 

Ωr are given by

vi
−1 =

1
K ∑k = 1

K si tk si
T tk

ψi
, (8)

Ωr
−1 =

1
KNr

∑k = 1
K ∑j ∈ ζr, j ≠ isj tk sj tk T

Λr
. (9)

The update rules for auxillary variables ψi and Λr are

ψi = liTΣy
−1li, (10)

Λr = ∑
j ∈ ζr, j ≠ i

ljTΣy
−1lj .

(11)

Defining

n tk = y tk − lisi tk − ∑
r = 1

R
∑

j ∈ ζr, j ≠ i
ljsj tk , (12)

the noise precision can be estimated using

λ−1 = 1
K ∑

k = 1

K
diag E n tk nT tk , (13)

where diag(A) indicates the operation that create a diagonal matrix whose diagonal entries 

are equal to the diagonal elements of a matrix A. For j-th non-scan voxel which belongs to r-
th region, the source vector is estimated as its posterior mean si tk , which is given by

sj tk = Ωr
−1lj

TΣy
−1y tk . (14)

A summary of the proposed algorithm is shown in Table 1.
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We note that the computational complexity of the proposed algorithm is on the order 

O(MK(R – 1)N), roughly equivalent to a single dipole scan, which is on the order O(K(M2 + 

N)). These are much smaller than the complexity of a multi-dipole scan which is on the 

order O(KNP) where P is the number of dipoles. According to our tests with the right 

initialization described below, if we use a scalar leadfield matrix with more than 8000 

voxels, COGNAC can finish a whole brain scan and localize activity within half an hour 

(running MATLAB on a Xeon workstation with 12 CPU cores and 16G memory).

III. Performance evaluation

Several representative source localization algorithms were chosen to evaluate the 

performance of COGNAC: an adaptive spatial filtering method, linearly constrained 

minimum variance beamformer (referred to as Beamformer) [5]; a non-adaptive weighted 

mininum-norm method, standardized low-resolution tomographic analysis (referred to as 

sLORETA) [6]; one Bayesian algorithms, MSP [7].

We tested our novel algorithm using scalar leadfield matrix constructed within the brain 

volume assuming a single-shell spherical model [8] as implemented in SPM12 (http://

www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution of 8196 voxels at approximately 

5 mm spacing. We simulated 5 point sources, then set the SNR=0 dB and the correlation 

between all sources as 0.5. We ran this configuration for more than 50 times and then 

averaged results. Two parameters A prime metric and the aggregate performance (AP) were 

used to evaluate the performance of the novel algorithm [2], [3], [4]. The A metric estimates 

the area under the FROC curve for one hit rate (HR) and false rate (FR) pair, or in our case, 

for each simulation. If the area under the FROC curve is large, then the hit rate is higher 

compared to the false positive rate. The aggregate performance (AP) captures both the 

accuracy of the location and the time courses of algorithms.

For real data sets test, we chose the resting state MEG data analysis, subjects were instructed 

simply to keep their eyes closed and do not think of anything in particular, for COGNAC, we 

use the diagonal noise covariance estimated using a variational Bayesian factor analysis 

(VBFA) model [9]. The EEG data (128-channel ActiveTwo system) was downloaded from 

the SPM website (http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead field was 

calculated in SPM8 using coarse resolution. The EEG data paradigm involves randomized 

presentation of at least 86 faces and 86 scrambled faces. Here we use 86 averaged faces data 

to subtract the averaged scrambled-faces data to study the differential response to faces 

versus scrambled faces [10]. The EEG data has been reported in our prior publications using 

the Champagne algorithm, and details about this dataset can be found in [3].

IV. Results

A. Simulation Results

COGNAC shows us better source reconstruction results with scalar leadfield matrix. Figure 

1 is the simulation results using scalar leadfield matrix with 5 active point sources and 

configurations are set as SNR=0 dB and correlation among sources are 0.5. COGNAC 

performs the best among all source reconstruction algorithms.
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B. Real data: Resting State Data

The localization results for resting state data analysis from three subjects are shown in 

Figure 2. As is seen, COGNAC can consistently localize brain activity during rest, while 

other benchmark algorithms do not have consistent localization of resting-state activity. For 

resting state analysis, even though there is no pre-stimulus data for background noise 

information estimation, COGNAC still recovers reasonable activity. However, Beamformer 

and sLORETA can not localize brain activity consistently for all subjects.

C. Real data: Face-Processing task: EEG

In Figure 3, we present the results from using novel algorithm and benchmarks on the face-

processing task EEG data set. Figure 3 shows the average power, M100 peak power, and 

M170 peak power at different rows separately. We see that COGNAC is able to localize 

brain activity with sparse peaks at visual areas and the fusiform gyrus. While the benchmark 

algorithms produce brain activity with incorrect and/or diffuse localization.

V. DSISCUSSION

We have described a novel scanning algorithm for MEG source localization that 

systematically accounts for contributions to sensors from activity outside the scan location. 

Importantly, the algorithm also estimates heteroscedastic sensor noise from observed data 

without the need for additional pre-stimulus or baseline data. We show that performance of 

COGNAC is superior to existing benchmarks both on simulations and real MEG/EEG data 

with complex source configurations. COGNAC is robust to reconstruction of highly 

correlated sources and to the effect of high levels of interference and noise sources. Superior 

performance of this algorithm arises from an explicit parameterization of the covariance 

partitions to sensor data from both non-scan location activity and sensor noise. No other 

existing source localization algorithm also simultaneously estimates sensor noise in data 

while retaining accuracy in localization. Our future work will include extensions to non-

Gaussian source estimation and spatio-temporal smoothness in the COGNAC generative 

models.
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Fig. 1: 
Performance evaluation with 5 point sources. The SNR, and inter-source correlation were set 

as 0 dB, and 0.5. These results were averaged with 50 times simulations.
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Fig. 2: 
Resting state data analysis with three subjects. Benchmark algorithms Beamformer and 

sLORETAare are plotted at first to second columns. COGNAC is shown at the last column. 

Thresholding is performed at 10 percent of the maximum power.
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Fig. 3: 
Results for EEG face processing EEG data from novel algorithm and benchmarks. The first 

row is the average power mapping from 0 ms to 400 ms. The second and third rows are for 

peak power activity at 100 ms and 170 ms.
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Table 1

The COGNAC Algorithm

repeat
1: Set the i-th target voxel as i = 1.
2: Set appropriate initial values to vi, Ωr, λ, compute ψi, Λr using Eqs. (10), (11), and si tk  using Eq (5) for k = 1, … , K. repeat

 3: Update vi, Ωr, λ using Eqs. (8), (9), (13), (14).
 4: Update ψi, Λr, si tk  with the updated values of vi, Ωr, λ using Eqs. (10), (11), (5).

until The cost function of Eq. (7) converges.
5: Set the target voxel to the (i + 1)-th voxel.
until All voxels are scanned (i = N).
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