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Abstract

Type 2 diabetes prevalence is increasing dramatically across the globe, imposing a tremendous toll 

on individuals and healthcare systems. Reversing these trends requires comprehensive approaches 

to address both classical and emerging diabetes risk factors. Recently, environmental toxicants 

acting as endocrine-disrupting chemicals (EDCs) have emerged as novel metabolic disease risk 

factors. EDCs implicated in diabetes pathogenesis include various inorganic and organic 

molecules of both natural and synthetic origin, including arsenic, bisphenol A, phthalates, 

polychlorinated biphenyls and organochlorine pesticides. Indeed, evidence implicates EDC 

exposures across the lifespan in metabolic dysfunction; moreover, specific developmental 

windows exhibit enhanced sensitivity to EDC-induced metabolic disruption, with potential 

impacts across generations. Importantly, differential exposures to diabetogenic EDCs are likely to 

also contribute to racial/ethnic and economic disparities. Despite these emerging links, clinical 

practice guidelines fail to address this underappreciated diabetes risk factor. Comprehensive 

approaches to stem the tide of diabetes must include efforts to address its environmental drivers.
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Introduction

The global burden of diabetes is projected to reach a staggering 629 million individuals by 

2045 [1], and the WHO envisages metabolic disorders will be a major cause of death by 

2030, placing substantial economic stresses on healthcare systems worldwide [2]. Indeed, 

12% of global health expenditures are already estimated to be spent on diabetes [1] and, in 

the USA alone, annual diabetes-associated economic costs are calculated to be $327 billion 

[3]. Most of the diabetes health burden arises from type 2 diabetes, which accounts for 90–

95% of all diabetes cases. As both disease prevalence and treatment costs continue to rise 

dramatically [4], comprehensive approaches to reverse these trends are desperately needed. 

Essential to this effort are strategies that simultaneously address the myriad risk factors 

contributing to diabetes pathogenesis. While this certainly includes efforts to tackle the 

contributions of excess food intake and sedentary lifestyles, it is also essential to identify 

other modifiable risk factors that promote diabetes development.

One emerging but underappreciated realm of risk is our ubiquitous exposure to 

environmental chemicals through food and water, skin contact and the air we breathe. 

Indeed, exposures to endocrine-disrupting chemicals (EDCs) are associated with an 

increased risk of various endocrine-related disorders in both human and animal studies [5]. 

The Endocrine Society classifies exogenous chemicals as EDCs based upon their ability to 

disrupt any aspect of hormone secretion or action [6]. Over the last two decades, exposure to 

many EDCs from multiple sources has been associated with increased risk of diabetes, 

obesity and other metabolic disorders (Fig. 1). These metabolism-disrupting EDCs include a 

variety of inorganic and organic molecules of natural or synthetic origin, including many to 

which humans are frequently exposed, including arsenic, bisphenol A (BPA) and phthalates, 

as well as legacy compounds, which have profound chemical and biological stability and 

persist in the environment despite regulatory action to eliminate or curtail their use, such as 

polychlorinated biphenyls (PCBs) and organochlorine pesticides. With increasing evidence 

linking exposure to various EDCs with diabetes in human populations, as well as diabetes-

associated pathophysiological defects in cell-based and animal studies [7–10] (Fig. 2), the 

time has come to incorporate environmental interventions into comprehensive strategies to 

reduce the individual and societal burden of this devastating disease.

Exposures during sensitive developmental windows

While EDC exposures occur across the lifespan, specific developmental windows are 

recognised as periods of unique vulnerability (Fig. 3). The period from conception to birth is 

a time of cellular replication and differentiation, functional organ system maturation and 

rapid growth. These processes are exquisitely sensitive to perturbations in the intrauterine 

metabolic milieu that exert long-lasting effects on offspring. Animal and epidemiology data 

demonstrate that several critical periods during development influence the later-life onset of 
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type 2 diabetes, including preconception and gestation, early infancy, the adiposity rebound 

period between 5–7 years of age, and puberty. Until recently, most studies examining 

developmental programming were focused on inadequate nutrition or uteroplacental 

insufficiency; however, it is now apparent that developmental exposure to EDCs may also 

increase the incidence of type 2 diabetes [7, 11].

Perhaps the prototypical EDC is BPA, a common contaminant used widely in polycarbonate 

and other plastics, epoxy resins lining cans and the thermal paper of cash register receipts. 

BPA binds both oestrogen receptor α (ERα) and β (ERβ), although with less affinity than 

17β-oestradiol (E2). Humans are ubiquitously exposed to BPA, with low levels detectable in 

the blood and urine of virtually all individuals across multiple populations [12–14]. 

Importantly, human fetuses and children are likely to be at heightened risk of endocrine 

disruption from BPA, since BPA clearance enzymes are not fully functional at these life 

stages [15]. Consequently, blood and urine levels of BPA are higher in fetuses than in their 

pregnant mothers [13], and in infants and children compared with adults [12]. Importantly, 

while exact human exposures are difficult to estimate, animal studies demonstrate that levels 

below those considered safe for human health are sufficient to induce metabolic dysfunction 

[16].

Multiple animal studies have explored the impact of developmental BPA exposure on 

metabolic programming; however, controversy persists regarding the effects of maternal 

BPA exposure on offspring. Differences across studies, include species and strain, 

developmental stage during exposure, ages at metabolic interrogation, levels of exposure, 

housing, diet, control conditions and exposure routes have all contributed to a lack of 

consensus on the gestational effects of BPA. Particularly robust debate has focused upon the 

importance of the route of exposure (oral vs subcutaneous) as well as evidence of non-

monotonic dose–response relationships demonstrating that BPA exposures at or below the 

current US Environmental Protection Agency’s reference dose often yield metabolic 

disruptions that are either not observed or different at higher doses [17–19]. Acknowledging 

these challenges, when experimental conditions are strictly maintained, reproducible and 

stable metabolic disruptions are consistently observed in the offspring of BPA-exposed dams 

[20].

Some of the first evidence that developmental EDC exposure alters metabolic health came 

from studies exposing pregnant rats to BPA. Exposure resulted in dose- and sex-specific 

increases in offspring body weights that persisted into adulthood [21]. Since then, multiple 

studies have examined links between perinatal EDC exposure and the later-life development 

of metabolic dysfunction, including obesity. Fewer studies have examined the effects of 

EDC on beta cell development and function. Importantly, all three oestrogen receptors 

(ERα, ERβ and the G-protein coupled ER [GPER]) are present in rodent and human beta 

cells, where they play essential roles in islet survival and function [22]; thus, beta cells are 

primed for disruption by ER-active EDCs like BPA. Indeed, fetal offspring of C57BL/6 

dams fed a BPA-containing diet from embryonic day 7.5 (E7.5) to E18.5 exhibited altered 

endocrine pancreas development, with disruptions in the number and relative cellular 

composition of islets [23]. Using similar exposures, male offspring of pregnant mice 

exposed subcutaneously to BPA exhibited enhanced insulin secretion at 17 weeks of age, 
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suggesting BPA-induced insulin resistance; moreover, by 28 weeks, the mice exhibited 

hyperglycaemia without alterations in glucose-stimulated insulin secretion (GSIS) [24]. Of 

note, follow-up studies using a similar exposure window and a higher BPA dose 

demonstrated that the lower BPA dose, but not the higher dose, decreased GSIS at postnatal 

day 30, despite increased beta cell mass, which was attributed to increased expression of 

pro-proliferative genes and decreased expression of genes regulating beta cell death [25]. 

Intriguingly, beta cell mass was actually decreased in BPA-treated animals by postnatal day 

120. The discrepancies in the two studies are likely to be related to the different postnatal 

ages examined; however, it remains unclear why GSIS was impaired in young animals but 

was normal at later ages.

To better mimic exposures during human development we examined the impact of dietary 

exposure of mice to environmentally relevant BPA doses from 2 weeks prior to pregnancy to 

the end of lactation using a low phytoestrogen control diet and BPA-free cages; serum BPA 

levels approximated those in humans [17]. Male offspring of exposed dams, but not females, 

developed abnormal glucose tolerance associated with insulin secretory defects, including 

increased basal rates of insulin release at the higher BPA dose that was suggestive of insulin 

resistance. Interestingly, differences in insulin release using a glucose gradient were not 

observed between control males and those that received a higher dose of BPA, nor was KCl-

induced insulin release in islets altered by the higher BPA dose, suggesting an intact insulin 

secretory apparatus. In contrast, male offspring exposed to the lower BPA dose exhibited 

similar basal rates of insulin release; however, maximal GSIS was impaired [17]. These data 

suggest that the metabolic consequences of developmental BPA exposure exhibit complex 

dose–response relationships.

An area of intense interest in the developmental programming of metabolism is the 

multigenerational heritability of metabolic traits after ancestral EDC exposure. To determine 

whether BPA-induced metabolic disruptions persisted into F2 offspring, BPA-exposed F1 

females were mated to unexposed males [17]. Like F1 offspring, F2 males of dams exposed 

to a higher dose of BPA were glucose intolerant with preserved GSIS, while F2 males of 

dams exposed to a lower dose of BPA exhibited blunted GSIS. In addition, lower dose BPA 

exposure significantly reduced beta cell mass and increased beta cell death in F1 males, 

which persisted into the F2 generation, and transcriptomic analyses indicated significant 

dose-specific changes in genes regulating inflammation and mitochondrial function [18]. 

Collectively, these results demonstrate multigenerational dose- and sex-specific metabolic 

effects of developmental BPA exposure.

These data fit within a broadening context of multigenerational and transgenerational effects 

of multiple EDC classes on various endocrine and metabolic tissues [7, 26–29]. Recently, 

studies have demonstrated that changes in the expression and methylation of imprinted 

genes in the brain persist across three generations after BPA exposure in mice [30]. In 

examining the transgenerational (F3) effects of BPA on metabolic health, we found that F3 

adult males exposed ancestrally to either the lower or higher BPA dose had increased body 

weight with preserved glucose tolerance [19]. F3 male offspring of dams exposed to the 

lower BPA dose had reduced beta cell mass and smaller islets that exhibited enhanced GSIS. 

There was no effect of BPA in F3 females. These studies show that maternal BPA exposure 
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resulted in fewer metabolic defects in F3 than F1 and F2 offspring, and these were sex- and 

dose-specific. Interestingly, while these data suggest a decay in EDC effects over 

generations, the relationships may be more complex for other exposures. For example, the 

fungicide and booster biocide tributyltin (TBT) has been shown to exert transgenerational 

effects on adipose tissue, with some phenotypes that amplify over successive generations 

[31].

Mechanisms of EDC action

There are a number of possible mechanisms by which EDCs can influence health outcomes. 

These include interference with the activity of nuclear receptors, noncanonical steroid 

hormone receptors and orphan receptors, as well as disruptions in the enzymatic pathways 

regulating steroid biosynthesis and/or metabolism. For example, BPA can bind multiple 

oestrogen receptor subtypes. Moreover, several studies indicate that BPA also promotes 

signalling via extranuclear signal transduction pathways, including extracellular signal-

regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Akt [32], and BPA 

also exerts oestradiol-like effects by binding to ERα and thereby activating extranuclear 

pathways [33]. Thus, it is increasingly clear that the diverse effects of BPA are likely to arise 

from interactions across multiple signal transduction pathways [34]. Adding complexity is 

the fact that epidemiological data have linked BPA to disruptions in androgen-dependent 

developmental outcomes [35], despite few mechanistic data demonstrating that BPA alters 

androgen receptor activity or interferes with androgen-dependent extranuclear receptors. 

Finally, there is some evidence that BPA may also disrupt glucocorticoid receptor signalling 

[36–38]. Because endocrine signalling adapts to tonic activation through feedback circuits 

and because metabolic phenotypes arise from the integrated crosstalk of multiple signalling 

cascades that act additively, antagonistically or synergistically, the diversity of BPA actions 

illustrates how this and other EDCs may exhibit non-monotonic dose–response relationships 

in which phenotypic changes at low doses are not necessarily observed with higher 

exposures.

While significant literature linking developmental EDC exposures to metabolic disorders 

focuses on oestrogen receptor actions, robust data also indicate that perinatal exposures to 

some EDCs alter the expression or activity of the nuclear receptor peroxisome proliferator-

activated receptor γ (PPARγ) and its heterodimeric partner retinoid X receptor (RXR), 

which play essential roles in adipocyte development and function. Interestingly, BPA has 

been shown to increase PPARγ expression [39]. While no studies have shown that BPA 

directly binds to PPARγ, brominated BPA analogues, also found in high quantities in the 

environment, bind to the receptor at low concentrations [40]. The prototypical obesogen 

TBT binds and activates both PPARγ and RXR at very low concentrations, augmenting 

adipocyte differentiation, promoting adipocyte dysfunction and resulting in transgenerational 

disruptions in metabolic homeostasis [26, 31, 41–43].

Our recent studies suggest that mitochondrial dysfunction could be an early event in the 

BPA-induced impairment of beta cells [18, 19]. Low-dose exposure of pregnant dams 

impairs beta cell mitochondria function, blunts GSIS, and reduces beta cell mass in male 

offspring [18]. These effects persisted into the second, but not the third, generation [19]. In 
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another study, perinatal BPA exposure decreased activity of Complexes I and III of the 

electron transport chain in the livers of suckling rats, with later-life development of 

microvesicular liver steatosis and enhanced lipogenic gene expression [44]. Beyond BPA, 

other common EDCs have also been shown to disrupt mitochondrial function after 

developmental exposure, including arsenic [45]. Collectively, these data underscore the 

complexity of endocrine disruption with regard to metabolic outcomes. Unlike 

pharmaceutical agents that are designed to hit specific molecular targets, EDCs often 

interfere with multiple pathways, with specific effects likely dependent on both the dose and 

timing of exposure as well as the target and the background hormonal milieu. However, to 

date, while multiple studies have demonstrated that EDCs exhibit multiple modes of action, 

very few studies have definitively ascribed specific mechanisms to particular phenotypes. 

This greatly complicates our understanding of the molecular mechanisms of these agents 

and argues for comprehensive unbiased approaches for uncovering the network of metabolic 

toxicities induced by these agents.

Epigenetic mechanisms

With studies demonstrating transgenerational effects of EDCs on metabolic health, attention 

has turned to how EDCs directly influence the epigenome. Multiple studies report 

associations between developmental exposures to EDCs and epigenetic changes in key 

metabolic tissues, including beta cells, liver, adipose and muscle [7]. One of the earliest 

studies examining this phenomenon demonstrated that developmental BPA exposure shifts 

the coat colour of Agouti mice through stable epigenetic changes [46]. In general, imprinted 

genes are particularly vulnerable to de novo epigenetic modifications. Dams exposed to BPA 

from 2 weeks prior to mating to the end of gestation yielded offspring with loss of 

imprinting and biparental expression of Igf2, increased embryonic Igf2 gene expression and 

enhanced methylation of the Igf2 differentially methylated region 1 [17]. Extension of these 

studies demonstrated that Igf2 differentially methylated region 1 (DMR1) hypermethylation 

persisted in islets of F1 and F2 offspring of BPA-exposed dams with an associated increased 

expression of Igf2 [18]. While Igf2 has multiple functions, it is a key regulator of beta cell 

development, and aberrant early-life Igf2 imprinting could potentially disrupt beta cell 

development.

Epigenetic alterations have also been described for several other metabolically active EDCs 

[7]. Phthalates are a family of phthalic acid diesters that are commonly found in consumer 

products, resulting in ubiquitous exposure in the USA. Limited but growing evidence in 

human studies indicate that phthalate exposure is associated with DNA methylation changes 

of imprinted genes in cord blood and placenta [47]. Animal studies demonstrate associations 

between phthalates and global and site-specific methylation [48]; however, studies were 

performed in mixed cell populations, and changes in DNA methylation were usually modest.

In addition to BPA and phthalates, other EDCs linked to epigenetic modifications include 

the metabolism-disrupting chemicals arsenic [49] and TBT [26]. Importantly, epigenetic 

modifications are cell- and tissue-specific, and findings from one tissue or cell type may not 

serve as a proxy for another. Moreover, even single cell types are often heterogeneous, and 

this lack of uniformity is likely to reflect differences in cell state or cell-specific functions. 
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For example, not all beta cells function similarly in an islet, and this may be reflected in 

epigenetic differences. Demonstrating that epigenetic modifications induce changes in gene 

expression that, in turn, cause abnormal phenotypes is experimentally challenging; however, 

it is imperative to link exposure-associated changes to metabolic dysregulation.

Beyond offspring: impact of gestational exposures on mothers

While environmental exposures during gestation and lactation can clearly impact the long-

term metabolic trajectory of offspring, the consequences of exposures during this window on 

mothers is less appreciated. Gestational diabetes (GDM) imposes unique pregnancy-

associated risks, including gestational hypertension, preeclampsia, future diabetes and 

obstetric complications. Assessments of EDC effects on GDM in humans remain in their 

infancy; however, emerging data suggest potential associations. Commonly found in 

cosmetics, pharmaceuticals and food, parabens were associated with glucose levels during 

pregnancy in a cohort of women at high risk of GDM [50], while the widely used 

antibacterial triclosan was nearly significantly associated with GDM in another cohort [51]. 

In the Infant Development and Environment Study, monoethyl phthalate levels were 

associated with increased GDM risk [52]. Among the inorganic EDCs, arsenic has been 

associated with GDM in a host of studies. In the Maternal-Infant Research on Environmental 

Chemicals Study, the risk of GDM was nearly fourfold greater in the highest vs lowest tertile 

of dimethylarsinic acid levels [53]. Overall, arsenic has been associated with GDM in many 

[54–57] but not all studies [58]. In addition to disruptions during gestation, the dynamic 

changes that happen in the pancreatic islet under the influence of pregnancy hormones 

suggest that environmental insults that occur during this window may permanently 

reprogram beta cells and thereby alter their long-term function. Indeed, gestational BPA 

exposure was shown to not only induce metabolic dysfunction in adult offspring [59], but 

exposed dams also exhibited glucose intolerance later in life [60]. While more data with 

comprehensive exposure assessments throughout pregnancy are needed, these data highlight 

pregnancy as a unique window of susceptibility to EDC-induced metabolic dysfunction.

Exposures in later life and metabolic dysfunction

Robust evidence now links exposure to a variety of EDCs with diabetes risk (reviewed 

extensively in refs. [7–10]). The majority of cross-sectional and prospective epidemiological 

analyses have been conducted in adult populations, while most animal studies have 

employed exposure paradigms using adult mice. Across these studies, there is great diversity 

in the spectrum of environmental toxicants linked to diabetes, with multiple potential 

mechanisms of metabolic toxicity (Fig. 2). EDCs linked to diabetes and/or alterations in 

insulin–glucose dynamics in human studies include arsenic, BPA, dioxins, organochlorine 

pesticides, PCBs and phthalates, among others [61–72]. In animal studies, disruptions in 

glucose homeostasis have been linked to arsenic, atrazine, BPA, cadmium, dioxins, 

malathion, particulate matter air pollution, PCBs, phthalates, persistent organic pollutants, 

tolylfluanid, and tributyltin [73–93]. Importantly, the diversity of EDCs now linked with 

metabolic dysfunction, coupled with the frequency with which human populations are 

exposed, now raise important questions with regard to how these diabetogenic agents 
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interact with each other, as well as with traditional diabetes risk factors, to augment disease 

risk [94].

Indeed, diabetogenic EDC exposures do not exist within a vacuum; rather, exposures occur 

concurrently with other metabolic stressors. Recent animal models demonstrate that excess 

energy intake induced by provision of a high-fat or high-fat/high-sucrose diet augments the 

metabolic dysfunction induced by BPA [90, 95, 96], DDT [97], perfluoroalkyl substances 

[98], tolylfluanid [79] and phthalates [99]. Intriguingly, some studies suggest an EDC–diet 

potentiation that evolves over time as with dichlorodiphenyldichloroethylene (DDE) [100]. 

In contrast, other data suggest that changes in diet may precipitate adverse EDC effects; this 

has been suggested for PCBs, which may specifically impair glucose tolerance after diet-

induced weight loss [91, 101]. Importantly, since many EDCs are lipophilic, high-fat diets 

are likely to augment exposure, whereas reductions in adipose mass with weight loss release 

EDCs into the circulation [102–105]. Whether this mobilisation from adipose tissue 

antagonises subsequent weight loss remains under debate.

Environmental diabetogens and health justice

It has long been recognised that diabetes disproportionately afflicts racial and ethnic 

minorities, as well as those with lower incomes. Despite this knowledge, these disparities 

have been amplified over time [106]. In addition to higher rates of disease, African-

Americans and Latinx/Hispanics are more likely to suffer microvascular complications, 

including nephropathy [107], neuropathy/amputations [108] and retinopathy [109]. 

Furthermore, diabetes-related mortality is also higher in these communities [110]. While 

various social factors are posited to contribute to diabetes disparities, less appreciated is the 

additional contribution of environmental injustice to this heightened risk. In our recent 

analysis, five classes of EDCs associated with diabetic phenotypes in cell-based and animal 

studies (PCBs, organochlorine pesticides, chemical constituents of air pollution, BPA and 

phthalates) were shown to be linked with incident diabetes in prospective epidemiological 

studies [111]. Importantly, for each of these EDC classes, data indicated that racial and 

ethnic minorities, as well as those with lower incomes, are more highly exposed [111]. In 

addition, studies suggest that racial and ethnic minorities may be at heightened risk for 

EDC-induced metabolic dysfunction. In a meta-analysis, exposure to higher vs lower levels 

of both PCBs and organochlorine pesticides was associated with greater diabetes risk in non-

white compared with white populations [65]. In a study of phthalates and metabolic control, 

phthalate-associated insulin resistance was observed in Mexican Americans and African-

Americans but not in non-Hispanic whites [112]. In another study, phthalates were 

associated with worse glucose control and more severe insulin resistance in African-

Americans and Mexican Americans compared with non-Hispanic whites [113]. A recent 

analysis examining the links between phthalates and GDM suggested potentially higher 

phthalate-associated risk among Asians [52]. Finally, in a study of overall mortality, the 

hazard ratio for death per unit increase in particulate matter air pollution was higher in 

Hispanics and much greater in blacks than in whites [114]. Whether the enhanced diabetes- 

and mortality-associated risks of environmental toxicants in communities with heightened 

diabetes risk arises from higher baseline exposures, gene–environment interactions or 

environment-amplified social risk factors remains to be clarified; however, regardless of the 
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origin of this enhanced risk, addressing environmental potentiators of diabetes is essential 

for reducing disease disparities and improving health equity.

From abdication to engagement

With mounting evidence that EDCs contribute to diabetes pathogenesis, it is incumbent upon 

the diabetes care community to address the environmental drivers of the disease; however, 

current clinical practice guidelines wholly neglect environmental toxicants as diabetes risk 

factors [115]. While data are required to definitively demonstrate that exposure reduction 

improves outcomes, emerging evidence provides a framework for action [116]. Importantly, 

paradigms for environmental risk reduction are available in other fields, such as chronic 

obstructive lung disease [117] and asthma [118], which acknowledge the health threat posed 

by air pollution, an exposure also linked to diabetes [119, 120]. In addition, leadership from 

the American College of Obstetricians and Gynecologists, International Federation of 

Gynecology and Obstetrics, and the Endocrine Society provide further guidance on areas for 

risk reduction [5, 121, 122]. The urgency for such action is underscored by data from the 

European Union estimating that five EDCs alone add €18–29 billion annually to obesity- 

and diabetes-associated healthcare costs [123]. Conversely, data from the Prospective 

Investigation of the Vasculature in Uppsala Seniors (PIVUS) study indicate that 25% 

reductions in only four target compounds (PCB 153, monoethylphthalate, DDE and 

perfluorononanoic acid) would reduce diabetes prevalence by 13% in Europe (over 150,000 

cases), with associated cost savings of €4.51 billion annually [124]. Given the narrow focus 

of these analyses relative to the total burden of human chemical exposure, reducing contact 

with diabetogenic chemicals has potential to substantially lower the individual and societal 

toll of diabetes and its complications. Capitalising on this, however, requires both improved 

clinical guidance, as well as transformations in public policy to incorporate diabetes and its 

associated costs into the development of environmental policies [125].

Challenges and controversies

Despite consensus statements regarding EDC risks from the Organisation for Economic Co-

operation and Development in the European Union and the Endocrine Society, some 

controversies persist. These include robust discussion regarding methodologies used in 

biomonitoring studies, including the validity of ELISA for measuring BPA concentrations in 

bodily tissues. Importantly, more recent studies have employed more sensitive and reliable 

techniques to measure very low levels of EDCs. It has also been suggested that low levels of 

unconjugated BPA in bodily tissues and fluids arise from contamination of collection 

materials and/or deconjugation of BPA metabolites during storage. To address this concern, 

multiple human and animal studies have detected BPA in a variety of biological specimens 

using alternative methods, and storage vials are now BPA-free. Furthermore, high-quality 

animal studies are now designed to limit background EDC exposure from diet, caging, 

bedding and water bottles. The route of exposure used in animal studies also remains hotly 

debated. While differences in exposure routes can affect circulating BPA levels, several 

studies have shown that there are fewer differences in route-dependent BPA metabolism and 

excretion than previously thought [126]. Collectively, these issues mandate rigorously 

designed epidemiological and animal studies. Importantly, recent clinical studies have 
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demonstrated that administering BPA to humans alters glucose–insulin homeostasis [127, 

128]. While these data validate the robust cell-based, animal and epidemiological evidence 

linking BPA to metabolic disruptions, they also raise an important ethical question: Will 

such direct evidence of harm be required for each of the thousands of chemicals to which 

humans are exposed before action is taken to protect public health?

Conclusions

Burgeoning evidence now implicates exposure to a variety of environmental toxicants in the 

pathogenesis of diabetes. These exposures occur across the lifespan; however, certain 

developmental periods are uniquely sensitive windows during which metabolism can be 

permanently disrupted in both the exposed individual and subsequent generations. 

Importantly, several communities at heightened diabetes risk are also exposed to higher 

levels of chemicals linked to the disease. Despite this evidence, clinical practice remains 

blind to EDCs as diabetes drivers. While more work is required to address knowledge gaps 

regarding environmental exposures and diabetes risk, the weight of the evidence now 

mandates action to empower individuals and governments to address environmental 

contributors to diabetes risk.
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Fig. 1. 
Sources of EDCs. A diverse array of chemicals from various sources have been linked to 

metabolic dysfunction in cell-based, animal and epidemiological studies. These metabolism-

disrupting EDCs include both inorganic and organic compounds of both natural and 

synthetic origin. Humans are exposed through the use, production and environmental 

dissemination of these chemicals in food production, industrial activity, and home and 

personal care, as well as through medical care. This figure is available as part of a 

downloadable slideset
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Fig. 2. 
EDCs associated with type 2 diabetes pathogenesis and their proposed mechanisms of 

action. Type 2 diabetes arises from a combination of reduced insulin sensitivity (solid black 

arrow) and progressive beta cell failure (dashed black arrow). The blue circles, labelled a to 

e, represent individual states. Starting at state ‘a’, (in the middle of the normoglycaemia 

curve, green shading), if a person with these levels of insulin sensitivity and insulin secretion 

were to exercise, lose weight and get better sleep, they would slide down the curve to ‘b’. 

Unfortunately, our society is instead less active, consuming excess food and sleeping less, 

driving individuals from state ‘a’ to state ‘c’. This situation is, however, untenable in the 

long run. As one’s beta cells begin to fail, they fall off the curve (dashed line) to ‘d’ 

(impaired glucose tolerance, yellow shading); this condition then further deteriorates to ‘e’ 

(type 2 diabetes, red). Several EDCs have been linked to altered insulin sensitivity (darker 

red text box), beta cell disruptions (darker blue text box), or both. Multiple mechanisms have 

been ascribed to EDC-induced beta cell dysfunction and altered functioning of insulin-

responsive tissues (lighter blue and lighter red text boxes). Data supporting EDC-mediated 

diabetes pathogenesis are derived from: cell-, islet- and tissue-based studies; animal models; 

and epidemiological and clinical studies (indicated by the superscript numbers; purple text 

box). BPA, bisphenol A; DDE, dichlorodiphenyldichloroethylene; DDT, 

dichlorodiphenyltrichloroethane; GR, glucocorticoid receptor; OC, organochlorine; PBDEs, 

polybrominated diphenyl ethers; PCBs, polychlorinated biphenyls; PFASs, per- and 

polyfluoroalkyl substances; PCDD/Fs, polychlorinated dibenzo-p-dioxins and furans; PM, 

particulate matter; POPs, persistent organic pollutants; PPARs, peroxisome proliferator-
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activated receptors; TCDD, 2,3,7,8-tetrachlorodibenzodioxin. Data compiled from [7–10]. 

Figure adapted by permission from Springer Nature [129], ©2006 Nature Publishing Group. 

This figure is available as part of a downloadable slideset
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Fig. 3. 
Influence of EDCs across the lifespan. EDCs and other environmental toxicants are an 

important component of the overall environmental milieu (blue) that interacts with genetic 

susceptibility to influence diabetes pathogenesis across the lifespan (green arrow). 

Importantly, exposures during sensitive windows can disrupt developmental programming 

and result in long-term metabolic dysfunction in both the exposed individual as well as 

future generations (black arrows). This figure is available as part of a downloadable slideset
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