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ABSTRACT
Purpose: Machine‑learning algorithms are a subset of artificial intelligence that have proven to enhance analytics in medicine across various 
platforms. Spine surgery has the potential to benefit from improved hardware placement utilizing algorithms that autonomously and accurately 
measure pedicle and vertebral body anatomy. The purpose of this study was to assess the accuracy of an autonomous convolutional neural 
network (CNN) in measuring vertebral body anatomy utilizing clinical lumbar computed tomography (CT) scans and automatically segment 
vertebral body anatomy.

Methods: The CNN was trained utilizing 8000 manually segmented CT slices from 15 cadaveric specimens and 30 adult diagnostic scans. 
Validation was performed with twenty randomly selected patient datasets. Anatomic landmarks that were segmented included the pedicle, 
vertebral body, spinous process, transverse process, facet joint, and lamina. Morphometric measurement of the vertebral body was compared 
between manual measurements and automatic measurements.

Results: Automatic segmentation was found to have a mean accuracy ranging from 96.38% to 98.96%. Coaxial distance from the lamina to 
the anterior cortex was 99.10% with pedicle angulation error of 3.47%.

Conclusion: The CNN algorithm tested in this study provides an accurate means to automatically identify the vertebral body anatomy and 
provide measurements for implants and placement trajectories.
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INTRODUCTION

Recent advances in surgical robotics and image‑guided surgery 
have led to increased utilization of these systems in spine 
surgery.[1] The reported advantages include increased implant 
placement accuracy and decreased radiation exposure to the 
surgeon. Drawbacks of these systems include a significant 
surgeon involvement in preoperative planning, lack of system 
autonomy during surgery (i.e., master–slave approach), and 
the inability of the system to provide real‑time intraoperative 
warnings and suggestions to the surgeon. With progress in 
the field of artificial intelligence and image recognition, it has 
become possible to develop a machine‑learning algorithm for 
autonomously identifying and labeling anatomical landmarks 

on spine computed tomography (CT) scans.[2‑4] A neural 
network trained in identifying vertebral anatomy would 
assist with presurgical planning and intraoperative surgical 
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assistance and potentially lowered radiation exposure and 
accelerated operative times. Some of the advantages of such 
an application would include the ability to autonomously and 
preoperatively formulate a surgical plan with minimal surgeon 
input, select the correct implant sizes (allowing manufacturers 
to ship in only necessary implants and highly reducing costs), 
suggest implant placement trajectories (reducing human 
errors), and provide real‑time warnings if deviations from 
the plan occurred intraoperatively (increasing surgical 
outcomes). Coupling this type of application to a robotic 
or image guidance platform would improve patient safety 
by reducing the chance for incorrect preoperative plan 
formulated by novice surgeons, poor implant selection, and 
incorrect implant trajectory selection. The purpose of this 
study is to validate the accuracy of the machine‑learning 
software that was developed for teaching the computer how 
to autonomously identify bony anatomical landmarks of the 
lumbar spine on diagnostic and intraoperative grade CT 
scans.

METHODS

A convolutional neural network (CNN) was developed 
and trained[5] (Holosurgical, Inc., Chicago, IL, USA) how to 
properly segment, identify, and label vertebral landmarks. 
Measurements included the pedicle, vertebral, spinous 
process, transverse process, facet joints, and lamina of the 
lumbar spine. The training phase consisted of 8000 manually 
segmented sliced of 24 intraoperative CT‑scan datasets of 
15 cadaveric lumbar spine specimens (192 slices each). The 
validation of the CNN algorithm was performed with twenty 
datasets randomly pulled from a pool of 2000 datasets with 
a total of 2200 validation images utilized. We hypothesized 
that the CNN algorithm would be able to measure vertebral 
anatomy with a high degree of accuracy from lumbar spine 
CT images.

The training procedure, as presented in Figure 1, comprises 
the following steps. First, a set of digital imaging and 
communications in medicine (DICOM) images are generated 
by a preoperative or an intraoperative CT, representing 
consecutive slices with visible tissues [Figure 1a]. Next, 
all slices are processed to perform automatic vertebral 
segmentation [Figure 1b]. Then, the original information 
obtained from DICOM images and the segmentation 
results are merged to obtain combined images comprising 
information about both the tissue density and its classification 
corresponding to each anatomy parts [Figure 1c].

Several morphometric measurements of both original 
DICOM and computer‑segmented slices were performed 

by a board‑certified orthopedic surgeon at various time 
points: anteroposterior vertebral depth (A), vertebral body 
width (B), spinous process height (C), pedicle angulation (D), 
pedicle diameter at the isthmus (E), and coaxial distance from 
facet cortex to the anterior vertebral cortex (F) [Figure 2]. 
Measurements of the neural network input (original) and 
output (computer‑annotated) images [Figure 3] of the lumbar 
spine were recorded on separate datasheets, so that when 
entering the measurement results, the prior measurement 
results were not visible on the same sheet to avoid bias. The 

Figure 2: Measured anatomical landmarks

Figure 1: (a) Original digital imaging and communications in medicine image 
from intraoperative scanner. (b) Manual segmentation. (c) Segmentation 
used as a mask over the original image

c

b

a

Figure 3: (a) Input and (b) output images of the neural network
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mean accuracy of each landmark measurement was recorded 
as a percentage by dividing the output measurements by 
the input measurements. The standard deviation of each 
landmark mean accuracy was reported as well as the error, 
which is expressed as the difference of the mean accuracy 
from 100%. All calculations were performed using SPSS 
software (IBM; Chicago, IL, USA).

RESULTS

A total of 37 pairs of original CT and computer‑generated 
images were investigated.

The mean accuracy of each anatomical segmentation ranged 
between 96.38% and 98.96% [Table 1]. The measured mean 
error of all anatomical landmarks was 2.27%.

Specifically, an error of 3.07% in the measurements of 
the anatomical landmark that determines pedicle screw 
selection (i.e., pedicle diameter) presented no statistically 
significant differences between the original DICOM and the 
computer‑segmented image.

The mean standard deviation of coaxial distance from the 
lamina to the anterior cortex, which determines screw length, 
was measured as only 0.8%, with an accuracy of 99.10%. 
The least accurate anatomical landmark was the pedicle 
angulation, with a 3.47% error.

DISCUSSION

Machine learning is a subset of artificial intelligence, which 
has a great potential to improve the practice of spine surgery. 
Prior studies have utilized machine‑learning models to 
develop predictive algorithms for spinal tumor survival,[6,7] 
complications and sustained opioid use following anterior 
cervical discectomy and fusion surgery,[8,9] patient‑reported 
outcomes and discharge disposition following lumbar spine 

surgery,[10,11] and blood transfusion in spinal deformity 
surgery.[12] All of these studies demonstrated high reliability 
in predictive power and proved superior to conventional 
statistical methods.

Recently, Ames et al. 2019 utilized a self‑learning hierarchical 
clustering algorithm to propose a new classification 
system for adult spinal deformity.[13] The study analyzed 
a multisurgeon‑multicenter database of 570 patients that 
underwent adult spinal deformity corrective surgery. Patients 
were clustered based on their curves’ type and surgical 
interventions associated with optimal outcomes, which 
identified 12 unique classification groups. However, the 
classification system did not include specific radiographic 
curve morphology. This method of grouping spinal deformity 
proves to possibly strengthen classification systems that are 
already well accepted.[14,15]

Furthermore, these algorithms have been used to 
analyze preoperative and intraoperative radiographic 
data to improve implant placement in spine surgery. 
A proof of concept study by Esfandiari et al. tested pose 
estimation in 50,000 fluoroscopic images with pedicle 
screw random orientations.[16] The authors utilized a 
CNN and found a 93% and 83% accuracy in synthetic and 
clinically realistic radiographs, respectively. Although the 
results of this study were not extrapolated in vivo, they 
suggest machine‑learning algorithms can assist surgeons 
with pedicle screw placement intraoperatively with 
negligible added operating room time. Moreover, Lafage 
et al. proposed that self‑learning computers can aid in 
preoperative planning and can further be customized in 
treatment selection to surgeon‑specific outcomes in spinal 
deformity corrective surgery.[17]

Combining artificial intelligence with robotic‑assisted spine 
surgery has the potential to substantially benefit patients 
and surgeons. Recent literature has documented increased 
pedicle screw accuracy, decreased hospital stays, lower 
complications, and decreased radiation exposure with 
the use of robotics.[1] Artificial intelligence in conjunction 
with robotics can also decrease the registration time and 
decrease the time spent planning preoperatively. During 
spinal procedures, artificial intelligence would allow the 
robot to alert the surgeon about nuances in the procedure, 
such as precisely differentiating between bony, vascular, or 
nerve tissue and advising to redirect the implant trajectory 
in the desired direction. A key component for making 
this possible is automatic anatomical segmentation and 
landmark identification. For making surgical robotics 
practical and economical, it must rely on the images 

Table 1: Accuracy of automated vertebral body measurements 
from computed tomography scans

Anatomical landmarks Accuracy Error (%)
Mean (%) SD (%)

A: AP vertebral depth 97.65 1.77 2.35
B: Vertebral body width 98.38 0.99 1.62
C: Spinous process height 97.81 1.42 2.19
D: Pedicle angulation 96.53 3.84 3.47
E: Pedicle diameter 96.93 3.76 3.07
F: Coaxial distance from 
lamina to anterior cortex

99.10 0.87 0.90

Average 97.73 2.11 2.27
AP - Anteroposterior, SD - Standard deviation
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obtained from an intraoperative scanner at the time of 
surgery.

The neural network algorithm evaluated in this study 
automatically and autonomously analyzes DICOM spine scan 
data and then segments and identifies the various components 
of the vertebrae without any human intervention. The 
algorithm is able to recognize both normal and abnormal 
spine anatomy, as well as to identify and classify those 
components into the pedicle, vertebral body, lamina, 
transverse, or spinous process. This was done with a 
high degree of accuracy (97.73%) when compared with 
manually identified landmarks. Our findings are comparable 
to Burström et al., who reported a 95.4% accuracy of a 
machine‑learning algorithm on 21 cadavers and 20 clinical 
cases using intraoperative quality CT scans.[2] This is 
concordant with prior work on automatic segmentation that 
has noted 90%–95% accuracy.[3,4,18,19] Manually segmented 
vertebrae on CT scans have been proven to be highly accurate 
with submillimeter accuracy and precision,[20] suggesting 
pedicle screw placement under machine‑learned guidance 
to be well within the margin of safety by Gertzbein and 
Robbins.[21]

There are several immediate surgical applications for this 
algorithm. First, the system could perform a detailed analysis 
of each of the segmented parts, including pedicle length, 
diameter, volume, and angulation in real time. Once this 
information is available, the system could then be used to size 
and select an appropriate implant based on patient‑specific 
anatomy. This feature, in turn, could be used to present the 
ideal trajectory for placing the implant. This trajectory can 
be displayed on a monitor for the surgeon or the information 
could be provided to the robotic platform, thus allowing the 
robot to autonomously target the pedicle without the need 
for surgeon input. The surgeons’ role would be to ensure 
that the computer presents the proper trajectory and verify 
proper execution of the surgical plan.

There were several limitations of the current study that future 
work must address to make this technology more rigorous. 
First, CT modeling was only performed on the lumbar spine. 
Ideally, future projects would aim to develop software with 
accurate reconstruction of the thoracic and cervical spine 
to give further navigational capabilities. Another limitation 
unique to this type of analysis is that of the method used 
for image annotation and measurements performed by the 
orthopedic surgeon. Is the human examiner more accurate 
than the computer in making the measurements, or is 
it the other way around? Therefore, when analyzing the 
clinical significance of the reported error, this factor needs 

to take that into account. A further clinical comparison of 
the current studies’ reconstruction software to intraoperative 
three‑dimensional navigation would give further clarity to the 
ability of the device to streamline surgical spine procedures 
and increase surgical accuracy and efficiency.

CONCLUSION

Effective reconstruction and analytics of pre‑ and 
intraoperative imaging is paramount to the successful 
implementation of artificial intelligence applications and 
augmented reality devices in the surgical setting. The results 
of this study demonstrate that machine learning is able to 
produce highly reliable segmentation of bony anatomy based 
on preoperative CT scans, achieving an accuracy approaching 
98%. To our knowledge, this is the first study that validates a 
machine‑learning algorithm that is capable of autonomously 
and accurately segment and identify individual components 
of the bony spinal anatomy to this level of accuracy. These 
findings suggest CNN algorithms to have many powerful 
implications for further development of robotics and 
image‑guided surgery.
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