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Abstract

Progressive supranuclear palsy (PSP) is a complex clinicopathologic disease with no current cure 

or disease modulating therapies that can only be definitively confirmed at autopsy. Growing 

understanding of the phenotypic diversity of PSP has led to expanded clinical criteria and new 

insights into etiopathogenesis that coupled with improved in vivo biomarkers makes increased 

access to current clinical trials possible. Current standard-of-care treatment of PSP is 

multidisciplinary, supportive and symptomatic, and several trials of potentially disease modulating 

agents have already been completed with disappointing results. Current ongoing clinical trials 

target the abnormal aggregation of tau through a variety of mechanisms including immunotherapy 

and gene therapy offer a more direct method of treatment. Here we review PSP clinicopathologic 

correlations, in vivo biomarkers including MRI, PET, and CSF biomarkers. We additionally review 

current pharmacologic and non-pharmacologic methods of treatment, prior and ongoing clinical 

trials in PSP. Newly expanded clinical criteria and improved specific biomarkers will aid in 

identifying patients with PSP earlier and more accurately and expand access to these potentially 

beneficial clinical trials.
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Introduction

The clinicopathological syndrome of Progressive supranuclear palsy (PSP) was originally 

described in 1964 by Drs. Steele, Richardson, and Olszewski where they detailed a series of 

patients with postural instability, ocular motor abnormalities, facial and cervical dystonia, 

dementia, and other features [1]. This seminal work also detailed the initial neuropathologic 

findings including argyrophyllic globose and flame-shaped inclusions in both the gray and 
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white matter throughout brainstem, subcortical and neocortical regions and accompanying 

neuronal loss and white matter degeneration. Further study using immunohistochemistry 

ultimately revealed that these inclusions were accumulations of the tau protein affecting 

neurons, astrocytes, and glia in a variety of morphologies [2]. Tau is a microtubule 

associated protein which contributes to the stability of the axonal cytoskeleton. Due to 

alternative splicing of the of microtubule binding site domains E2, E3, and E10, six tau 

isoforms exist, either with 4 repeated domains (4R, which includes the E10 region), or 3 

repeated domains (3R, which excludes E10) [3]. In Alzheimer’s disease, tau pathology 

exists in a fairly even 3R/4R mix in paired helical filament conformation [4–6] which occurs 

in combination with amyloid-β plaque deposits. In contrast, PSP is a ‘pure tauopathy’, 

where tau accumulations composed primarily of 4R tau species are the pathogenic lesions. 

For this reason, PSP is often targeted for trials for anti-tau therapeutics. PSP and corticobasal 

degeneration (CBD), are both 4R tauopathies where tau species are arranged in straight 

filament conformations [7, 8]. The differences in conformations are due to differing 

orientations of the C-shaped tau subunits that compose them, with 3R/4R tau subunits being 

directed towards each other resulting in the helical conformation, whereas in 4R tauopathies, 

the C-shaped subunits are positioned back to back [9]. While PSP and CBD are both 4R 

tauopathies, the pathological features of PSP are typically tufted astrocytes and globose 

neurofibrillary tangles, whereas CBD has astrocytic plaques and ballooned pale neurons 

with thready neuronal tau inclusions that affect cortical regions more severely than 

subcortical regions and in a distinct conformation from what is seen in PSP [10, 11].

The prevalence of the classic Richardson syndrome presentation of PSP is approximately 

6/100,000, with average age of onset in the mid-60s and disease duration of approximately 6 

years [12–15]. However, it has become increasingly recognized that multiple clinical 

phenotypes aside from the originally described Richardson syndrome phenotype may result 

from PSP pathology. PSP pathology may be found in patients with parkinsonism mimicking 

Parkinson’s disease (PSP-P), frontotemporal dementia (PSP-F), and corticobasal syndrome 

(PSP-CBS), and others [16–18]. The growing recognition of the clinical spectrum of PSP 

pathology has resulted in an expanded research criteria for the diagnosis of PSP which 

incorporates these clinical phenotypes [19]. Consequently, more recent age-adjusted 

prevalence estimates in Europe have increased to 8.8–10.8/100,000 patients [13, 20], and in 

Yonogo Japan, PSP age-adjusted prevalence increased from 5.8/100,000 patients in 1999 to 

17/100,000 patients in 2010 [21, 22]. This recognition has also increased the need for 

specific biomarkers to diagnose patients early during life; advancements have progressed in 

MRI, PET, and biofluid biomarkers in PSP. Despite these advances, current therapies for 

PSP remain symptomatic and disease-modulating medications remain elusive despite 

extensive efforts. Current strategies are focused on targeting the tau protein by different 

mechanisms including immunotherapy and gene therapy. Here, we review the 

clinicopathological complexity of PSP, etiopathogenesis, and emerging biomarkers and well 

as a review of past and current clinical trials.

Clinicopathologic Complexity of PSP

While several early clinical criteria exist [23–26] the first criteria based on a large autopsy-

confirmed series and consensus of experts was performed by Litvan et al. in 1996 (the 
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NINDS-SPSP criteria) which outlined the core clinical features of what is currently known 

as the PSP-Richardson syndrome (PSP-RS) of a gradual progressive disorder affecting 

patients over 40 years old with a vertical supranuclear gaze palsy or postural instability and 

falls within the first year of onset [27]. Having both a vertical supranuclear palsy and 

postural instability is indicative of clinically probable PSP whereas having either an isolated 

vertical gaze palsy or having slowed saccades with postural instability is indicative of 

clinically possible PSP [27]. Pathologic confirmation remains necessary for a ‘definite’ 

diagnosis of PSP. The clinical entity of PSP-RS has a high probability of demonstrating 

neuropathologic PSP at autopsy, but many other clinical phenotypes may harbor PSP 

pathology at autopsy (Figure 1) [17, 27, 28]. Up to one third of PSP patients have a 

presentation initially marked by parkinsonism (PSP-P), which can have asymmetric akinetic 

rigid features, resting tremor, and even moderate levodopa responsiveness early in the 

disease with more classic Richardson syndrome developing only years later [15, 17, 18, 29–

31]. Patients with PSP-P have a significantly longer survival compared patients with a 

classic PSP-RS presentation [17, 18, 31, 32] and progression. Other patients may present 

with frontotemporal dementia features of prominent apathy and/or disinhibition (PSP-F) 

[33–35], or a progressive non-fluent aphasia with apraxia of speech (PSP-SL) [36–38]. Up 

to one third of patients with a corticobasal syndrome presentation with limb apraxia, cortical 

sensory deficits, alien limb phenomena, dystonia and myoclonus, may harbor PSP pathology 

at autopsy rather than corticobasal degeneration (PSP-CBS) [10, 39–41]. Other, more rare 

presentations of PSP have also been described (PSP-PGF: PSP with progressive gait freezing 

[42, 43], PSP-OM: PSP with exclusive ocular motor dysfunction [17, 27], PSP-PLS: PSP 

with primary lateral sclerosis [44, 45], PSP-C: PSP with a cerebellar ataxia phenotype [46, 

47]). As patients progress, they are more likely to begin to exhibit core features of PSP-RS 

including supranuclear gaze palsy and postural instability, but these features may be delayed 

by several years making early and accurate diagnosis a continued challenge [17]. The 

International Parkinson and Movement Disorder’s Society has published recent diagnostic 

criteria (MDS-PSP) which acknowledges the wide array of clinical symptoms and signs that 

may be associated with PSP pathology [19]. These criteria are more sensitive but less 

specific than the NINDS-SPSP criteria and can lead to diagnosing multiple overlapping 

phenotypes in the same subject [48, 49]. While the MDS-PSP criteria includes a new 

definition of the PSP-P phenotype, this criteria needs refinement in view of inclusion of 

PSP-RS in addition to PSP-P[50]. Thus, subsequent rules (Multiple Allocation eXtinction: 

MAX rules) were recently developed to improve the assignment of individual phenotypes in 

clinical practice and research settings [49]. Using MAX rules has improved diagnostic 

overlap of PSP-RS and PSP-P, but unfortunately may still fail to disentangle 40% of these 

patients [50].

The cardinal neuropathologic features of PSP at autopsy include abnormal accumulations of 

tau in the forms of tufted astrocytes [51] and globose neurofibrillary tangles in grey matter 

and coiled bodies in oligodendrocytes in white matter [52]. As stated previously, in PSP the 

accumulated tau is mostly of a 4R variety and is typically phosphorylated [53, 54], often 

acetylated [55], and thioflavin-S positive [56]. The globus pallidus, subthalamic nucleus, 

substantia nigra, and dentate nucleus of the cerebellum are core regions affected [2]. Frontal, 

temporal, and parietal cortices may also show disease [57] and patients who exhibit more 
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cortically localizing clinical signs have been described to have higher burdens of 

corresponding cortical tau pathology [58, 59] (figure 2). Pathological subtypes based on the 

relative distribution of tau pathology and its relation to clinical phenotypes have been 

proposed [60]. As opposed to corticobasal degeneration (CBD) which is also a 4R tauopathy 

marked by astrocytic plaque pathology where tau accumulates in distal astrocytic processes 

which, the tufted astrocytes of PSP have a radial distribution of tau which affects astrocyte 

cell bodies and more proximal processes (Figure 2) [60].

Etiopathogenesis

Environmental Factors—While no single cause of PSP has been identified, a number of 

environmental and genetic associations have been investigated. The ENGENE-PSP study 

found that lower educational attainment, exposure to well water and industrial wastes, and 

firearm use was related to higher risk of developing PSP [61, 62]. A cluster of PSP patients 

was observed in northern France in an area of high industrial waste contamination that also 

contained heavy metals and an independent study also documented that occupational 

exposure to heavy metals was associated with risk of developing PSP [61, 63]. Consumption 

of high levels of annonacin, a mitochondrial complex 1 inhibitor found in the tropical fruit 

pawpaw was associated with developing PSP or other atypical parkinsonism in studies in 

Guadeloupe in the Caribbean [64, 65]. There may be a slight male predominance within PSP 

patients [18, 24], and one study documented that increased estrogen exposure in women may 

be associated with lower likelihood of developing PSP [66].

Genetics—Genetic mutations in the MAPT gene have been described leading to PSP [67–

69] as well as frontotemporal dementia, FTLD with parkinsonism, primary progressive 

aphasia and CBD [70]. The H1 haplotype specifically elevates 5.6 times the risk for 

developing PSP, which is comparable to the ApoE ε3/ε4 risk for developing Alzheimer 

disease [19, 71]. Interestingly, the H1/H1 haplotype is more common in PSP-RS than PSP-P 

[72]. A genome wide association study in a large pathologically-validated study confirmed 

the MAPT variants and the H1 haplotype as associated with PSP, and also identified other 

gene loci including MOBP, STX6, and EIF2AK3 [73]. MOBP, which encodes for myelin 

basic protein, is also implicated in CBD and highlights to potential importance of white 

matter in these conditions [74]. STX6 encodes for a SNARE protein implicated in fusing 

vesicles in the Golgi network and endosomal structures [75]. EIF2AK3 encodes for a protein 

responsible for inhibiting protein synthesis in the face of excess endoplasmic reticulum 

stress [76, 77]. These have been validated in a second GWAS study which also identified 

SLCO1A2, which is involved in ion transport, and DUSP10, which is involved in tau 

trafficking, as other genes of interest requiring further study [78].

Oxidative Stress, Mitochondrial Dysfunction, and Inflammation—In PSP, as with 

other neurodegenerative diseases, mitochondrial dysfunction and oxidative stress has been 

demonstrated in vitro models and in human tissue [79–82]. Mitochondrial enzymatic activity 

is decreased and lipid peroxidation is increased in PSP which leads to excessive oxidative 

stress [81–84]. Interestingly, ATP production is decreased in muscle tissue in PSP patients as 

well as PSP cybrids [79, 85–87]. Elevated oxidative stress, mitochondrial dysfunction and 

neurodegeneration, leads to inflammation and in PSP, higher levels of the inflammatory 
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cytokine, IL1β is seen in PSP affected brain regions and correlates with levels of microglial 

activation [88]. Other studies have reported that microglial activation correlates with tau 

deposition [89] and higher levels of pro-inflammatory cytokines can be demonstrated in the 

CSF of PSP patients when compared to Parkinson’s disease patients [90]. Superoxide 

dismutase and glutathione, essential antioxidants, are often seen to be elevated in PSP brain 

tissue, likely sources of defense [80, 91]. Activated microglia can be visualized using 

positron emission tomography in PSP which will be discussed below [92]. Such 

observations have led to disease modifying trials using anti-inflammatory or anti-oxidant 

agents. CoQ10 showed improvements in cerebral metabolism as well as improvements in the 

total PSP-Rating Scale scores and frontal assessment battery in a small six week trial[93]. 

The short duration of this trial made differentiating symptomatic relief from disease 

modification difficult. A follow up year-long study of CoQ10 showed a nearly significant 

difference in the progression of the PSP Rating scale compared to placebo (p=0.07), but also 

had a high drop-out rate of patients with more severe disease making interpretation of results 

difficult [94]. Regrettably, trials of riluzole and rasagiline have failed to show meaningful 

benefit in large trials [95, 96].

Prion-like Spread of Tau—Of note, more recent data suggests that abnormally fibrillated 

tau is capable of acting as a template to further induce misfolding of normal monomeric tau 

leading to increasing disease spread in a ‘prion-like’ manner. In vivo animal studies using 

preformed fibrils [97, 98], human diseased brain homogenates [99], and other techniques 

[100, 101] have shown distal spread of tau pathology via trans-synaptic spread [102, 103]. 

There may be specific ‘strains’ of tau capable of seeding unique pathologies [51, 100, 104]. 

In fact, the recent use of cryo-electron microscopy technology to study several tauopathies 

shows that the molecular structure of tau varies throughout tauopathies which may in part 

confer strain-specific properties in these conditions [4, 105, 106]. The molecular structure of 

CBD related tau has been identified [11] but similar studies for PSP related tau have not 

been published.

Biomarkers

Magnetic Resonance Imaging—Structural neuroimaging biomarkers in PSP include the 

well described ‘hummingbird sign’ [107], ‘morning glory sign’ [108], or Mickey-Mouse 

sign [109] all of which result from midbrain atrophy. One study where features of ante 

mortem MRIs from 48 pathologically-confirmed PSP and MSA cases were compared, 16/22 

(73%) of PSP cases could be correctly identified by a radiologist subjectively identifying the 

‘hummingbird sign’, with 100% specificity but only 69% sensitivity [109]. Studies that have 

relied on the qualitative identification of atrophy patterns document high specificity with 

lower sensitivity, likely because these changes are visually more apparent in late 

disease[107–109]. Studies making use of quantitative measurements of the midbrain, 

superior cerebellar peduncles and other brainstem structures, have shown much higher 

sensitivity and specificity [110–114]. Perhaps the best studied quantitative MRI signature is 

the magnetic resonance parkinsonism index (MRPI), which has documented >80% 

sensitivity and specificity differentiating PSP from non-PSP patients and predicting the 

occurrence of a supranuclear gaze palsy in PSP-P patients [111, 112, 115]. A subsequent 

version has been reported to predict clinical evolution of PSP-P in patients initially 
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diagnosed with PD, raising the possibility of its utility to differentiate PD from PSP in early 

disease when clinical diagnosis is often most ambiguous [116, 117].

Positron Emission Tomography—Several tracers are under development that bind to 

the tau protein including 18F-5105, 18F-FDDNP, 18F-THK523, 11C-PBB3, and others [118]. 
18F-Flortaucipir (formerly AV-1451 and T807) is the most researched tau tracer to date and 

binds to paired helical filaments in 3R/4R tauopathies such as AD [119] and exhibits 

expected retention patterns in both amnestic AD [120, 121] and non-amnestic variants [122, 

123]. However, retention appears to be less robust in 4R tauopathies [119, 124, 125]. While 

group-wise differences can still be demonstrated differentiating PSP from healthy controls 

largely due to increased retention in the basal ganglia and nigral regions [120, 126–128], 

individual patient-level distinctions remain difficult because of significant overlap and the 

ligand is not expected to be of use diagnosis PSP subjects in early stages of the disease. PET 

tracers targeting activated microglia (11C-(R) PK11195) may offer methods to assess 

inflammation associated with neurodegeneration in PSP and other related diseases [92, 129]

Biofluids—CSF biomarkers for PSP are still under development. Tau fragments, including 

measures of total tau (t-tau) and phosphorylated tau (p-tau) have been more extensively 

studied in Alzheimer’s disease [130], but these tau species tend not to be reliably elevated in 

PSP [7, 131, 132]. One study reported that a ratio of certain tau fragments may aid in 

distinguishing PSP from healthy controls and different neurodegenerative diseases [133] but 

the findings were not easily replicated [134]. CSF neurofilament light chain (NfL), an 

intermediate filament and non-specific measure of neuronal injury [135], shows elevation in 

PSP and other atypical parkinsonian syndromes [132, 136–139]. New single molecular 

arrays (SIMoA) are capable of detecting NfL on the ng/L levels, making blood based assays 

possible. Serum NfL correlates tightly with CSF NfL concentrations [140] and higher 

baseline levels of serum NfL has been associated with worse clinical and radiologic 

outcomes in PSP [141]. Thus, serum NfL could be used as secondary outcome measures in 

future therapeutic trials. Real time quaking induced conversion (RT-QuIC), which was 

originally pioneered in Creutzfeldt-Jakob disease, makes use of the ability of abnormally 

aggregated proteins to act as a template to seed further aggregation of monomeric proteins 

[142]. RT-QuIC are very promising in the diagnosis of synucleinopathies (Parkinson’s 

disease, dementia with Lewy bodies, multiple systems atrophy) [143–145] and is also 

expanding into tauopathies including PSP [146, 147].

Neurophysiologic Markers—The slowness of vertical eye movements that is a clinical 

hallmark of PSP can be demonstrated through electro-oculogram, a version of 

electromyogram [148] and more recently small studies of non-invasive computerized eye 

tracking software can reliably differentiate PSP from non-PSP cases using a variety of eye 

movement features [149, 150]. Spontaneous blink rate is decreased in PSP as expected, and 

in comparative neurophysiologic studies, blink rate is much lower in PSP than PD or other 

disorders [151]. Early recovery and enhanced excitability of the blink reflex has been shown 

as well [152]. Auditory startle reflex is severely decreased in PSP, likely related to damage 

to the reticulospinal system [153, 154]. Abnormal autogenic inhibition of spinal interneuron 

circuits has been described as well [155].
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Current Therapies

Symptomatic Pharmacologic Therapies—Current pharmacologic therapies for PSP 

are symptomatic, and tend to show mild to moderate efficacy. Levodopa preparations may be 

used to treat functionally-impairing bradykinesia and rigidity. In one retrospective study of 

pathologically confirmed PSP patients, 32% of cases showed a >30% improvement in the 

Unified Parkinson’s Disease Rating Scale and 4% of cases showed levodopa induced 

dyskinesias [18]. Other studies have documented similar response rates[156–159]; however, 

levodopa responses are often milder than what is seen in PD and require higher doses of 

levodopa to achieve and can often wane over time [26, 160, 161]. It is recommend titrating 

up to 1.0 gm/day and continuing this dose for at least a month to attempt to achieve benefits 

before weaning. Marked and prolonged improvement with levodopa therapy is considered an 

exclusionary criteria for a diagnosis of PSP and makes a diagnosis of Parkinson’s disease 

more likely. Dopamine agonists have also been trialed in PSP but are generally less effective 

than levodopa and carry a greater likelihood of causing side effects [157, 162, 163]. A few 

studies have documented improvement in features of bradykinesia, rigidity, and dystonia 

with the use of amantadine in PSP but side effects have been also been reported in nearly 

half of patients treated with this medication, ranging in severity from leg edema and livedo 

reticularis to hallucinations and worsened cognitive impairments [157, 164–166]. If dose-

limiting side effects do occur, we recommend a slow wean of medications, removing 100 mg 

per week, as a withdrawal syndrome with delirium from abrupt cessation of amantadine has 

been described [167, 168]. Zolpidem was reported to offer mild improvement of ocular 

motor deficits and saccadic speed, but this has not been confirmed in other studies [169–

171]. Ophthalmic lubricants are useful to treat dry eyes. Sunglasses are also useful for the 

photosensitivity. Prism glasses may be employed to improve the double vision due to 

decreased convergence, but when not useful, alternating eye patches may be employed. 

Problems with sleep initiation and sleep maintenance are common in PSP and there have 

been no major studies of pharmacologic interventions, but treatment can be attempted with 

melatonin, clonazepam or trazodone [172–174]. Constipation may be managed with dietary 

changes, agents that accelerate bowel movements, gentle laxatives, or by increasing fluid 

secretion. For depression, tricyclic antidepressants, selective serotonin reuptake inhibitors 

and serotonin-norepinephrine reuptake inhibitors may be employed. However, they do not 

improve the apathy that in PSP is often prevalent. Amitriptyline, a TCA, in particular has 

been reported to improve depression in PSP patients and has improved motor parkinsonism 

in case reports [157, 175, 176]. For cognition, while donepezil may show mild selective 

benefits on cognition in PSP, currently this medication is not recommended due to potential 

deleterious effects on gait and dysphagia [177]. Botulinum toxin for blepharospasm, eyelid 

opening apraxia, retrocollis, or sialorrhea may be considered but must be weighed against 

the potential to cause side effects including worsening dysphagia [178–181]. Sublingual 

administration of atropine 1% drops can be considered but carries a significant risk of 

causing cognitive and urinary side effects if not dosed carefully [182]. Urinary urgency and 

frequency is a common symptom in PSP and can be treated with medications which are less 

likely to cross the blood brain barrier including mirabegron and solifenacin. Pseudobulbar 

affect, abrupt crying or laughing episodes that are not always mood-congruous or 

proportional to stimuli, can be treated effectively with dextromethorphan-quinidine or 

antidepressants [183]. Agitation may occur in PSP. Seroquel or clozapine could be used as 
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pharmacologic treatments to augment non-pharmacological interventions. However, there 

are no therapeutic trials showing beneficial effects in PSP, but clozapine as well as 

pimavanserin have been shown to improve psychosis in PD, although they are rarely used in 

PSP. Clozapine therapy must be accompanied by frequent blood monitoring to avoid the rare 

but life-threatening side effect of agranulocytosis. Other neuroleptics and dopamine blocking 

anti-emetics should be avoided in PSP given the possibility of worsening parkinsonism. 

There are no formal studies of medical marijuana or cannabidiols in PSP, but studies in other 

conditions have shown improvements in sleep, pain, anxiety, and spasticity which are 

common problems in PSP, so we await formal studies in PSP to guide utility [184–187].

Non-pharmacologic therapies—Patients with PSP benefit from multidisciplinary non-

pharmacological care. Physical therapy improves function and decreases falls [188, 189]. 

Use of weighted walkers are helpful to improve patient’s safe gait and independence. Speech 

therapy may help with coping strategies for vocal changes, techniques for communication, 

and safe eating and drinking. When difficulties with swallowing liquids are identified, a 

modified barium swallow evaluations can diagnose the extent of the problem and help 

identify proper compensation techniques or diets. Occupational therapists can do safety 

inspection of the homes. Social workers and palliative care consultants can aid in the 

management of the PSP patients and families including stress, nursing home placement, end 

of life care and decision making which positively affects patients and families quality of life 

[190]. Therefore, PSP patients and families benefit from having a multidisciplinary team 

knowledgeable in the management of these patients.

Clinical Trials

Drug development for PSP disease modulating trials has focused on inhibiting post 

translational modifications of tau, enhancing immune mediated clearing, stabilizing 

microtubules, or reducing levels of expression through gene therapies.

Tau post-translational modifications: Phosphorylation and Acetylation, and 
Others—In PSP aggregated tau is hyper-phosphorylated [191]; therefore, kinases which 

phosphorylate tau, including GSK 3β, have been examined as potential therapeutic targets 

[192]. Both valproic acid and lithium are GSK 3β inhibitors which showed some promise in 

animal models [193–195]. Valproic acid did not result in significant improvements in human 

trials and the lithium trial was stopped early because of poor tolerability (NCT00385710, 

NCT00703677) [196]. Tideglusib is a small molecule inhibitor of GSK 3β which failed to 

show significant clinical differences in the PSP-Rating Scale between treated patients and 

patients receiving placebo in a multicenter, randomized, double-blind, placebo-controlled 

trial [197]. However, in a subset of patients with MRIs, less brain atrophy was observed in 

treated patients than controls in parietal and occipital cortical regions [198]. These areas are 

not typically affected by tau pathology in PSP as are the frontal lobes, basal ganglia, or 

brainstem structures [197, 198]. Possible explanations for this observation include better 

quality of volumetric MRI data from cortical areas versus subcortical and brainstem regions, 

variable expression of GSK 3β throughout the brain, or selection bias of the included MRI 

subgroup [198].
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CDK5 is another kinase which phosphorylates tau and inhibitor molecules are in 

development (NCT04253132). Salsalate inhibits tau acetylation which may alleviate tau 

pathology as well [199] and is undergoing a phase I pilot study in PSP (NCT02422485). O-

GlcNAc modification, which is involved in intracellular tau trafficking, and caspase-

mediated cleavage are other potential therapeutic targets [200–202]. Most recently, the 

company Retrotope has obtained orphan drug designation for a stabilized fatty acid 

compound to prevent lipid peroxidation for investigation in PSP although no trials in 

humans have been conducted yet [203].

Microtubule-stabilizing agents—A neuropeptide with neuroprotective and microtubule 

stabilizing properties, davunetide, which looked promising in animal models [204] was 

studied in a multicenter phase IIb/III trial of over 300 patients with PSP but regrettably 

failed to show clinical efficacy on all endpoints [205]. TPI-287 is a taxane derivative that 

stabilizes microtubules, is able to cross the blood brain barrier, and may decrease cell 

proliferation in cancer [206]. A preliminary study resulted in some anaphylactoid reactions 

at the higher dosing arm without significant clinical improvements and drug development on 

this agent is likely stopped [207]. A separate compound, epothilone D, which also stabilizes 

microtubules may be of interest, but is still early in development [208].

Tau Immunotherapy—Recent in vitro and in vivo experiments have shown that 

abnormally folded proteins may be capable of inducing misfolding in normal native proteins 

and creating spread of pathology through ‘prion-like’ templating [99, 103, 209, 210]. Brain 

homogenates from human PSP and CBD induce tau inclusions in mice that spread well 

beyond the injection sites [99, 211]. These aggregations may be transported within the 

cellular structure and be transferred from cell to cell in a variety of mechanisms [212, 213]. 

Such experiments have also suggested different therapeutic strategies in PSP including tau-

directed immunotherapy to promote clearance of aggregates before further toxicity can 

occur.

Again, a number of studies in animal models using different immunization strategies, 

showed reduction of tau pathology with favorable safety profiles [214–219]. Several tau 

directed passive immunotherapy trials in Alzheimer’s disease have been performed with 

limited success (for a recent review see [220]). In PSP, Biogen’s antibody product BIIB092 

(Gosuranemab), directed against N-terminal fragments of extracellular tau [221], showed a 

favorable safety profile in a phase I trial and lowered CSF tau levels as a measure of target 

engagement [222] [223]. However, a phase II study (PASSPORT NCT03068468) was halted 

as the trial failed to show differences in the primary and secondary endpoints [224]. Abbvie 

also tested a monoclonal antibody product, ABBV-8E12 with favorable phase I safety results 

[225] and adequate, dose ascending CSF penetration [226]; however, a phase II study in PSP 

was recently stopped after failing a futility analysis. Other antibody products are in 

development (NCT04185415).

A number of challenges and questions remain in the field of immunotherapy and 

neurodegeneration. Selecting the right epitope target may be challenging as antibodies can 

be raised to target different regions of tau [227, 228], tau species with specific post-

translational modifications [229, 230], or oligomers or specific conformations [120, 228, 
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231–234]. Ensuring adequate penetration of the blood brain barrier of peripherally 

administered products is a challenge and several different strategies including viral vector 

delivery, ultrasound with microbubbles, or antibodies tagged to small molecules are being 

explored [120]. Development of these and other strategies are critical given that brain 

penetration of intravenously administered IgG antibodies is typically cited as 0.1–1% [223, 

235–239]. Most of the products to date have targeted predominantly extracellular tau, which 

likely constitutes ghost pathology from deceased cells but may be beneficial in intercepting 

the transmission of misfolded toxic species from cell to cell. Intracellular tau is more 

difficult to target with polarized antibody products and it is not certain whether the attendant 

immune response would be prohibitively damaging [240]. Targeting other tau epitopes may 

provide different responses compared to the agents that have been tested to date.

Gene Therapy—Tau reduction through genetic strategies may prove beneficial in PSP. In 

mouse models, there are conflicting reports of whether tau knockouts have preserved 

function [241, 242] or if they exhibit cognitive or motor symptoms [243–246]. Anti-sense 

oligonucleotides (ASOs) reduce protein expression by binding to mRNA where it can be 

degraded by mRNA-ase H to prevent translation. Specific ASOs that are capable of lowering 

total tau expression or shifting expression from 4R to more 3R tau [247] have been tested in 

animal models [248–250]. Small interfering RNA (siRNA) also prevent protein expression 

by binding to mRNA prior to translation and have been examined in mouse models [251]. 

Similar to antibody therapies, drug delivery to ensure adequate brain penetration is a 

consideration. Again strategies include tagging molecules to more lipophilic compounds 

[252] or other small molecules [253, 254], intrathecal injections [255], intraparenchymal or 

intraventricular injections [256], and the use of viral vectors [257, 258].

Conclusion

Progressive supranuclear palsy is a complex clinicopathologic entity with diverse clinical 

manifestations which can led to delays in diagnosis. While the Richardson syndrome is the 

most indicative of underlying PSP pathology at autopsy, growing understanding of the 

diverse clinical phenotypes resulting from PSP pathology has led to a significant expansion 

of the PSP diagnostic criteria aimed at increasing sensitivity of diagnosis. Clinical treatment 

of PSP is supportive and there is mild to moderate efficacy of symptomatic therapies to treat 

a myriad of associated symptoms that can occur with the disease; however, disease 

modulating treatments have remained elusive. New generation immunotherapies rationally 

designed small molecules, and genetic therapies directed against the tau protein are under 

development. Multiple challenges remain in the drive to establish disease modulating 

therapies in PSP. The use of better imaging and biofluid biomarkers to promote early and 

accurate diagnosis continues to be essential to aid in ensuring the enrollment of appropriate 

patients who are likely to more clearly show beneficial effects into clinical trials. 

Furthermore, the establishment of sensitive and specific markers to track disease progression 

in PSP to augment clinical scales is crucial for evaluation of therapies. Lastly, many 

treatments have failed to make the leap from animal models to human therapies. Underlying 

differences in physiology, the appropriateness of the original model systems, and the 

challenges of drug delivery in humans are major considerations as development continues in 
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the search for disease modifying therapies in PSP, but several antibody products, small 

molecules, and gene therapy strategies are still under development.
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Highlights

• New PSP diagnostic criteria recognizes diverse phenotypes, but refinement is 

needed

• Multiple genetic and environmental factors increase the risk for developing 

PSP

• Improving biofluid and imaging biomarkers will aid in early and accurate 

diagnoses

• Symptomatic treatments with a multidisciplinary approach are standard of 

care

• PSP is an ideal disease for novel therapeutic approaches targeting the tau 

protein
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Figure 1: Clinicopathologic Complexity of PSP.
PSP neuropathology may be associated with a number of different clinical phenotypes 

(shown in light blue boxes with rounded edges). Other neuropathologies that may also 

present with these clinical phenotypes are shown in the lower row. Green: Tau, Orange: 

alpha-synuclein, Yellow: Alzheimer’s disease, Purple: TDP-43. Abbreviations: PAGF: pure 

akinesia freezing of gait, CBS: corticobasal syndrome, bvFTD: behavioral variant FTD, 

PPA: primary progressive aphasia, PLS: primary lateral sclerosis, PD/DLB: Parkinson’s 

Disease/dementia with Lewy bodies, MSA: multiple systems atrophy, CBD: corticobasal 

degeneration, PSP: progressive supranuclear palsy, AD: Alzheimer’s disease, TDP-43: TAR 

DNA binding protein 43.
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Figure 2: Pathologic Distribution and Clinical Correlations in PSP
A. Common clinical features of PSP associated with pathology in these affected regions.

B. Regions in red commonly affected by PSP tau pathology and gliosis including, frontal, 

temporal, parietal lobes, globus pallidus, putamen, caudate, subthalamic nucleus, 

hippocampus, midbrain tectum and tegmentum, substantia nigra, pontine base and locus 

ceruleus, inferior olivary nucleus. Darker areas or red are more commonly affected. Certain 

phenotypes are more likely to exhibit pathology in specific areas (i.e. PSP-SL and temporal 

lobe pathology and PSP-CBS with parietal lobe pathology)

C. Characteristic microscopic lesions seen in PSP after immunohistochemical staining for 

phospho-tau with AT8 antibody. Upper row shows two tufted astrocytes, bottom left 

showing coiled bodies (asterisk), bottom right showing globose neurofibrillary tangles. Scale 

bar is 50 μm.
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