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Abstract

Chitinase 3–like-1 (Chi3l1) and IL-13 are both ligands of IL-13
receptor a2 (IL-13Ra2). The binding of the former activates
mitogen-activated protein kinase, AKT, and Wnt/b-catenin
signaling, and plays important roles in innate and adaptive
immunity, cellular apoptosis, oxidative injury, allergic
inflammation, tumor metastasis and wound healing, fibrosis, and
repair in the lung. In contrast, the latter binding is largely a decoy
event that diminishes the effects of IL-13.Here, we demonstrate that
IL-13Ra2 N-glycosylation is a critical determinant of which ligand
binds. Structure–function evaluations demonstrated that
Chi3l1–IL-13Ra2 binding was increased when sites of
N-glycosylation are mutated, and studies with tunicamycin and
Peptide:N-glycosidase F (PNGase F) demonstrated that Chi3l1–IL-
13Ra2 binding and signaling were increased when N-glycosylation
was diminished. In contrast, structure–function experiments
demonstrated that IL-13 binding to IL-13Ra2 was dependent
on each of the four sites of N-glycosylation in IL-13Ra2, and
experiments with tunicamycin and PNGase F demonstrated that
IL-13–IL-13Ra2 binding was decreased when IL-13Ra2
N-glycosylation was diminished. Studies with primary lung

epithelial cells also demonstrated that Chi3l1 inhibited, whereas
IL-13 stimulated, N-glycosylation as evidenced by the ability of
Chi3l1 to inhibit and IL-13 to stimulate the subunits of the
oligosaccharide complex A and B (STT3A and STT3B). These
studies demonstrate that N-glycosylation is a critical determinant
of Chi3l1 and IL-13 binding to IL-13Ra2, and highlight the ability
of Chi3l1 and IL-13 to alter key elements of the N-glycosylation
apparatus in amanner that would augment their respective binding.
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Clinical Relevance

This is the first study demonstrating the significance of
N-glycosylation in Chi3l1 (chitinase 3–like-1) and IL-13
binding to IL-13Ra2. Because these molecules play an
important role in regulating proinflammatory mechanisms
under many different conditions, unraveling the determinants
of this process is clinically and scientifically significant.

The GH 18 (18 glycosyl hydrolase)
gene family contains true enzymatically
active chitinases that degrade chitin
polysaccharides and CLPs (chitinase-like
proteins) that bind, but do not degrade,

chitin (1, 2). Chitinase 3–like-1 (Chi3l1;
also called YKL-40 in humans and breast
regression protein-39 [BRP-39] in rodents)
is the prototype of the CLP gene subfamily.
The retention of the GH 18 moieties over

species and evolutionary time (3) has led to
the belief that they play essential roles in
biology. In support of this speculation,
recent studies from our laboratory
demonstrated that Chi3l1 plays a major role
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in antipathogen, antigen- and oxidant-
induced inflammatory, repair, and
remodeling responses by regulating a variety
of essential biologic processes, including
oxidant injury, apoptosis, pyroptosis,
inflammasome activation, T-helper cell type
1/-2 cytokine balance, M2 macrophage
differentiation, TGF-b1 (transforming
growth factor-b1) elaboration, dendritic cell
accumulation and activation, fat
accumulation, and the activation of
mitogen-activated protein kinase (MAPK),
Akt, and Wnt/b-catenin signaling in the
lung (4–8). These studies also suggest that
Chi3l1 is part of a primordial protective
response based on its ability to decrease
epithelial cell apoptosis, while
simultaneously stimulating fibroproliferative
repair (9). In keeping with these pleiotropic
effects, studies from our laboratory and
others also demonstrated that Chi3l1 is
dysregulated in a variety of diseases
characterized by injury, inflammation,
and/or remodeling, including asthma,
pulmonary fibrosis, pneumonia, visceral
tumors, and obesity (1, 4, 9–16).

To further understand the biology of
Chi3l1, we addressed the possibility that
Chi3l1 drives its effector responses via a
ligand–receptor mechanism. To do this, we
used a variety of approaches to define the
receptor proteins that bind to Chi3l1. These
studies demonstrated that Chi3l1 binds to the
known receptor for IL-13, IL-13 receptor a2
(IL-13Ra2) (8). They also demonstrated that
Chi3l1 does not compete with IL-13 for
binding to IL-13Ra2 and that YKL-
40/Chi3l1/BRP-39, IL-13Ra2, and IL-13
interact to form a multimeric receptor
complex called the chitosome (8). Lastly, they
demonstrate that Chi3l1/YKL-40 activates
MAPK, AKT/protein kinase B (PKB), and
Wnt/b-catenin signaling pathways and
regulates apoptosis, pyroptosis,
inflammasome activation, oxidant injury,
antibacterial responses, melanoma metastasis,
and TGF-b1 elaboration in the cells derived
from the lung or in vivo lungs via IL-
13Ra2–dependent mechanisms (8). These
studies demonstrate that ligand–receptor
interactions of Chi3l1 and IL-13 to common
receptor, IL-13Ra2, are an important factor
modulating lung pathologies in which these
two ligands are implicated. However, the
mechanisms that control the binding of
Chi3l1 and IL-13 to IL-13Ra2 have not
been appropriately addressed.

Asparagine (N)-linked glycosylation
is the most frequent modification of

membrane and secretory proteins in
eukaryotes (17, 18). This modification
has a number of important biologic
consequences, including the regulation
of protein folding and sorting and
the regulation of protein and cellular
interactions with its environment (17).
IL-13 is known to bind to IL-13Ra2 (8, 19).
In this setting, IL-13Ra2 often acts
as a decoy receptor that diminishes
IL-13–induced cell and tissue responses
(19). Studies by Kioi and colleagues (20)
have demonstrated that N-glycosylation
plays an essential role in IL-13 binding to
IL-13Ra2 and IL-13Ra2 decoy responses. In
contrast, the importance of N-glycosylation
in Chi3l1–IL-13Ra2 binding and Chi3l1
signaling have not been investigated.

We hypothesized that N-glycosylation
plays a critical role in the degree to
which IL-13 and/or Chi3l1 bind to
IL-13Ra2. To test this hypothesis, we defined
the importance of N-glycosylation in
the physical interactions of IL-13Ra2
and its ligands, IL-13 and Chi3l1.
We also characterized the effects of
N-glycosylation on Chi3l1-induced cell
signaling and the effects of IL-13 and
Chi3l1 on the N-glycosylation apparatus of
primary cells. These studies demonstrate
that, in contrast to the essential role
of N-glycosylation in IL-13–IL-13Ra2
binding, Chi3l1 binds to IL-13Ra2 via a
N-glycosylation–independent mechanism,
and that Chi3l1–IL-13Ra2 binding is
increased and Chi3l1-induced signaling is
augmented by interventions that inhibit
or enzymatically abrogate IL-13Ra2
N-glycosylation. They also highlight the ability
of IL-13 and Chi3l1 to stimulate the cellular
N-glycosylation apparatus, and thereby
potentially contribute to the resolution of
IL-13–induced cell and/or tissue responses.

Methods

For a full description of the methods, please
refer to the data supplement.

Mice
C57BL/6 mice were purchased from the
Jackson Laboratory and were housed
at the Brown animal facility until they
were used. Chi3l1/YKL-40–transgenic
(Tg) mice (YKL-40 Tg) were generated
and characterized in our laboratory as
previously described (5, 21). IL-13Ra2–null
mutant mice were generated and provided

by Dr. M. Grusby of Harvard University
School of Public Health (22), and the
mice were back-crossed to a C57BL/6J
background for more than 10 generations.
All murine procedures were approved by
the Institutional Animal Care and Use
Committees at Brown University.

Yeast 2 Hybrid Assays
The screening and identification of specific
molecular interaction was undertaken
according to the procedures described by
our laboratory (8).

Co-IP and Immunoblot
The co-IP and immunoblot (IB) with
antibodies against IL-13Ra2, Chi3l1, or
IL-13 as previously described by our
laboratory (8, 19).

Assessment of Effects of
Tunicamycin and PNGase F
Preconditioned THP-1 cells or peritoneal
macrophages were treated with tunicamycin
(Sigma-Aldrich) in a dose of 2 mg/ml
overnight before harvesting the cells. The
Peptide:N-glycosidase F (PNGase F) (New
England Biolabs) was treated on the THP-1
cell lysates with 20 ml (for 400 mg of cell
lysates) of PNGase F (New England Biolabs)
for 1 hour at 378C in an incubator. Then the
cell lysates were subjected to the Co-IP and
IB evaluations to assess the effects of
deglycosylation with specific antibodies
against Chi3l1, IL-13, and IL-13Ra2.

Assessment of Chi3l1 Signaling
The activation of MAPK/Erk and Akt
and nuclear accumulation of b-Catenin
and c-fos were assessed by IB evaluations
according to the procedures described
previously by our laboratory (8).

Preparation and Stimulation of
Peritoneal Macrophages
Peritoneal macrophages were isolated from 7-
week-old IL-13Ra2–null and wild-type (WT)
mice according to the previously described
procedures (19). These cell populations were
greater than 95% macrophages, as assessed by
F4/80 antibody staining.

Ligand Regulation of STT3A, STT3B,
and DAD1
MLE12 lung epithelial cells were stimulated
with recombinant (r) Chi3l1 (rChi3l1) or rIL-
13 for indicated doses and time points, then
the cells were harvested for further analysis.
The cell lysates were then subjected to
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qRT-PCR orWestern blot evaluations for the
assessment ofmRNA and protein expression,
respectively. The specific primers sequences
(Table E1 in the data supplement) and
antibodies against the catalytic subunits of
the oligosaccharyltransferase complex A
(STT3A; Millipore Sigma) and B (STT3B,
Proteintech) and defender against apoptotic
cell death 1 (DAD1) (Sigma-Aldrich) were
used for these evaluations.

Assessment of the Effects of Chi3l1
on STT3A in the Murine Lung
Cell lysates from the lungs of WT and
Chi3l1/YKL-40 Tg mice were generated and
the levels of STT3A mRNA were quantified
using qRT-PCR, as previously described by
our laboratory (5, 21).

Statistical Analysis
Normally distributed data are expressed as
mean (6SEM) and were assessed for
significance by Student’s t test or ANOVA
as appropriate. Statistical significance was
defined at a P value less than 0.05. All
statistical analyses were performed with
SPSS version 13.0 (SPSS Inc.). Statistical
significance was defined at a level of P less
than 0.05.

Results

Effects of Mutation of IL-13Ra2
N-Glycosylation Sites in Chi3l1/
YKL-40 Binding to IL-13Ra2
IL-13Ra2 has four N-glycosylation sites in
its extracellular domain (20). To begin to
understand the importance of these
glycosylation sites in the binding of
ligands, Y2H (yeast 2 hybrid) assays were
undertaken. In these experiments, WT IL-
13Ra2 and mutated IL-13Ra2 moieties that
no longer contained N-glycosylation sites
were used as bait, and binding to Chi3l1
was assessed. In accord with prior
observations (8), Chi3l1 binding to WT IL-
13Ra2 was readily appreciated (Figure 1A).
Importantly, Chi3l1 binding to IL-13Ra2
was not abrogated by individual mutations
or the simultaneous mutation of up to
four N-glycosylation sites in these assays
(Figure 1A). These studies demonstrate that
Chi3l1/YKL-40 binding to IL-13Ra2 is not
significantly diminished by the elimination
of N-glycosylation sites of IL-13Ra2,
suggesting that Chi3l1/YKL-40 binds
to IL-13Ra2 via a mechanism(s) that is
N-glycosylation independent.

Effects of Mutation of IL-13Ra2
N-Glycosylation Sites in IL-13 Binding
to IL-13Ra2
To begin to understand the importance of
N-glycosylation in IL-13–IL-13Ra2

binding, a similar Y2H approach was
employed. In these experiments, WT IL-
13Ra2 and mutated IL-13Ra2 moieties that
no longer contained N-glycosylation sites
were used as bait, and binding to IL-13 was
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Figure 1. Yeast 2 hybrid characterization of human (h) Chi3l1 (Chitinase 3-like-1) and IL-13
interactions with IL-13 receptor a2 (IL-13Ra2) with alterations at sites of glycosylation. (A and B) Full-
length Chi3l1 (composed of 384 amino acids [A]) or IL-13 (composed of 82 amino acids [B]) was used
to evaluate the interactions with full-length IL-13Ra2 (380 amino acids) composed of signal peptide
(SP), extracellular domain (ECD), transmembrane domain (TD), and C-terminal intracellular domain
(ICD). The predicted N-glycosylation sites (N) in ECD were individually mutated (X), and the final
interactions were indicated as positive (1) or negative (2). Each panel is representative of a minimum
of three evaluations.
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Figure 2. Effects of alterations in N-glycosylation on the interactions of Chi3l1 or IL-13 with IL-13Ra2.
Preconditioned THP-1 cells expressing Chi3l1, IL-13, and IL-13Ra2 were subjected to these
evaluations. (A) IP and IB assays on the cells treated with tunicamycin (2 mg/ml, overnight) before
harvesting the cells. (B) IP and IB assays on the THP-1 cell lysates treated with Peptide:N-glycosidase
F (PNGase F) (1 ml/20 mg of lysates) for 1 hour at 378C. Each panel is representative of a minimum of
three evaluations.
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assessed. As can be seen in Figure 1B,
IL-13 binding to IL-13Ra2 was readily
appreciated when N-glycosylation of
IL-13Ra2 was maintained. In contrast,
IL-13 binding was markedly decreased
when a single site of N-glycosylation
was mutated (Figure 1B). These studies
demonstrate that, in contrast to Chi3l1,
IL-13 binds to IL-13Ra2 via a mechanism(s)
that is N-glycosylation dependent.

Effects of Tunicamycin on Ligand–
IL-13Ra2 Binding
Studies were next undertaken to determine
if inhibition of N-glycosylation with
tunicamycin altered Chi3l1/YKL-40
or IL-13 binding to IL-13Ra2. In these
experiments, THP-1 cells were
preconditioned with rTNF-a and rIL-13
pretreatment (8), and the cells were
exposed to tunicamycin (2 mg/ml) or
vehicle (PBS) for 24 hours. Cell lysates were
then prepared and IP was undertaken with
antibodies against one of the ligands (either
Chi3l1/YKL-40 or IL-13) or the receptor
(IL-13Ra2). The composition of the
precipitate was then evaluated using
Western blotting with the antibodies
against the moieties that were not targeted
in the IP. In accord with prior observations
(8), in the absence of tunicamycin, IP with
anti–IL-13Ra2 simultaneously brought
down Chi3l1 that could be detected by
Western blotting. Similarly, IP with
antibodies against Chi3l1 simultaneously
brought down IL-13Ra2 (Figure 2A).
Importantly, in the presence of
tunicamycin, the binding of Chi3l1 to
IL-13Ra2 was significantly enhanced
(Figure 2A). Similarly, in the absence of
tunicamycin, IP with anti–IL-13Ra2
simultaneously brought down IL-13 that
could be detected by Western blotting,
and IP with antibodies against IL-13
simultaneously brought down IL-13Ra2
(Figure 2A). Importantly, and in contrast to
our findings with Chi3l1, IL-13 binding to
IL-13Ra2 was markedly decreased after
tunicamycin treatment. When viewed in
combination, these studies demonstrate that
IL-13Ra2 binding to Chi3l1 is augmented,
whereas binding to IL-13 is diminished when
N-glycosylation is diminished.

Effects of PNGase F on Ligand–
IL-13Ra2 Binding
To determine if enzymatic abrogation of
N-glycosylation altered ligand–IL-13Ra2

binding PNGase was employed. In these
experiments, THP-1 cells were activated
with rTNF-a and rIL-13 pretreatment,
cell lysates were prepared and incubated
in the presence or absence of PNGase
for 1 hour, and IP/IB was undertaken as

described previously here. As can be
seen in Figure 2B, PNGase enhanced
the binding of Chi3l1/YKL-40 to IL-
13Ra2 (Figure 2B), while significantly
decreasing IL-13 binding to IL-13Ra2
(Figure 2B).
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Figure 3. Effects of alterations in N-glycosylation on Chi3l1 signaling and tunicamycin-induced
apoptosis. Peritoneal macrophages isolated from wild-type (WT) (1/1) and IL-13Ra2–null mutant
mice (2/2) were stimulated with recombinant (r) Chi3l1 (rChi3l1) with and without tunicamycin
treatment (2 mg/ml). (A) After overnight incubation, WT cells were harvested and total cell lysates were
subjected to IB assays with phospho-specific antibodies against Erk (pErk), Akt (pAkt), together with
antibodies detecting total forms of Erk and Akt. (B) Nuclear fractions of the cell lysates were used
to detect the levels of b-catenin and c-Fos expression. (C and D) Cells isolated from WT and
IL-13Ra22/2 mice were subjected to IB assays with antibodies used in A and B. (E) Western blot
evaluations of inhibitor of caspase-activated DNase (ICAD) in cells from WT and IL-13Ra2–null mice
after treatment of tunicamycin and rChi3l1. Each panel is representative of a minimum of three
evaluations. Erk = extracellular regulated kinase.
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Effects of Alterations in
N-Glycosylation on Chi3l1 Signaling
Studies were next undertaken to determine
if the alterations in ligand–IL-13Ra2
binding noted previously here altered cell
signaling responses. In these experiments,
we initially determined if the ability of
rChi3l1 to activate Erk, and Akt/PKB was
altered by treatment with tunicamycin
(2 mg/ml, overnight). As previously
reported (8, 19), rChi3l1 was a potent
stimulator of Erk and Akt phosphorylation
in the absence of tunicamycin (Figure 3A).
In keeping with the enhancement of
Chi3l1–IL-13Ra2 binding that was seen
when N-glycosylation was diminished,
treatment with tunicamycin, augmented
the ability of rChi3l1 to activate Erk and
Akt (Figure 3A). In accord with these
observations, tunicamycin treatment also
increased rChi3l1 stimulation of b-catenin
and c-fos (Figure 3B). Studies with cells
from IL-13Ra2–null mice demonstrated
that the enhanced MAPK, AKT, and
Wnt/b-catenin signaling that was seen
when tunicamycin was employed was
mediated, to a great extent, via an IL-
13Ra2–dependent mechanism(s) (Figures
3C and 3D). When viewed in combination,
these studies demonstrate that the
enhanced Chi3l1–IL-13Ra2 binding that is
seen when N-glycosylation is decreased is
associated with appropriate increases in
Chi3l1-induced MAPK, AKT, and
Wnt/b-catenin signaling.

Effects of Chi3l1–IL-13Ra2 Binding on
Downstream Cellular Responses
Studies were next undertaken to
determine if the enhanced Chi3l1 signaling
responses that were seen when IL-13Ra2
N-glycosylation was decreased were associated
with appropriate alterations in significant
cellular responses that are downstream of
these signaling events. These studies
focused on inhibitor of caspase-activated
DNase (ICAD), which is also known as
DNA fragmentation factor 45 kD, and is
encoded by alternatively spliced mRNAs
(23). It was chosen because of the
important role that it plays in apoptosis,
where ICAD-null cells are often resistant
to many inducers of apoptosis (24). It is
also an important regulator of cellular
differentiation (25). In these experiments,
primary macrophages were obtained
from WT and IL-13Ra2–null mice and
incubated in the presence and absence of

tunicamycin and/or Chi3l1. As previously
reported (26, 27), tunicamycin treatment
induced cellular apoptosis represented by
cleaved ICAD (Figure 3E). Caspase 3
activation was also appreciated (Figure
E1). Treatment with Chi3l1 reduced
tunicamycin-induced ICAD cleavage.
(Figure 3E). Importantly, this inhibitory
effect required IL-13Ra2 (and Chi3l1–

IL-13Ra2 binding), because null mutations
of IL-13Ra2 abrogated this Chi3l1-induced
inhibitory response, while augmenting
caspase 3 cleavage (Figure 3E and Figure
E1). When viewed in combination, these
studies demonstrate that the enhanced
Chi3l1–IL-13Ra2 binding and signaling that
are seen when N-glycosylation is decreased
are associated with appropriate increases in
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*P,0.05 and **P,0.01 compared with vehicle controls. MLE12 = mouse lung epithelial cells;
MW = molecular weight; Tg = transgenic; O.D. = optical density.
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events that are downstream of these
signaling responses, such as the regulation of
critical apoptosis moieties like ICAD and
caspase 3.

Effects of IL-13 and Chi3l1 on
Catalytic Components of
Oligosaccharyltransferase
In the central reaction of the N-glycosylation
pathway, oligosaccharyltransferase
(OST) transfers a preassembled
oligosaccharide to selected asparagine
(N) residues (17). To further understand
the biology of IL-13Ra2 and its ligands,
studies were undertaken to define the
effects of Chi3l1 and IL-13 on the
expression and accumulation of major
subunits of the OST complex. Our studies
initially focused on STT3A and STT3B
which are the major catalytic components
of the complex (18, 28–30). Chi3l1
inhibited the expression and accumulation
of STT3A and STT3B in lung epithelial
cells (Figures 4A–4C). Chi3l1 also
stimulated STT3B in a similar manner
(Figures 4D–4F). Similar induction was
noted in vivo in lungs from Chi3l1
overexpression Tg mice (Figure 4G). In
contrast, IL-13 stimulated the expression
and accumulation of STT3A and -B in
lung epithelial cells in a dose- and time-
dependent manner (Figure 5). In keeping
with our demonstration that Chi3l1
and IL-13 binding to IL-13Ra2 are
increased and decreased, respectively,
when N-glycosylation is diminished, these
studies demonstrate that Chi3l1 inhibits,
and IL-13 stimulates, key catalytic aspects
of the N-glycosylation apparatus in lung
epithelial cells.

Effects of Chi3l1 and IL-13 on DAD1
In addition to its catalytic components, the
OST complex contains accessory protein
that participates in N-glycosylation (18,
28–30). To further our understanding of
the relationships between Chi3l1, IL-13,
and IL-13Ra2, studies were undertaken to
see if Chi3l1 or IL-13 regulated key OST
regulatory proteins. These studies focused
on DAD1, which is known to play a key
role in the inhibition of apoptosis and
induction of N-glycosylation (31, 32). As
can be seen in Figures 6A–6C, Chi3l1 was a
potent stimulator of DAD1 expression and
accumulation in primary epithelial cells. In
contrast, IL-13 did not stimulate DAD1 in a
similar manner (Figures 6D–6F).

Discussion

IL-13Ra2 was described as a high-affinity
receptor for IL-13 that is distinct from the
IL-13Ra1–IL-4Ra receptor dimer that IL-
13 shares with IL-4 (33, 34). It was initially
believed to be a decoy receptor, because it
only contains a 17–amino acid cytoplasmic
domain (35), and early studies highlighted
its ability to diminish IL-13 responses (22,

33, 36). However, more recent studies have
demonstrated that IL-13 also signals and
regulates a variety of cellular and tissue
responses via IL-13Ra2 (34, 37–43). The
complexity of IL-13Ra2 was further
reinforced when it was appreciated that it
also binds and transmits signals from
Chi3l1, and that IL-13, Chi3l1, and
IL-13Ra2 participate in a multimeric
receptor complex called the chitosome (8).
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Figure 5. Effects of IL-13 on catalytic components of OST. MLE12 lung epithelial cells were
stimulated with rIL-13 to determine IL-13 regulation of STT3A and STT3B. (A and B) The mRNA
expression of STT3A gene detected by qRT-PCR in the cells stimulated with different doses (A) and
time points (B) of rIL-13. (C) Representative IBs detecting STT3A protein expression in the MLE12
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triplicated samples in a minimum of two separate experiments. (C and F) Representative of a
minimum of three evaluations. The bar graphs to the right of the IBs in C and F illustrate the relative
quantities of STT3A and STT3B from three experiments measured by densitometric image analysis.
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N-glycosylation is required for IL-13
binding to IL-13Ra2 and the inhibition of
IL-13 effector responses (20). The present
studies add to our understanding of IL-13,
Chi3l1, IL-13Ra2, and the chitosome by
demonstrating that, in contrast to IL-13,
which binds to IL-13Ra2 with higher
affinity than IL-13Ra1 in the presence
of N-glycosylation, Chi3l1 binding to

IL-13Ra2 and Chi3l1-induced IL-
13Ra2–mediated signaling are augmented
when N-glycosylation is diminished.
When viewed in combination, these
studies highlight a mechanism by which
protein glycosylation can determine
the degree to which IL-13 or Chi3l
can bind to and mediate responses via
IL-13Ra2.

Glycation is a form of cotranslational
and post-translational protein modification
that adds glycosylphosphatidylinositol
anchors that link proteins to lipids through
glycan linkages (44). All N-linked
carbohydrates are linked through
N-acetylglucosamine and the amino acid,
asparagine. They occur at sites with amino
acid sequences Asp-X-serine/threonine,
where the X can be anything but proline
(17, 18). The addition of N-linked
carbohydrates can affect protein folding,
the sorting of proteins in the endoplasmic
reticulum, and multiple protein–protein
interactions and cellular responses
in the protein’s environment (17). The
importance of N-glycosylation of IL-13Ra2
is highlighted in these studies, which
demonstrate that it is essential in IL-13
binding to IL-13Ra2 and IL-13Ra2–
induced decoy responses, and that it
diminishes Chi3l1 binding to IL-13Ra2 and
IL-13Ra2–mediated Chi3l1 signaling.
Unfortunately, we cannot determine if
N-glycosylation is a widely used mechanism
to control IL-13 receptor–ligand binding,
because the importance of N-glycosylation
in IL-13 binding to its major receptor (the
IL-13Ra1/IL-4 Ra heterodimer) has not
been defined.

N-linked protein glycosylation is a
covalent protein modification that occurs
across all three domains of life: Bacteria,
Archaea, and Eukarya (29). Proper
N-linked glycosylation plays a critical
role in protein folding, as well as stability,
biosynthetic quality control, intracellular
and extracellular trafficking, and
physiologic function (45). In keeping with
the importance of N-glycosylation, we
used two different approaches to address
its importance in IL-13 and Chi3l1
binding and signaling. Early studies
used tunicamycin, which inhibits
N-glycosylation by blocking the transfer of
N-acetylglucosamine (GlcNAc)-P from
uridine diphosphate-GlcNAc to dolichol
(46). Because tunicamycin can also cause
abnormal protein folding and decrease
protein incorporation into cellular
membranes (47), we also compared the
results obtained with tunicamycin to those
induced with the deglycosylase PNGase.
Importantly, the enhanced ability of
Chi3l1 and decreased ability of IL-13 to
bind to IL-13Ra2, respectively, was seen
with both interventions. These similar
results establish the importance of
N-glycosylation in the noted protein–
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show the relative quantities of DAD1 from three experiments measured by densitometric image
analysis. *P,0.05 and **P,0.01, compared with vehicle controls.
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protein interactions. They are also in accord
with the yeast hybrid studies that highlight
the importance of N-glycosylation site in the
physical binding of IL-13Ra2 to IL-13, and
its ability to diminish Chi3l1 binding to
IL-13Ra2.

Glycans are involved in fundamental
molecular and cell biology processes
occurring in cancer, including cell signaling
and communication, tumor cell dissociation
and invasion, cell matrix interactions, tumor
angiogenesis, immune modulation, and
metastasis formation (48). Studies from our
laboratory and others have highlighted the
frequent dysregulation of Chi3l1 in a wide
variety of visceral tumors (1, 10–12). They
have also highlighted the critical role that
Chi3l1 plays in the pathogenesis of
pulmonary metastasis (11, 12, 49). These
studies also highlighted the importance of

IL-13Ra2 and the chitosome in these
responses (8, 19). When viewed in
combination with the present studies, one
can see how the degree of glycosylation of
IL-13Ra2 could play a major role in these
responses, especially in diseases like
glioblastoma, which are associated with the
exaggerated expression of Chi3l1 and
IL-13Ra2 (50).

OST is a multisubunit enzyme complex
that N-glycosylates proteins in the secretory
pathway (18, 28–30). Mammalian OSTs are
hetero-oligomeric membrane complexes,
and contain one of two separately encoded
catalytic subunits, STT3A or STT3B (28).
STT3A is associated with the translocon,
regulates cotranslational glycosylation, and
is responsible for the majority of N-linked
glycosylation in mammalian cells (28, 45).
In contrast, STT3B glycosylates a smaller

number of sequons, carries out post-
translational glycosylation, and maximizes
sequon occupancy by glycosylating sites
that are skipped by STT3A (28, 45). OST is
largely considered to be constitutive and
unregulated (28, 45). Importantly, our
studies suggest that this may not be the
case. Specifically, our studies demonstrate
that Chi3l1 is a potent inhibitor, and IL-13
is a potent stimulator, of STT3A and
STT3B in epithelial cells in vitro and in vivo
in the murine lung. When these findings
are combined with our demonstration that
Chi3l1 binding to and signaling via IL-
13Ra2 are increased when N-glycosylation
is decreased, whereas IL-13 binding to
IL-13Ra2 is dependent on and abrogated
when N-glycosylation is decreased, one can
envision feedback loops that regulate these
and other important processes. These
feedback mechanisms may be particularly
important for type 2 inflammatory and
immune responses, which we previously
demonstrated are augmented by Chi3l1–
IL-13Ra2 binding (which augments the
survival of type 2 inflammatory cells)
and decreased by IL-13 binding to the
decoy IL-13Ra2 receptor (5, 19).
Specifically, our studies demonstrate that,
in settings where Chi3l1 predominates,
N-glycosylation is decreased, which increases
Chi3l1–IL-13Ra2 binding and signaling,
which further decreases STT3A and -B and
N-glycosylation. This would augment type 2
inflammatory and fibrotic responses by
augmenting Chi3l1–IL-13Ra2 responses
and decreasing IL-13 binding to IL-13Ra2,
which would otherwise act as an IL-13
decoy receptor. In contrast, in settings
where IL-13 predominates N-glycosylation
is increased, this would decrease type 2
responses by decreasing Chi3l1–IL-13Ra2
binding and increasing IL-13 binding
to the IL-13Ra2 decoy receptor. In
combination, these findings highlight the
importance of IL-13Ra2 N-glycosylation in
determining IL-13Ra2–ligand binding and
its subsequent importance in the abnormal
inflammatory and tissue responses noted
in the various lung diseases that are
associated with the dysregulation of Chi3l1
and/or IL-13. The envisioned role(s) of
N-glycosylation is summarized in Figure 7.

The OST complexes described
previously here also share accessory
subunits, such as ribophorins, DAD1, and
OST 48 (28). DAD1 was identified as a
mammalian cell death suppressor that may
act downstream of Bcl-2 (31). Interestingly,

Th2 inflammation, fibrosis

Chi3I1 IL-13

N-IL-13R 2IL-13R 2 IL-13R 1/IL-4R

Stat6

DAD1ICAD OST
STT3A/B

Apoptosis

MAPK, Akt
Wnt- -Cat

TMEM219

Figure 7. Schematic illustration of the role(s) of N-glycosylation in IL-13 and Chi3l1 binding to IL-
13Ra2. IL-13Ra2 may be N-glycosylated (N-IL-13Ra2) or may not be (IL-13Ra2). Chi3l1 binding to
IL-13Ra2 that is not N-glycosylated is augmented and, in conjunction with the b subunit of the
chitosome transmembrane protein 219 (TMEM219), activates mitogen-activated protein kinase
(MAPK), Akt, and Wnt-b-catenin signaling. This inhibits OST while inducing DAD1 and inhibiting ICAD.
The inhibition of the STT3A and -B subunits of OST decreases N-glycosylation, which further
increases Chi31–IL-13Ra2 binding, whereas the induction of DAD1 and inhibition of ICAD inhibit
apoptosis. In contrast, IL-13 binds to both IL-13Ra2 and the IL-13Ra1/IL-4Ra heterodimer. The
former requires N-glycosylation and diminishes IL-13 effector responses. In contrast, the latter
induces IL-13 effector responses, largely via the activation of STAT6 (signal transducer and activator
of transcription 6). This includes the induction of STT3A and –B, which feeds back to further augment
IL-13Ra2 N-glycosylation and IL-13 binding to IL-13Ra2, and dampens IL-13 effector responses,
such as those seen in T-helper cell type 2 (Th2) inflammation and tissue fibrosis.
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the protein sequence of DAD1 is 40%
identical to yeast Ost2 protein, the 16-kD
subunit of yeast OST (31). In addition,
DAD1 is an integral subunit of OST,
and loss of DAD1 causes a defect in
N-glycosylation (32). Recent studies
from our laboratory demonstrated that
Chi3l1 is a potent inhibitor of apoptosis
and pyroptosis (4, 5), and the present
studies demonstrate that Chi3l1 is a potent
stimulator of DAD1, whereas IL-13 does
not have the same effect. This allows for the
interesting speculation that the anti–cell
death effects of Chi3l1 are mediated, at least
in part, by DAD1, and support the concept
that N-linked glycosylation is an essential
event in eukaryotes (31).

Our studies highlight the importance
of N-glycosylation in Chi3l1 and IL-13
binding to IL-13Ra2 using two cell
lines, primary murine macrophages, and
multiple different approaches that alter
N-glycosylation. The cell lines included
THP-1 cells, which are human in origin, and
MLE12 cells, which are murine in origin.
We also used primary macrophages from
WT and genetically modified mice. In all
comparisons (human vs. murine and

primary vs. transformed), these studies
highlighted the important ability of
interventions that decrease N-glycosylation
to increase Chi3l1–IL-13Ra2 binding and
effector responses, and the importance of
N-glycosylation to allow IL-13–IL-13Ra2
binding. These studies suggest that
N-glycosylation may also be a regulator
of IL-13Ra2-ligand binding in vivo and in
clinical conditions. It is important to point
out, however, that this hypothesis is
difficult to assess, because the tools and
reagents that are required for these complex
glycobiology experiments have not been
generated. Specifically, reagents that can
detect and differentiate N-glycosylated
versus nonglycosylated IL-13Ra2 in vivo
have not been described. In addition,
murine knockin mice that contain versions
of IL-13Ra2 that cannot be N-glycosylated
have not been produced. Efforts are
underway to generate these needed reagents
and genetically modified mice. Hopefully,
they will hopefully allow these important
issues to be appropriately addressed.

In summary, these studies demonstrate
that the levels of N-glycosylation play a
major role in determining if Chi3l1 or IL-13

binds to IL-13Ra2, with Chi3l1 binding
and signaling being increased and
IL-13 binding being decreased when
N-glycosylation is inhibited. They also
demonstrate that Chi3l1 and IL-13
modulate N-glycosylation in a manner that
augments their respective binding with
Chi3l1 inhibiting, and IL-13 stimulating,
the major catalytic subunits of OST
(STT3A and STT3B). Lastly, they also
provide an interesting link between
N-glycosylation of IL-13Ra2 and the
antiapoptotic effects of Chi3l1 by
demonstrating that Chi3l1 augments,
whereas IL-13 does not alter, the expression
of the OST accessory protein and apoptosis
inhibitor, DAD1. These findings allow for
interesting speculations regarding the
mechanisms by which Chi3l1, IL-13,
and IL-13Ra2 regulate inflammatory
and cell death responses. Additional
investigation of the importance and roles
of Chi3l1, IL-13, IL-13Ra2, and epigenetic
N-glycosylation in health and disease is
warranted. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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