'.) Check for updates

[ ok for o]
EDITORIALS

IL-13R«a2 Glycosylation Holds the Dance Card for Partnering with IL-13

IL-13 is no stranger to the asthma field, being an important regulator
in type 2 immune responses and subsequent disease pathology
(1, 2). It is part of a complex network of cytokines that contribute
to a hyperresponse during allergic challenge. Thus, IL-13 is one
of several leading molecules being studied to understand the

role of cytokines in type 2-high asthma, which has sparked the
development of biologics designed to block IL-13 or its effects. A
simple PubMed search for “IL-13 and asthma” yields nearly 4,000
results. Although the consequences of IL-13 signaling through the
IL-4Ra/IL-13Ral receptor complex, to which IL-4 can also bind
with similar affinity, is now widely appreciated, little attention
has been focused on the lesser-known IL-13Ra2 receptor. Often
referred to as the “decoy receptor,” IL-13 interestingly has an
affinity for IL-13Ra2 that is 50 times greater than its affinity for its
primary receptor complex!

Earlier findings that engagement of IL-13 with IL-13Ra2
attenuates IL-13 responses associated with type 2 inflammation
have contributed to the reputation of IL-13Ra2 as a decoy
receptor (3-5). More recently, however, newly described roles
for IL-13Ra2, in which IL-13 signals through IL-13Ra2 to
regulate a myriad of other cellular and tissue responses, have
come to light. For example, in a bleomycin mouse model
of lung injury, fibrosis mediated by TGF-B (transforming
growth factor B) was shown to be dependent on IL-13Ra2,
demonstrating signaling capacity for membrane-bound IL-
13Ra2 (6). Adding another layer of complexity, IL-13Ra2 binds
not only to IL-13 but also to another ligand—Chi3l1 (chitinase
3-like-1; YKL-40 in humans) (7). Together, these three
components form a complex called the chitosome. Chitinase and
chitinase-like proteins are major players in many processes,
participating in antimicrobial host defense (8) and regulating
MAPK/ERK (mitogen-activated protein kinase/extracellular
signal-regulated kinase), PI3K/AKT, and Wnt/B-catenin
signaling in the lung (7, 9, 10). These proteins are also involved in
immunologic activities, including roles in type 1 versus type 2
inflammation, alternative macrophage differentiation, hyperoxia-
induced injury, and apoptosis and pyroptosis (reviewed in
Reference 11). Not surprisingly, like IL-13, Chi3l1 has also
been shown to positively correlate with indices of inflammatory
conditions, including asthma (12).

Although it has been shown that IL-13 and Chi3I1 do not
compete for binding to IL-13Ra2 (7), how these binding activities
are regulated remains unclear. In this issue of the Journal, He
and colleagues (pp. 386-395) elegantly present findings that the
N-linked glycosylation status of IL-13Ra2 is a critical determinant
in this process (13). Using a number of in vitro approaches to alter
the N-linked glycosylation status of IL-13Ra2 and a combination of
human and mouse cell lines, as well as primary murine cells, they

found that although IL-13 binding to IL-13Ra2 was diminished
by the loss of N-linked glycosylation sites on IL-13Ra2, Chi3l1
binding to IL-13Ra2 was unaffected by this loss. They further
provide evidence linking previously implicated cellular responses
downstream of ERK and Akt activation, as well as stimulation
of B-catenin initiated by Chi3ll binding to IL-13Ra2 (7), to
dependence on the absence of N-linked glycosylation of
IL-13Ra2.

True to its reputation as a decoy receptor for IL-13, binding
of IL-13 to IL-13Ra2, in turn, results in diminished effector
responses, and N-linked glycosylation of IL-13Ra2 was
necessary for this to occur. The next question that arises from
this, then, is what factor is modulating the N-linked glycosylation
pathway itself. Here, the authors show that in settings where
the presence of Chi3ll predominates in comparison with IL-13,
catalytic components for the IL-13Ra2/N-linked glycosylation
pathway are inhibited. Again, in contrast, N-linked glycosylation
of IL-13Ra2 is increased in settings where IL-13 predominates,
resulting in binding of IL-13 to IL-13Ra2 and the subsequent
abrogation of type 2 responses. The lack of the availability of
in vivo models to observe N-linked glycosylation limits our
ability to extend these findings to clinical contexts. Nevertheless,
taken altogether, these studies provide clues as to how the
dynamic interplay between individual ligands, IL-13 and Chi3l1,
and their cognate receptor, IL-13Ra2, may be regulated in
specific disease conditions in which one ligand predominates
over the other.

Opverall, this builds on previous work showing signaling
capabilities acting through IL-13Ra2. Not only does IL-13 have
greater affinity for this receptor over IL-13Ral, the authors here
show that N-linked glycosylation of IL-13Ra2 determines the
downstream signaling events that occur, regulated by the
binding of IL-13Ra2 to either IL-13 or Chi3ll, depending on
which ligand predominates. This raises the immediate next
question of how this finding fits into the paradigm of IL-13
binding to its primary receptor complex, IL-13Ra1/IL-4Ra.
Intuitively, one would expect that in a setting where Chi3ll
predominates, binding of Chi3ll to IL-13Ra2 would augment
IL-13 effector responses activated by IL-13 binding to IL-
13Ral/IL-4Ra. It will be interesting to see how this knowledge
can be harnessed to establish a therapeutic intervention in which
N-linked glycosylation can artificially be enhanced on the decoy
receptor IL-13Ra2 to disrupt IL-13 binding to IL-13Ra1/IL-4Ra,
as well as Chi3l1 binding to IL-13Ra2, to dampen inflammatory
responses and enhance apoptosis. l
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