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ABSTRACT

Ongoing thought patterns constitute important aspects of both healthy and abnormal human

cognition. However, the neural mechanisms behind these daily experiences and their

contribution to well-being remain a matter of debate. Here, using resting-state fMRI and

retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two

distinct patterns of thought, broadly describing the participants’ current concerns and future

plans, that significantly explained variability in the individual functional connectomes.

Consistent with the view that ongoing thoughts are an emergent property of multiple neural

systems, network-based analysis highlighted the central importance of both unimodal and

transmodal cortices in the generation of these experiences. Importantly, while state-dependent

current concerns predicted better psychological health, mediating the effect of functional

connectomes, trait-level future plans were related to better social health, yet with no

mediatory influence. Collectively, we show that ongoing thoughts can influence the link

between brain physiology and well-being.

AUTHOR SUMMARY

Occupying a considerable portion of our waking lives, spontaneous thoughts constitute the

foundations of our rich inner mental experiences and well-being. Nevertheless, the neural

mechanisms behind this cognitive process and its relation to our mental health remain

unresolved. In a large cohort of participants, we show that distinct dimensions of ongoing

thoughts emerge from a broad set of whole-brain functional interactions, with certain

patterns significantly mediating the link between brain connectivity and psychosocial health.

Overall, these results highlight the heterogeneous nature of self-generated thoughts, the

content and form of which have a significant influence on the association between our brain

physiology and mental well-being.

INTRODUCTION

Recent advances in functional magnetic resonance imaging (fMRI) methods and data anal-

ysis techniques have facilitated a new era in the characterization of the neural representa-

tions that underlie human cognition and behavior (Barch, 2013). Big data-driven approaches

are utilized to explore whole-brain functional interactions during unconstrained states of rest,
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Linking thoughts, brain, and well-being

explaining considerable levels of population-wise variation in complex traits, including intel-

ligence (Greene, Gao, Scheinost, & Constable, 2018), personality (Toschi, Riccelli, Indovina,

Terracciano, & Passamonti, 2018), daily habits (Cheng et al., 2019), and self-perceived quality

of life (Kraft et al., 2018). In addition to helping researchers derive novel theories on healthy

brain processing, one important goal of these functional connectomic mapping initiatives is

to devise neural, cognitive, and behavioral links to better understand mental health disor-

ders, and to identify “at-risk” groups for future preventative measures (Castellanos, Di Martino,

Craddock, Mehta, & Milham, 2013; Van Essen & Barch, 2015). However, most studies often

neglect the fact that periods of unconstrained states of rest can be characterized by patterns of

spontaneous thought that are also associated with well-being (Andrews-Hanna et al., 2013),Well-being:
The holistic experience of a state
characterized by health and
happiness.

which may have unique neurocognitive correlates.

Research from psychology suggests that the ability to self-generate patterns of cognition is

a core element of our mental lives, occupying a considerable portion of our daily mentation

(Antrobus, Singer, & Greenberg, 1966; Klinger, 1971; Singer & Antrobus, 1963). Critically,

these thoughts are particularly prevalent in situations with low external demands, such as

periods of wakeful rest (Smallwood, Nind, & O’Connor, 2009), that is, the conditions when

resting-state functional data are most commonly recorded. Importantly, measures of such ex-

periences have a wide range of momentary correlates including indicators of stress (Engert,

Smallwood, & Singer, 2014), ongoing physiology (Konishi, Brown, Battaglini, & Smallwood,

2017), and task performance (Smallwood, Beach, Schooler, & Handy, 2008), and also have

documented links to both beneficial and deleterious aspects of psychological functioning. For

example, patterns of ongoing thought have been previously linked to individuals’ ability to plan

for future goals (Baird, Smallwood, & Schooler, 2011), wait for long-term rewards (Smallwood,

Ruby, & Singer, 2013), and devise creative solutions to both personal (Baird et al., 2012) and

social problems (Ruby, Smallwood, Sackur, et al., 2013). Other forms of self-generated men-

tation are associated with unhappiness (Killingsworth & Gilbert, 2010), as well as poor perfor-

mance in sustained attention tasks (Allan Cheyne, Solman, Carriere, & Smilek, 2009)

or measures of fluid intelligence (Mrazek et al., 2012). In fact, disruptive thought patterns

are reported to underlie the absentminded mistakes in our everyday functioning (Carriere,

Cheyne, & Smilek, 2008; McVay & Kane, 2009), including traffic accidents (Galera et al.,

2012) or medical malpractice (Smallwood, Mrazek, & Schooler, 2011), and to form a poten-

tial basis for cognitive impairments reported in attention-deficit/hyperactivity disorder (Seli,

Smallwood, Cheyne, & Smilek, 2015; Vatansever, Bozhilova, Asherson, & Smallwood, 2018)

and clinical depression (Marchetti, Van de Putte, & Koster, 2014). Taken together, this body of

evidence underlines the vital importance of both stable and transient thought patterns in our

daily mentation and their variable influence on our psychological and social well-being.

Furthermore, there is now emerging evidence that links distinct profiles of neural activity

to trait variance in specific patterns of thoughts. These investigations highlight that patterns of

ongoing thought have complex and often heterogeneous neural correlates (Smallwood et al.,

2016; Stawarczyk, Majerus, Maj, Van der Linden, & D’Argembeau, 2011), which depend on

the functional interaction of multiple neural and cognitive components (Gorgolewski et al.,

2014; Poerio et al., 2017; Wang, Poerio, et al., 2018). For example, Wang and colleagues

identified distinct patterns of ongoing thoughts that were linked to reductions in within- and

between-network connectivity for neural systems important for external attention (ventral, dorsal,

and frontoparietal systems), which was in turn related to reduced performance in tasks of cog-

nitive aptitude (Wang, Bzdok, et al., 2018). Other studies have illustrated that different types

of spontaneous thought depend on differential patterns of functional connectivity between

Functional connectivity:
Statistical dependencies among
time series obtained from
neurophysiological data. regions important for memory (e.g., temporal lobe) and those that form the core associative
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cortices (Golchert et al., 2017; Karapanagiotidis, Bernhardt, Jefferies, & Smallwood, 2017;

Smallwood et al., 2016). Notably, tasks such as creative idea generation (Beaty, Benedek,

Kaufman, & Silvia, 2015) and future planning (Spreng, Stevens, Chamberlain, Gilmore, &

Schacter, 2010), which are collectively associated with unconstrained thought (Baird et al.,

2012; Medea et al., 2016), depend on similar patterns of interaction between regions of the

default mode and frontoparietal networks.

Converging bodies of evidence from contemporary cognitive neuroscience, therefore, high-

light (a) that patterns of neural activity at rest have associated patterns of thought, and (b) that

both neural and self-report descriptions of patterns of unconstrained activity are predictive of

a wide range of psychological features of an individual, including mental well-being. Collec-

tively, these observations highlight the need to understand the extent to which relationships

between neural activity at rest and well-being are dependent upon the nature of patterns of

ongoing experience that emerges while neural activity is recorded. Our current study reflects

an attempt to address this issue by quantifying the relationship between patterns of thoughts

during rest and the associated neural activity, and then exploring whether descriptions of neu-

ral organization gained in this fashion are associated with trait variance in a cross-culturally

validated questionnaire that assessed both psychological and social well-being.

In the analysis of a large neurotypical sample (n = 211), we found differential profiles

of functional interactions among multiple neural systems that explained individual variation

among two distinct patterns of thought, broadly corresponding to the participants’ current con-

cerns and future plans. Using a test-retest sample (n = 40), we found reasonable concordance

between the tendency to generate future plans at rest and their brain basis, indicating that

these measures are likely to reflect neurocognitive traits. On the other hand, current concerns

were not stable across individuals, but showed evidence of common changes in terms of the

pattern of thought and pattern of functional connectivity, suggesting that these neurocognitive

links reflect a more transient state. Finally, we found that while current concerns indirectly

mediated the effect of brain functional interactions on psychological well-being, future plans

showed no such mediation effect.
Mediation:
A statistical method to assess the
mediatory influence of an external
variable on the relationship between
independent and dependent
variables.

RESULTS

Dimensions of Variation in Ongoing Thought Patterns

With the aim of investigating the differential influence of distinct thought patterns on the link

between brain functional network topology andmental well-being, we collected 9 min of fMRI

data from a large cohort of neurotypical participants (n = 211) during a period of wakeful rest.

This neural measure was complemented with a session of retrospective thought sampling, ad-

ministered immediately after the resting-state scanning, as well as self-assessed ratings of psy-

chological and social well-being on a cross-culturally validated questionnaire from the World

Health Organization Quality of Life (WHOQOL) group (WHOQOL Group, 1998), collected

outside the scanner in a separate behavioral session. The workflow for the data collection and

analysis techniques utilized in this study is presented in Figure 1, with further details provided

in the Methods section and the Supporting Information. Parts of this dataset have been pre-

viously employed in our prior investigations (Vatansever, Bozhilova, et al., 2018; Vatansever,

Bzdok, et al., 2017; Wang, Bzdok, et al., 2018; Wang, Poerio, et al., 2018).

Our first objective was to establish the dimensions of variation within the participants’ on-

going thought patterns. The employed retrospective thought sampling method required par-

ticipants to subjectively characterize their thoughts using 4-choice (Likert scale) ratings on a
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Figure 1. Experimental data collection and analysis pipeline. A large cohort of participants (n =
211) were fMRI scanned during a state of wakeful rest for a total of 9 min. A comprehensive pipeline
of fMRI preprocessing and data denoising procedures were followed in order to ensure maximal
removal of nuisance variables. The thought sampling scores collected at the end of the resting-state
scanning session were first hierarchically clustered into two major groups, each of which was then
reduced to three patterns of thought using principal component analysis. Fully connected, weighted
correlation matrices based on the Power et al. (2011) parcellation (264 regions of interest) scheme
and the individual component scores on the identified patterns of thought were then carried forward
on to network-based statistics (NBS) with the aim of identifying components of brain connectionsNetwork-based statistic:

An open-source toolbox to
statistically assess hypotheses related
to the human connectome.

that related to the participants’ thought patterns. For all six patterns of thought, t tests were carried
out with an initial T score of 3.2 and a significance level of p < 0.05 over 5,000 permutations
(mean connectivity, age, gender, and percentage of invalid scans based on the composite motion
score from the scrubbing procedurewere entered as group-level nuisance regressors). The identified
brain components that significantly related to the participants’ thoughts were first characterized
at the group level and then used as mask graphs to create thresholded connectivity matrices for
each participant. Network metrics of positive, negative, total, and fractional strength (i.e., the ratio
of positive to negative strength) as well as betweenness centrality were measured on individual
thresholded matrices and were further used to characterize the identified neurocognitive profiles.
Linear regressions and mediation analyses were then employed to investigate the mediatory effect
of thought patterns on the link between brain connectivity and psychological and social well-being
as measured using a cross-culturally validated World Health Organization Quality of Life group
(WHOQOL-BREF) questionnaire.

set of questions derived from our previous investigations (Gorgolewski et al., 2014; Medea

et al., 2016; Ruby, Smallwood, Engen, & Singer, 2013; Ruby, Smallwood, Sackur, et al., 2013;

Smallwood et al., 2016; Supplementary Table S1). With the aim of reducing dimensionality

and improving interpretability, these ratings were first hierarchically clustered and then decom-

posed into distinct dimensions using principal component analysis (PCA), which establishedPrincipal component analysis:
A method to reduce dimensionality
of the variable space into a smaller
number of orthogonal variables that
maximize explained variance.

the main patterns of thought reported in our sample (Figure 2). The total number of thought pat-

terns was selected using scree plots, based on the eigenvalue (>1) and the explanatory power

gained by each additional decomposition (Supplementary Figures S1 and S2). The robustness

assessments and typical ratings from participants who scored highest on a given thought pattern

are provided in Supplementary Figures S3–S5.

Network Neuroscience 640



Linking thoughts, brain, and well-being

Figure 2. Decomposing distinct patterns of thought. Following the initial hierarchical clustering ofHierarchical clustering:
A clustering algorithm aiming to form
a topological hierarchy among
clusters of observations.

the participants’ ratings on the experience sampling questionnaire, a total of six patterns of thought
were identified using PCA. Three principal components in each of the two clusters explained 51%
and 35% of the variability in the data, respectively. The Varimax rotated component loadings are
visualized using word clouds. While the size of the text refers to the relative strength of the com-
ponent loadings, positive and negative loadings are indicated via red and blue fonts, respectively.
The components highlighted (A) important/specific thoughts, (B) perceptually decoupled/hard-to-
stop thoughts, (C) positive/spontaneous thoughts, (D) insightful/image-based thoughts, (E) deliberate/
verbal thoughts, and (F) negative/past-related thoughts. The individual variation on these patterns
of thought were carried forward on to the NBS analysis as between-subject explanatory variables.

Principal component analysis, applied separately to each of the two initial hierarchical

clusters on the self-reported ratings, revealed three patterns of thought each (a total of six),

explaining 51% and 35% of the variance, respectively. The identified patterns highlighted

aspects of ongoing thoughts that are commonly characterized in the existing literature

(Smallwood & Schooler, 2015). These encompassed thoughts that were important and specific

(Figure 2A); perceptually decoupled and hard-to-stop thoughts about the self (Figure 2B); pos-

itive, spontaneous thoughts about others (Figure 2C); insightful and image-based thoughts

(Figure 2D); deliberate, verbal thoughts about the future (Figure 2E); and negative, past-related

thoughts (Figure 2F).

Distinct Patterns of Thought Link to Differential Functional Connectomic Profiles

Next, we determined the extent to which the human functional connectomes were associ-Functional connectome:
Wiring diagram of a comprehensive
set of functional connections in the
brain.

ated with individual variation on the identified patterns of thought. We used a whole-brain

parcellation scheme (Power et al., 2011). Defining each of the 264 brain regions as nodes,

and Pearson correlation coefficients among them as edges, we constructed fully connected,

weighted functional connectomes for each participant. Utilizing network-based statistics (NBS;

Zalesky, Fornito, & Bullmore, 2010), we entered the individual component scores for all six

patterns of thought as variables of interest in a regression model, while removing the effects

of nuisance variables including mean connectivity, age, gender, and the composite motion

score (i.e., percentage of invalid volumes identified in the motion artifact detection procedure;

Supplementary Figures S6–S7). This revealed two distinct patterns of thought that were signifi-

cantly related to differential profiles of brain functional connectomic organization (Tthreshold =

3.2, 5,000 permutations, α = 0.05). Although we report on the initial Tthreshold = 3.2 threshold,

comparable results for Tthreshold = 3.1 and Tthreshold = 3.3 are presented in the Supporting

Information section (Supplementary Figure S9).
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The first thought pattern that was significantly associated with neural patterns reflected high

loadings on “habitual,” “realistic,” “specific,” and “important” elements of ongoing cognition,

broadly corresponding to the construct of current concerns that has been argued to play an

important motivational role in the content and form of ongoing thoughts (Klinger, 2013). Popu-

lation variation in this experience was linked to a combination of positive and negative connec-

tions from a wide range of both unimodal and transmodal brain regions (Figure 3A) (Tthreshold =

3.2, 5,000 permutations, p = 0.015). These included areas associated with visual, auditory,

somato-motor, dorsal/ventralattention, cingulo-opercular, salience, frontoparietal, default mode,

Figure 3. Distinct patterns of thought are linked to differential profiles of functional connectomic
organization. NBS identified two connected components of brain functional interactions at rest that
significantly related to the participants’ scores on distinct patterns of thought, which highlighted (A)
important, specific, realistic, and habitual thoughts about the self and others that were not spon-
taneous; as well as (B) deliberate, verbal, thematic, abstract, problem-based, and future-oriented
thoughts in words that were not about the past or in images. The average connectivity patterns of
these brain graphs are visualized on an MNI152 smoothed glass brain, with the nodes color-coded
according to the original Power et al. (2011) parcellation scheme, and the positive/negative connec-
tions colored in red and blue, respectively, in which the size of edges represents average strength.
The average connectivity patterns of these brain graphs and the average graph theory metrics cal-
culated across participants are visualized in circular representations. The Automated Anatomical
Labeling (AAL) nomenclature, original network parcellation, average positive (red: [0–1] Pearson r

scale), negative (blue: [0–1] Pearson r scale), total (purple: [0–2] Pearson r scale), and fractional
strengths (orange: [0–10] arbitrary scale) as well as betweenness centrality (green: [0–6] arbitrary
scale) of each region in the identified brain components are listed around the rings. The average
positive and negative connections between these regions are represented by links color-coded red
and blue, respectively ([0–1] Pearson r scale).
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subcortical networks, and a set of regions with memory-related functions, with the strongest

link observed between the right middle frontal and middle cingulate gyri (salience network).

Overall, this neural component was composed of more positive than negative connections

and involved a set of distributed brain regions that encompassed a diverse set of large-scale

brain networks. Characterization of this brain component using graph theory measures re-Graph theory:
A field of mathematics quantifying
the topological properties of graphs
formed by objects (nodes) and their
pairwise relationships (edges).

vealed that an area in the left middle frontal gyrus, belonging to the dorsal attention network,

showed the highest positive, negative, and total strength as well as betweenness centrality. This

highlights the left middle frontal gyrus as a key node in the functional connectivity patterns

linked to ongoing thoughts about the individuals’ current concerns. In addition, the highest

fractional strength (i.e., the ratio of positive to negative strength) was observed in a region

belonging to the salience network, namely the right middle cingulate gyrus.

The second pattern of thought that related to neural function reflected high loadings on

the “future” rather than the “past,” as well as “deliberate” and “verbal” focus on “problems,”

which is broadly consistent with studies of ongoing thought that emphasize a deliberate fo-

cus on future plans (Baird et al., 2011; Seli, Ralph, Konishi, Smilek, & Schacter, 2017). This

thought pattern was related to the functional interaction of brain regions from a small set of

large-scale brain networks mainly belonging to the higher order transmodal cortices (Tthreshold =

3.2, 5,000 permutations, p = 0.026; Figure 3B). Both positive and negative links between re-

gions belonging to the default mode, frontoparietal, salience, cingulo-opercular, and visual

regions correlated with higher scores reported on this pattern of thought, with the strongest

link observed between regions in the right inferior temporal and middle frontal gyri. Relative

to the “current concerns” component, this brain component was composed of more nega-

tive connections and was drawn from a more localized set of brain regions from a smaller

number of large-scale brain networks. Network-level analysis indicated that a left superior

frontal gyrus region belonging to the default mode network showed the highest positive, neg-

ative, and total strength, while a left middle cingulate region (salience network) displayed the

greatest fractional strength. Betweenness centrality, however, was highest on a right inferior

temporal gyrus region.

Test-Retest Reliability of Thought Patterns and Functional Connectomic Organization

Next, we examined the stability of the two neurocognitive measures over time by exploring

their intraclass correlation across two sessions in 40 participants for whom a second assessment

was performed (i.e., resting-state scan and thought sampling). For “important and specific

thoughts about the self and others” (i.e., current concerns), individual variability on this thought

pattern displayed no significant intraclass correlation (ICC = 0.14, 95% BCI [−0.18, 0.43], p =

0.20); however, the associated brain connectivity (natural log of the fractional strength) was

correlated between the first and second assessment sessions (ICC = 0.60, 95% BCI [0.36, 0.76],

p < 0.0001). Importantly, there was a significant positive correlation between the change in

component scores on this thought pattern and the change in brain connectivity between the

two assessment sessions (Pearson r = 0.40, p = 0.011; Figure 4A). Together this pattern is

broadly consistent with a more transient state.

For “deliberate verbal thoughts about the future” (i.e., future plans) on the other hand, indi-

vidual variability on both the thought pattern (ICC = 0.48, 95% BCI [0.21, 0.69], p = 0.00065)

and the associated brain connectivity (ICC = 0.61, 95% BCI [0.38, 0.55], p < 0.0001) was

consistent across the two assessment sessions. However, there was no significant correlation

between the change in component scores on this thought pattern and the change in brain

connectivity (Pearson r = 0.24, p = 0.14; Figure 4B). Collectively, these analyses show that
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Figure 4. Test-retest reliability of the identified thought patterns and the associated functional con-
nectomic organization. A second session of resting-state fMRI scanning and thought sampling was
carried out for a total of 40 participants. (A) For important/specific thoughts, while individual com-
ponent scores on this thought pattern did not show a significant intraclass correlation (ICC = 0.14, CI
[−0.18, 0.43], p = 0.20), the associated brain connectivity pattern (natural log of fractional strength)
was largely consistent between the two repeated assessment sessions (ICC = 0.60, CI [0.36, 0.76],
p < 0.0001). Moreover, the change in thought pattern was positively related to the change in brain
connectivity (Pearson r = 0.40, p = 0.011). (B) For deliberate/verbal thoughts, both the component
scores on this thought pattern (ICC = 0.48, CI [0.21, 0.69], p = 0.00065) and the associated brain
connectivity (ICC = 0.61, CI [0.38, 0.55], p < 0.0001) showed significant intraclass correlations.
However, there was no significant link between the change in this thought pattern and the change
in brain connectivity between the two assessment sessions (Pearson r = 0.24, p = 0.14).

the patterns of thought captured by “deliberate and verbal thoughts about the future” and their

neural representations show greater trait-like stability over time than the participants’ state-like

“important specific thoughts about the self and others.”

Distinct Patterns of Thought Mediate the Effect of Brain Connectivity on Well-Being

Finally, having identified two patterns of ongoing thought, each with an associated profile of

complex brain functional interactions at rest, we tested whether these neurocognitive metrics

derived from our study had mediatory influences on measures of mental health and well-

being in daily life, as indicated by a cross-culturally validated World Health Organization

questionnaire (i.e., WHOQOL-BREF). Incorporating the relative importance of both positive

and negative connections (Fox, Zhang, Snyder, & Raichle, 2009; Keller et al., 2015), we first

assessed the predictive power of fractional strength on psychological and social well-being via

linear regressions, followed by mediation analyses to examine the indirect influence of brain

connectivity on well-being, mediated by the participants’ reported patterns of thought.

For “important and specific thoughts about the self and others” (i.e., current concerns),

the fractional strength (natural log) of the associated brain connectivity component signifi-

cantly predicted the participants’ psychological well-being score (β = 0.52, t(164,4) = 2.49, p =

0.014), while no significant link was observed with social well-being (β = 0.063, t(164,4) = 0.34,

p = 0.74). A mediation analysis indicated that there was a significant indirect effect of brain
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Figure 5. Model of the functional connectome as a predictor of psychological and social well-
being, mediated by patterns of thought. While brain connectivity refers to the natural log of the
fractional strength, pattern of thought represents the individual component scores on the identified
thought pattern, and the psychological/social well-being measures are self-reported ratings on the
WHOQOL-BREF questionnaire. Only a subset of the participant cohort who fully completed the
well-being questionnaire (n = 169) was utilized in this analysis. The calculation of confidence in-
tervals (CI) for the mediation effect was based on the percentile bootstrap estimation approach with
5,000 samples (corrected for age, gender, and percentage of motion-related invalid scans identified
by the scrubbing procedure). (A) A significant indirect effect of brain connectivity on psychological
well-being was observed, mediated through the participants’ important/specific thoughts, broadly
related to their current concerns. (B) There was no significant indirect effect of brain connectivity
on social well-being, mediated through the participants’ deliberate/verbal thoughts on their future
plans. Mediation results were comparable when using the total strength (sum of positive and nega-
tive strength) graph measure, albeit with a smaller effect size.

connectivity on psychological well-being, mediated by the individuals’ scores on the identi-

fied pattern of thought (β = 0.34, SE = 0.17, 95% BCI [0.010, 0.68], corrected for age, gender,

and in-scanner motion; Figure 5A). For “deliberate and verbal thoughts about the future” (i.e.,
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future plans) on the other hand, the fractional strength (natural log) of the identified compo-

nent of brain connectivity significantly predicted the participants’ social well-being score on

the WHOQOL-BREF (β = 0.38, t(164,4) = 2.34, p = 0.020), while no significant link was ob-

served with psychological well-being (β = −0.082, t(164,4) = −0.43, p = 0.67). Moreover,

a mediation analysis revealed no evidence for an indirect effect of brain connectivity on social
well-being through the individuals’ scores on the identified thought pattern (β = 0.085, SE =
0.096, 95% BCI [−0.099, 0.28], corrected for age, gender, and in-scanner motion; Figure 5B).
Utilizing a more conventional total strength (sum of positive and negative strength) graph

measure revealed comparable results, that is, β = 0.12 (SE = 0.045, 95% BCI [0.031, 0.22])

for current concerns, and β = −0.016 (SE = 0.019, 95% BCI [−0.062, 0.012]) for future plans,

albeit with a smaller effect size.

DISCUSSION

The aim of this study was to examine whether accounting for the patterns of ongoing thoughts

that individuals experience during periods of wakeful rest (e.g., resting-state fMRI scanning)

could allow for a more nuanced understanding of the relationships between neural organiza-

tion and mental well-being. To achieve this goal, we first identified patterns of neural con-

nectivity at rest that varied with aspects of self-reported experience during this period. One

dimension of variation was along patterns of thinking that were indicative of a focus on current

concerns. This variation was associated with functional connections from the middle frontal

gyrus, a region within the salience network. While the neural pattern was a stable feature

of the assessed individuals, the pattern of thinking did not depict such reliability. Neverthe-

less, both neural and self-report patterns changed concurrently across time, indicating that this

neurocognitive profile described a transient mapping between brain and experience. A sec-

ond pattern, associated with deliberate thoughts about the future, was dominated by functional

connections from the superior frontal gyrus, situated within the default mode network. Both

neural and experiential features of this mode were consistent across individuals and showed

little evidence of common changes over time, suggesting a neural pattern that was relatively a

stable trait. Importantly, these neural components had differential associations with measures

of mental health and well-being. The transient neurocognitive component, linked to the partic-

ipants’ focus on current concerns, was significantly associated with self-reported psychological

well-being. Mediation analysis indicated that this brain and well-being relationship was fully

mediated by the associated descriptions of ongoing experience. In contrast, while the dimen-

sion of brain connectivity variation was associated with social well-being, this relationship was

independent of the associated patterns of ongoing experience.

Together these analyses indicate that important aspects of the commonly reported relation-

ships between brain and well-being can partly be understood through their associations with

patterns of ongoing thoughts that participants experience during fMRI scanning. First, our study

shows that neural profiles, identified through their association with self-reported experience,

have differential associations with well-being. Self-reports are often subject to factors that im-

pact upon their credibility, however, the neural patterns of activity identified in this fashion

have the advantage that they are embedded in a cognitive context without the need for reverse

inference (Poldrack, 2011). Thus, experience sampling provides a complementary method for

determining whether the source of observed neural patterns are cognitive in nature, or emerge

for other reasons, such as cardiovascular function or motion-related confounds (Shen et al.,

2017). Second, our study demonstrates that experience sampling is sensitive to patterns of

neural activity that are stable across time and others that are transient. Our approach, there-

fore, may have direct relevance to studies that aim to explore the long-term stability of patterns
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of functional organization, or those that explore long-term changes in neural function. Based

on the current data, for example, experience sampling may provide a reasonably direct way to

test hypotheses into why certain neural patterns vary in their consistency across time. Despite

the inherent weaknesses associated with retrospective experience sampling (Christoff, Irving,

Fox, Spreng, & Andrews-Hanna, 2016), our study shows that the information it provides can

address important shortcomings of the conceptual interpretations placed on functional con-

nectivity patterns derived from resting-state analysis. Given the negligible cost associated with

acquiring descriptions of experience after resting-state scans, and their prevalence as a tool

of cognitive neuroscience, we see no reason why this method should not be employed as a

community standard in similar studies moving forward.

As well as highlighting the value of experience sampling to studies investigating the rela-

tionship between functional organization and traits of well-being, our study provides valuable

information into the neural processes that contribute to different types of spontaneous thought.

Current concerns, in the form of either unfulfilled goals or personally relevant information, oc-

cupy a significant portion of the thoughts we experience in our daily lives, potentially consti-

tuting a determining factor in the functional outcomes of our ongoing cognition (Klinger, 2013;

Marchetti et al., 2014). In line with these results, a key dimension of thought pattern that was

reported by the participants in our cohort was related to “important and specific thoughts about

the self and others” or more generally their current concerns. Our results revealed that impor-

tant functional connections were observed in the salience network, commonly implicated in

the detection of behaviorally important internal or external stimuli for the coordination of neu-

ral resources (Uddin, 2015). This neural system has been shown to causally influence the

functional interaction between default mode and frontoparietal networks that are commonly

anticorrelated at rest (Menon & Uddin, 2010). We recently combined momentary experience

sampling with online neural activity and found that a prefrontal region of this network was as-

sociated with the ability to prioritize patterns of episodic social thoughts during periods when

external demands were reduced (Turnbull et al., 2018). Together with such evidence our study

suggests that the role of the salience network in patterns of ongoing thought emerges from its

general capacity for prioritizing patterns of sensory, memorial, and affective content (Christoff

et al., 2016) that is motivated by their contextual relevance (McMillan, Kaufman, & Singer,

2013; Smallwood, 2013). To this end, recent perspectives argue for the amplificatory influ-

ence of such transient thought patterns on functional outcomes under particular contexts (i.e.,

stress or anger; Marchetti, Koster, Klinger, & Alloy, 2016; Watkins, 2008). This may explain

the state-like characteristic of the brain and well-being link that was observed in this study,

and its significant mediation by the participants’ current concerns. Although our experiment

was not formally set up to test an intervention-based mediatory relationship and thus could

not assess the potential influence of other variables (Bullock, Green, & Ha, 2010), the findings

of our study underline the central importance of at least one thought pattern in explaining the

link between brain physiology and mental well-being.

A second component of “deliberate and verbal thoughts about the future” was linked to

the connectivity of a limited number of nodes in transmodal cortices including regions of the

default mode, cingulo-opercular, salience, and frontoparietal networks. This neural pattern

was dominated by connections from a region of the superior frontal gyrus within the default

mode network. A deliberate focus on future goals reflects our ability to simulate and envision

the consequences of our actions based on our prior experiences (Schacter, Addis, & Buckner,

2008). Importantly, similar interactions between the default mode network and systems linked

to executive control (e.g., frontoparietal and salience networks) are observed when participants

engage in tasks that mimic this type of thought, such as creative problem-solving (Beaty et al.,
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2015), visuospatial (Vatansever, Manktelow, Sahakian, Menon, & Stamatakis, 2018) as well

as autobiographical planning (Spreng et al., 2010), and imagining reward outcomes (Gerlach,

Spreng, Madore, & Schacter, 2014). This pattern of thought was predictive of better social well-

being, an observation consistent with previous studies linking patterns of ongoing thought to

social problem-solving (Ruby, Smallwood, Sackur, et al., 2013) and our ability to infer the

actions and mental states of others (Frith, 2007). Despite its significant link with the social

health measure, however, the lack of a mediation effect of this thought pattern indicates the

trait-like nature of future plans that the participants experienced inside the scanner. With recent

hypotheses postulating the vital role of “goal attainment” in spontaneous thoughts (Klinger,

2013) and emerging reports indicating their links to personality traits (e.g., negative affectivity

and neuroticism; Andrews-Hanna et al., 2013), we postulate that the observed brain and well-

being link may reflect stable neurocognitive traits, particularly within thoughts that concern

the participants’ social support network.

Furthermore, this component was also characterized by both positive as well as negative

brain connections. Negative or anticorrelations have been historically assumed to arise from

the analysis techniques employed, and head motion that is thought to lead to spurious con-

nectivity measures (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). However, recent

reports suggest a neurophysiological basis and a potential cognitive importance of such anticor-

relations in healthy brain processing (Fox et al., 2009; Keller et al., 2015; Vatansever, Menon,

& Stamatakis, 2017). Hence, our results raise the possibility that the tuning of interactions be-

tween neural systems may give rise to different types of ongoing experience—a hypothesis that

requires further investigation. In addition, recent perspectives on the generation and mainte-

nance of thought patterns highlight the vital importance of considering the dynamic nature of

ongoing cognition and the within-individual variation in this process (Christoff et al., 2016). Al-

though retrospective thought sampling methods provide the advantage of acquiring measures

related to an undisrupted period of unconstrained cognition, online thought sampling and the

assessment of the link between neural and experiential dynamics might constitute a fruitful

route in deciphering the within- and between-individual variability in ongoing cognition and

the underlying neural mechanisms (Kucyi, 2018). Taken together with the participants’ current

concerns, further research will be required to deduce the differential influence of such stable

and transitory thought patterns on functional outcomes and to assess their therapeutic potential

as modulatory targets for intervention (Marchetti et al., 2016).

In summary, we have shown that distinct patterns of thought are reflected in the underlying

brain functional connectomes at rest and that certain types of these experiences may mediate

the influence of intrinsic brain connectivity organization on well-being. Our results highlight

the importance of considering thought patterns when establishing predictive relationships be-

tween functional connectomes and complex traits, but also suggest that taking this aspect of

human cognition into consideration may lead to better characterization of neural fingerprints

of the connectome, with the potential for more useful clinical markers. In the future, it may

be possible to tailor self-reported questions based on their neural associations, allowing devel-

opment of measures targeting particular psychiatric populations with well-established neural

hypotheses, such as mood and neurodegenerative disorders (Takamura & Hanakawa, 2017).

Furthermore, the analysis method we employed could be useful in studies that test psycholog-

ical or pharmacological interventions designed to improve well-being (Khalili-Mahani et al.,

2017), allowing these investigations to disentangle whether their intervention targets the un-

derlying neural architecture, changes in patterns of thought, or a combination of both.
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METHODS

Participant Demographics

In accordance with the Declaration of Helsinki on the conduct of research involving human

participants, ethical approval was obtained for this study from the Department of Psychology

and York Neuroimaging Centre, University of York ethics committees. Following a standard

informed consent procedure, a total of 226 healthy, right-handed (one left-handed), native

English speaker undergraduate or postgraduate students with normal to corrected vision were

recruited from the University of York. All volunteers received monetary compensation or

course credit for their participation in line with the departmental policies. As per the ex-

clusion criteria, none of the participants had a history of psychiatric or neurological illness,

severe claustrophobia, anticipated pregnancy, or drug use that could alter cognitive function-

ing. Moreover, an extensive motion-correction procedure was followed (described in detail

below) that resulted in the exclusion of 12 participants because of excessive head motion in-

side the scanner, and three participants were removed because of the impartial completion of

the thought sampling method. In total, 211 participants’ imaging and thought sampling data

were used in this analysis. The average age for this group was 20.85 years (range = 18–31,

SD = 2.44) with a 129/82 female to male ratio.

Decomposition of Thought Patterns

To ascertain the principal dimensions of variation in the thought patterns of this participant

cohort, a retrospective thought sampling questionnaire was administered immediately after

the resting-state fMRI scanning. In this session, the participants were asked to subjectively

rate their thoughts during the resting-state scan on a 4-choice Likert scale from “Not at all” to

“Completely” based on a randomly presented set of questions that probed the content and form

of thoughts. This set of questions and the accompanying analysis techniques have been exten-

sively utilized in various thought sampling reports previously published in the literature (Sup-

plementary Table S1; Gorgolewski et al., 2014; Medea et al., 2016; Ruby, Smallwood, Engen, &

Singer, 2013; Ruby, Smallwood, Sackur, et al., 2013; Smallwood et al., 2016). First, the ratings

from each participant were hierarchically clustered based on the similarity of responses using

the Ward linkage method (squared Euclidean distance; Supplementary Figure S1). This tech-

niquewas utilized inorder to partition the thought ratings into two distinct groups, thus reducing

the number of variables to be decomposed into interpretable patterns of thought (Andrews-

Hanna et al., 2013). Subsequently, both groups of ratings were reduced to three factors each

(six in total) using PCA in SPSS (Version 23; https://www.ibm.com/products/spss-statistics). The

number of components was chosen based on scree plots indicating the eigenvalue of each

subsequent decomposition, and its ability to explain variability in the data (Supplementary

Figure S2). The component loadings for the total number of six decompositions were then

rotated using the Varimax method and the resulting factors were visualized on word clouds

(Figure 2) and heat maps (Supplementary Figure S3). The component scores of each partici-

pant on these patterns of thought were then used as between-subject covariates of interest in

the subsequent analyses. Further results on the robustness of the employed hierarchical clus-

tering and PCA procedures are provided in the Supporting Information and Supplementary

Figures S1–S4.

Well-Being Assessment

For the assessment of the participants’ self-perceived well-being, we employed the brief version

of a health questionnaire previously established by the World Health Organization Quality of

Life (WHOQOL) group (WHOQOLGroup, 1998). TermedWHOQOL-BREF, this quality of life
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assessment has been developed to provide a more comprehensive index of overall health of

nations that extends beyond measures of mortality and morbidity; hence, it was designed to be

readily administered across cultures and countries with different economic status. Extensively

validated in a large number of centers, WHOQOL-BREF consists of 26 questions that broadly

group into four domains of physical, psychological, social, and environmental health. All par-

ticipants were asked to complete this questionnaire at a separate session administered outside

the scanner. Out of 211 participants, 169 fully completed the questionnaire. The standardized

responses for the psychological and social health domains were then used as covariates of

interest in subsequent linear regression and mediation analyses.

MRI Data Acquisition

All MRI data acquisition was carried out at the York Neuroimaging Centre, York, with a 3T GE

HDx Excite magnetic resonance imaging (MRI) scanner using an eight-channel phased array

head coil. A single run of 9-min resting-state fMRI scan was carried out using single-shot 2D

gradient-echo-planar imaging. The parameters for this sequence was as follows: TR = 3 s,

TE = minimum full, flip angle = 90◦, matrix size = 64 × 64, 60 slices, voxel size = 3 × 3 ×

3 mm3, 180 volumes. During resting-state scanning, the participants were asked to focus on

a fixation cross in the middle of the screen. Subsequently, a T1-weighted structural scan with

three-dimensional fast spoiled gradient echo was acquired (TR = 7.8 s, TE = minimum full, flip

angle = 20◦, matrix size = 256 × 256, 176 slices, voxel size = 1.13 × 1.13 × 1 mm3).

MRI Data Preprocessing

All preprocessing and denoising steps for the MRI data were carried out using the SPM

software package (Version 12.0; http://www.fil.ion.ucl.ac.uk/spm/) and CONN functional con-

nectivity toolbox (Version 17.f; https://www.nitrc.org/projects/conn; Whitfield-Gabrieli &

Nieto-Castanon, 2012), based on the MATLAB platform (Version 16.a; https://uk.mathworks.

com/products/matlab.html). The first three functional volumeswere removed in order to achieve

steady-state magnetization. The remaining data were first corrected for motion using six de-

grees of freedom (x, y, z translations and rotations), and adjusted for differences in slice time.

Subsequently, the high-resolution structural images were coregistered to the mean functional

image via rigid-body transformation, segmented into gray/white matter and cerebrospinal fluid

probability maps, and spatially normalized to Montreal Neurological Institute (MNI) space

alongside all functional volumes using the segmented images and a priori templates. This

indirect procedure utilizes the unified segmentation–normalization framework, which com-

bines tissue segmentation, bias correction, and spatial normalization in a single unified model

(Ashburner & Friston, 2005). No smoothing was employed, complying with recent reports on

the negative influence of this procedure on the construction of functional connectomes and

graph theoretic analyses (Alakorkko, Saarimaki, Glerean, Saramaki, & Korhonen, 2017).

Furthermore, a growing body of literature indicates the potential impact of volunteer head

motion inside the scanner on the subsequent estimates of functional connectivity and graph

theory metrics (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; (Van Dijk, Sabuncu, &

Buckner, 2012); Yan, Cheung, et al., 2013; Yan, Craddock, He, & Milham, 2013). In order to

ensure that motion and other artifacts did not confound our data, we have employed an ex-

tensive motion-correction procedure and denoising steps, comparable to those reported in the

literature (Ciric et al., 2017; Power et al., 2014). In addition to the removal of six realignment

parameters and their second-order derivatives using the general linear model (GLM; Friston,

Williams, Howard, Frackowiak, & Turner, 1996), a linear detrending term was applied as well

as the CompCor method that removed five principal components of the signal from white
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matter (WM) and cerebrospinal fluid (CSF; Behzadi, Restom, Liau, & Liu, 2007). Moreover,

the volumes affected by motion were identified and scrubbed based on the conservative set-

tings of motion greater than 0.5 mm and global signal changes larger than z = 3. A total of 12

participants, who had more than 15% of their data affected bymotion, were excluded from this

study (Power et al., 2014). Though recent reports suggest the ability of global signal regression

to account for head motion, it is also known to introduce spurious anticorrelations, and was

thus not utilized in our analysis (Chai, Castanon, Ongur, & Whitfield-Gabrieli, 2012; Murphy

et al., 2009; Saad et al., 2012). Nevertheless, the composite motion score (i.e., percentage of

invalid scans) for each participant was also added as a covariate in group-level analyses to fur-

ther account for the potential influence of head motion on functional connectome estimations.

Finally, a band-pass filter between 0.009 Hz and 0.08 Hz was employed in order to focus on

low-frequency fluctuations (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox et al., 2005). The

maximum, and mean motion parameters and global signal change, the percentage invalid

volumes that were scrubbed, and the distribution of correlation coefficients before and after

denoising steps are provided in Supplementary Figure S6. In addition, with the aim of ensur-

ing that our results were not confounded by motion artifacts, we calculated mean framewise

displacement using the Jenkinson formulation (Jenkinson, Bannister, Brady, & Smith, 2002),

which showed no significant associations with the main variables of interest employed in this

study (Supplementary Figures S7–S8).

Functional Connectome Analysis

Brain parcellation. We adopted a set of 264 regions based on the Power et al. (2011) brain

parcellation scheme that has been previously shown to produce reliable network topolo-

gies at rest and task conditions (Cole et al., 2013; Power et al., 2011; Vatansever, Menon,

Manktelow, Sahakian, & Stamatakis, 2015). The network partitions outlined by Cole et al.

(2013) were utilized to preassign each one of the 264 ROIs to one of the 13 large-scale networks

documented in the original publication (Power et al., 2011). Namely, 10 well-established net-

works covering dorsal (DAN) and ventral attention (VAN), salience (SAN), cingulo-opercular

(CON), frontoparietal control (FPN), default mode (DMN), visual (VN), auditory (AN), somato-

motor (hand and mouth) (SMN), and subcortical networks (SCN), as well as 3 networks that

fall into memory retrieval, cerebellum, and a network of uncertain function were used as the

13 network partitions (Power et al., 2011).

Connectome construction. Fully connected, undirected, and weighted matrices (264 ROI ×

264 ROI) of bivariate correlation coefficients (Pearson r) were constructed for each participant

using the average BOLD signal time series obtained from the 6-mm (radius) spheres placed on

the MNI coordinates of all the 264 ROIs described above. The matrices reflected both positive

and negative weighted correlations. The arbitrary thresholding and binarization processes in

graph theoretic analysis often lead to loss of information, especially in the case of negative

correlations (Rubinov & Sporns, 2011). Given recent reports suggesting a neurophysiological

basis and potential cognitive importance of such anticorrelations in healthy brain function (Fox

et al., 2009; Keller et al., 2015; Spreng, Stevens, Viviano, & Schacter, 2016), we focused on

fully connected, weighted connectomes.

Network-based statistic. Next, we aimed to ascertain components of individual functional

connectomes that significantly predicted the participants’ between-subject variation on the

identified patterns of thought. For that purpose, we employed the network-based statistic (NBS)

toolbox (Version 1.2; https://www.nitrc.org/projects/nbs/; Zalesky et al., 2010), which provides

enhanced power to identify connected brain components formed by suprathreshold edge links

that are associated with a covariate of interest, while controlling for family-wise error (FWE)
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at the component level. Utilizing this method, we entered the individual component scores

for all six patterns of thought as variables of interest, while accounting for the effects of mean

connectivity, age, gender, and percentage of motion-related invalid scans identified by the

scrubbing procedure. Using these regressors, t tests were first carried out on fully connected

whole-brain network edges for each pattern of thought to assess the relationship between the

strength of an edge link and component scores on patterns of thought, storing the size of

the connected components that survived the chosen T threshold. Next, over a total of 5,000

permutations in which the outcome measures were randomized, random null distribu-

tions of maximal component size above the chosen threshold were generated. The number of

permutations in which the maximal component size was greater than the empirical compo-

nent size, normalized by the total number of permutations, was used to estimate p values (0.05

level of significance). While the initial Tthreshold = 3.2 was used for the main analysis, compa-

rable results for Tthreshold = 3.1 and Tthreshold = 3.3 are reported in the Supporting Information

section (Supplementary Figure S9). The resulting connected brain components, the links of

which showed a significant relationship with individual variability in thought patterns, were

then defined as mask graphs to threshold individual functional connectomes, which were then

carried forward onto graph theoretic analyses (Xia, Wang, & He, 2013).

Network neuroscience analysis. Graph theoretic metrics in this study were calculated using

MATLAB functions obtained from the publicly availableBrainConnectivity Toolbox (https://sites.

google.com/site/bctnet/). Commonly used in the identification of hub regions that greatly influ-

ence the efficiency of a network in distributing information (Rubinov & Sporns, 2010), network

strength denotes one of the most fundamental measures in weighted functional connectomes

and thus formed the basis of our network neuroscience analysis approach. Calculated as the

sum of all neighboring link weights (Rubinov & Sporns, 2010), we measured the strength of

connected components across all participants that were previously identified as illustrating

significant relations to individual variability in thought patterns. Based on recent reports sug-

gesting the importance of anticorrelations, we calculated positive, negative, as well as total

strength for each individual. Furthermore, given recent evidence suggesting a contribution of

the balance between both positive and negative correlations to healthy brain processing (Fox

et al., 2009; Keller et al., 2015; Spreng et al., 2016), we aimed to utilize a metric that incorpo-

rated the importance of the interplay between these links when assessing its predictive power

for explaining individual variability in self-reported mental well-being. Thus, we defined frac-

tional strength as the ratio of the sum of positive to negative links, which was later used as

the graph metric of interest in subsequent linear regression and mediation analyses. Finally, to

identify central nodes in the functionally connected components that significantly related to

the thought structures, betweenness centrality—the fraction of all shortest paths in the network

that pass through a given node—was calculated. The average positive and negative links and

the employed graph theoretic metrics were visualized on circular plots using Circos (Irimia,

Chambers, Torgerson, & Van Horn, 2012).

Test-retest reliability analysis. Our next aim in this study was to determine the reliability of the

identified patterns of thought and brain connectivity measures. This would not only establish

the generalizability of our results but would also allude to the potential differences in the state

versus trait-level variability of our neurocognitive measures. For that purpose, a second session

of resting-state scan and experience samplingwas carried out for 44 participants using the same

parameters outlined above. The thought ratings and brain imaging data for this second session

were preprocessed using the same procedures, resulting in the exclusion of four participants

because of excessive motion. For the thought decomposition scores, the hierarchical clustering

and PCA decompositions obtained from the initial cohort were imposed on the ratings obtained
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from the second session (Wrigley, Albert, Deluzio, & Stevenson, 2006). Intraclass correlation

coefficients (ICC) were employed to assess the reliability of thought component scores and

the associated brain connectivity (as denoted by fractional strength) from the first and second

sessions. Furthermore, we assessed a potential link between the change in thought patterns

between the two sessions and the change in the associated brain functional connections using

Pearson correlations.

Mediation analysis. Finally, we used linear regressions to identify the relationship between

component scores on the identified patterns of thought, the fractional strength (natural log)

of connected components, and the participants’ self-reported scores on the psychological and

social domains of theWHOQOL-BREF questionnaire. The relationships with health were Bon-

ferroni corrected for multiple comparisons across the two health domains. After establishing

linear relationships between all three measures, subsequent mediation analyses were carried

out with the aim of determining the indirect effect of brain connectivity on psychological and

social well-being through participants’ thought patterns. As it is suggested for small to medium

sample sizes (Shrout & Bolger, 2002), the percentile bootstrap estimation approach with 5,000

samples was used to ascertain the presence of a mediation effect.
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