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KEY POINTS

� Total-body PET scans will make immuno-PET imaging andmultitracer profiling feasible through de-
layed imaging and reduced radiation dose.

� As a result, multidimensional evaluation of disease heterogeneity in vivo will be practical in the
clinic.

� Total-body PET dynamic whole body imaging allows simultaneous functional and molecular eval-
uation of multiple organ systems, a concept termed systems biology imaging.

� Total-body PET systems biology imaging allows the further development and clinical implementa-
tion of more robust global disease assessment capabilities.
INTRODUCTION

Total-body PET (TB-PET) imaging is an evolving
technology addressing the limitations of conven-
tional PET imaging. With a fundamentally novel
approach for its geometric coverage to encom-
pass the entire body, TB-PET imaging has the po-
tential to dramatically increase the effective
sensitivity of PET scans. The increased sensitivity
could be used for different strategies, such as
enhancing the signal-to-noise ratio, improving
temporal resolution, or requiring less radioactivity
at the time of imaging (Table 1).

In Part I of this 2-part article (see Babak Saboury
and colleagues’ article, “Reinventing Molecular
Imaging with Total-Body PET, Part I: Technical
Revolution in Evolution,” elsewhere in this issue),
we provided an overview of the technologic gains
of the TB-PET scanner. In this second part, we
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discuss the practical advantages that this technol-
ogy can bring about to specific clinical applica-
tions of PET imaging (Fig. 1).1,2

PRACTICAL CLINICAL APPLICATIONS

Conventional PET imaging techniques have been
shown to suffer from significant limitations in clin-
ical use to assess disorders that are diffuse in na-
ture and involve many structures throughout the
body. The major shortcomings are due to the
limited sensitivity and limited field of view of
approximately 20 to 30 cm, which requires imag-
ing the entire body in a fractionated manner over
an hour or longer to determine the extent of the
disease at its various stages.3 However, based
on the experience that has been gained over the
years, most disease abnormalities are best
assessed by imaging the entire body to detect
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Table 1
Improved sensitivity of the TB-PET scanner can result in better signal-to-noise ratio (SNR), enhanced
temporal resolution (T), or reduction of the required dose of the radiotracer (A)
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unexpected lesions that may or may not be related
to the primary sites. This is particularly applicable
to the adult population, who are prone to devel-
oping many age-related maladies. Among these,
we would like to emphasize the role of TB-PET im-
aging in examining patients with cancer, inflamma-
tory and immunologic disorders, cardiovascular
disease, and osteoporosis, which are known to
involve many structures and organs in the body.
Global Disease Assessment and Systems
Biology

The concept of a global disease assessment
(GDA),4 with the aim of quantifying the total burden
of disease by combination of structural andmolec-
ular information, has gained popularity in recent
years.5–7 GDA is a method whereby a single or
composite quantitative value, the Global Disease
Score,8 represents the burden of an ongoing dis-
ease process over the course of disease beginning
at a baseline point and compared throughout sub-
sequent therapeutic interventions (Figs. 2 and
3).9,10 Hybrid molecular and structural imaging
with PET and computed tomography (CT) scans
or MR imaging as a single imaging instrument
seems to be the approach of choice for such novel
applications. GDA methodology has been adop-
ted for assessing regional and global disease ac-
tivity in many disorders, particularly those that
are systemic in nature. Novel approaches have
been described in the literature that demonstrate
this technique’s unique ability to quantify the de-
gree of abnormality in various organs and
throughout the body. Data from the approach
have similarly demonstrated great importance in
patients with cancer, atherosclerosis, systemic
inflammation, and musculoskeletal disorders.11–18

TB-PET imaging will be of unique importance in
improving temporal resolution to better reflect
overall disease burden and will allow for better
management of many serious, disabling, and
potentially fatal diseases and disorders. TB-PET
imaging has the potential to expand the concept
of dual time point–derived GDA by extracting the
kinetic parameters. Both dynamic whole body im-
aging and the ability to perform more delayed im-
aging provide a mechanism to study whole body
pathobiology kinetics.8 GDA-based biological sys-
tems state quantification and systems interrelation
characterization through time is the basis for a sys-
tems biology approach to medical imaging.
In clinical practice, TB-PET could be used for

faster performance, a decreased patient dose,
and enhanced capacity to make delayed imaging
and dynamic whole body imaging possible. These
technical capabilities lead to a unique usefulness:
making systems biology imaging a reality. The hu-
man body is a complex, dynamic system with
inherent interconnectedness; the boundaries be-
tween organs and systems have faded by new ad-
vancements in our understanding of the
pathologic basis of disorders. The significant role
of the immune system in disease makes this



Fig. 1. Total-body PET scan of a patient who was injected with 290 MBq of 18F-FDG. A 20-minute list-mode scan
was performed at 82 minutes after injection on the EXPLORER scanner. (A) Total-body maximum intensity projec-
tion (MIP). (B) Total-body sagittal view that was generated from the 20-minute scan. Selected views including (C)
head and neck view, showing walls of the right carotid artery (arrow). (D) Chest view, demonstrating walls of
ascending aorta (arrow), (E) midthoracic view, showing spinal canal (arrow), (F) abdominal and pelvic view, indi-
cating clear delineation of the superior endplate of L3 (arrow), (G) knees, showing bone spur on the right side
(arrow), and (H) lower extremities, indicating defined medial tibial malleolus of the right side (arrow). (Originally
published in Badawi RD et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl
Med 2019;60:299-303. � SNMMI.)

Fig. 2. Maximum intensity projection (MIP) FDG PET/CT scans of a 60-year-old patient with multiple myeloma (A)
pretreatment 1 hour and (B) pretreatment 3 hours after administration of FDG. Table shows the percentage
change of mean standardized uptake value (SUVmean) and partial volume correction (pvc) of the SUVmean of
the complete response (CR) and partial response (PR) lesions from 1-hour to 3-hour scans. (Originally published
in Raynor, William Y., Abdullah Al-Zaghal, Mahdi Zirakchian Zadeh, Siavash Mehdizadeh Seraj, and Abass Alavi.
2019. “Metastatic Seeding Attacks Bone Marrow, Not Bone: Rectifying Ongoing Misconceptions.” PET Clinics 14
(1): 135–44.)
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Fig. 3. FDG PET examinations in a patient with multiple myeloma showing maximum intensity projection (MIP)
images at baseline (A) with GDA applied (B), and on follow-up 2 months after high-dose chemotherapy (C)
with GDA applied (D). Adaptive thresholding algorithm was used (ROVER software; ABX GmbH). (Originally pub-
lished in Raynor, W.Y., Zadeh, M.Z., Kothekar, E., Yellanki, D.P. and Alavi, A., 2019. Evolving Role of PET-Based
Novel Quantitative Techniques in the Management of Hematological Malignancies. PET clinics, 14(3), pp.331-
340.)
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interconnectedness much more explainable. Car-
diovascular manifestations of the autoimmune dis-
orders are only the tip of the iceberg.19,20

In complex systems theory, a system is
composed of multiple interconnected subsys-
tems. Subsystems are characterized by their state
at each given time. The relation between subsys-
tems only depends on their respective state and
subsystems are not exposed to another’s inner
complexity. GDA thereby reflects the state of
each system. This decrease in complexity is an
essential prerequisite of building the system of
subsystems, providing a framework to expand
our understanding of the whole. The study of the
interrelation of subsystem states at 1 time (syn-
chronous) and through time (metachronous) was
limited by the spatial and temporal constraints of
conventional PET imaging. TB-PET imaging is a
tool for systems biology par excellence.21,22
Oncology

Dose reduction
The increased sensitivity of TB-PET imaging can
be used to decrease the required amount of activ-
ity at the time of imaging. This property will signif-
icantly contribute to decreasing the radiation dose
delivered to patients. This capability opens the
door for 3 particular use cases: multitracer PET im-
aging, shorter follow-up PET imaging, as well as
immuno-PET imaging (see Table 1, Equation 2a).

1. Bynow, it is clear that cancer is a heterogeneous
disease by nature and that tumor heterogeneity
is the hallmark of treatment failure.23 Using mul-
tiple tracers for imaging the tumor biology has a
potential advantage.24 Previously, the exposure
dose was one of the drawbacks preventing this
type of PET imaging. Some researchers alluded
to this potential possible in routine standard of
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care, such as the benefits of synergistic PET im-
aging for prognostication, as demonstrated by
fludeoxyglucose (FDG) and HER2 PET in the
ZEPHIR trial (Fig. 4).25,26

2. Treatment response follow-up by molecular im-
aging has shown value for personalized patient
management, yet the exposure dose has also
played a negative role in the expansion of this
paradigm.

3. It is almost impossible to justify the radiation
exposure of immuno-PET imaging in daily clin-
ical practice outside of research studies. At-
tempting to characterize tumor heterogeneity
with multiple immuno-PET tracers in series
with conventional PET imaging could expose
the patients to more than 100 mSv on conven-
tional PET imaging. This factor could dramati-
cally change in the TB-PET imaging era.
Delayed imaging
In addition to radiation dose reduction, the need
for a lesser amount of radiotracer in TB-PET imag-
ing provides opportunities for delayed imaging
where the sensitivity of the scanner for detecting
the metabolic activity is of utmost importance
(see Table 1, Equation 2b). As described in Part I
of this 2-part article (see Babak Saboury and col-
leagues’ article, “Reinventing Molecular Imaging
with Total-Body PET, Part I: Technical Revolution
in Evolution,” elsewhere in this issue), delayed im-
aging can improve the biological signal-to-noise
ratio. Based on numerous research studies that
have been conducted during the past 2 decades,
it has become apparent that the degree of uptake
of FDG in malignant tissues increases over time
and reaches a plateau at around 4 to 5 hours after
Fig. 4. Time–activity curves in a patient imaged in the pro
(left), followed by higher dose 18F-FDG (right) for dual trac
glucose metabolism in a single bed position, in a single e
Austin R. Pantel, Varsha Viswanath, and Joel S. Karp. 201
Cancer Therapy and Studying In Vivo Cancer Biology.” Cu
administration of the compound.27–29 Basu and
colleagues29 showed a continuous increase in
FDG uptake of the lung cancer lesions up to
8 hours after injection. This phenomenon not only
allows detecting the presence of cancer activity
at the primary sites, but also improves the sensi-
tivity of the technique for accurately staging the
disease by visualizing metastases to the lymph
nodes and different organs in the body. In addition,
our group demonstrated FDG uptake decreases
significantly from 1 to 3 hours after injection in
the majority of normal tissues, except heart and
bone marrow.30 This property further enhances
the contrast between tumor site activity and the
surrounding background.30 However, the bone
marrow retention of FDG could be detrimental in
detection of bone marrow metastatic lesions in
delayed imaging, and this drawback should be
considered in study designs. Overall, delayed im-
aging enhances the impact of FDG-PET imaging
in the management of patients with various malig-
nancies at various stages of the disease. Using the
principles that our group previously described,
some of the researchers speculated that TB-PET
imaging could improve detection of micrometasta-
ses, which are smaller than 5 mm.31
Dynamic imaging
The combination of full field of view and enhanced
temporal resolution in TB-PET imaging would
allow improved dynamic quantification of radio-
tracer uptake over time (see Table 1, Equation
2c). The extraction of kinetic analysis parameters
has already been clearly proven in the realm of
FDG PET imaging. Our group extensively demon-
strated the value of multiple time-point imaging in
totype PennPET Explorer using low-dose 18F-FGln first
er PET imaging in series to model both glutamine and
ncounter. (Originally published in Mankoff, David A.,
9. “Advances in PET Diagnostics for Guiding Targeted
rrent Pathobiology Reports 7 (3): 97–108.)
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tumor biology characterization.28,32,33 Tumors
with an increasing standardized uptake value
over time are suggested to be more aggressive
than those with a decreasing standardized uptake
value over time.34 There is limited literature avail-
able on the investigation of dynamic changes in
other radiotracers within a single patient
encounter, which is an area of important future
investigation.

Systems Biology Approach to Cancer Imaging

As patients begin to live longer with chronic malig-
nancies, dynamic imaging with TB-PET scans will
also help to manage multisystemic effects of
oncologic processes as well as side effects of
treatments on body organs and systems (cancer
as a chronic disease paradigm). A similar para-
digm can be exemplified in the changing approach
to patients with human immunodeficiency virus
infection as more effective treatments became
available.

Atherosclerosis
Patients with malignancies have a high incidence
of atherosclerosis.35–37 Currently, this serious
complication is a major domain of research and in-
terest in the population with cancer, particularly in
patients with prostate cancer, hematologic malig-
nancies, and some others whose disease can be
controlled for an extended period of time. Clearly,
the high incidence of atherosclerosis in these pa-
tients may lead to significant morbidity and mortal-
ity that are unrelated to their underlying
disorders.38,39 Both FDG40 and 18F-sodium fluo-
ride (NaF),41–43 which are commonly used for
PET imaging of patients with various malignancies,
are optimally suited for detecting atherosclerotic
plaques in the arterial system throughout the
body. Again, delayed imaging with total-body ma-
chines allows significant clearance of these tracers
Fig. 5. Patient with a history of new non-occlusive thromb
vein thrombosis involving the left common femoral vein. (
fused 18F-FDG PET/CT scan showing increased FDG upta
femoral vein (arrow) suspected to correspond with deep v
from the circulation and therefore optimal visuali-
zation of atherosclerotic plaques. As such, total-
body imaging at delayed time points may improve
the ability to detect and treat vascular complica-
tions of various cancers with higher sensitivity
and specificity.44

Venous thrombosis
It is well-established that the secondmost common
cause of death among patients with cancer is pul-
monary embolism. Most malignancies (with a
higher incidence in certain cancers) are associated
with a high incidence of clot formation in the venous
system throughout the body. Research and clinical
studies have shown high uptake of FDG in active
clots throughout the body (Fig. 5).45–47 This is due
to the presence of activated white cells and plate-
lets in actively forming clots. Therefore, FDG-PET
imaging for assessing patients with cancer will
allow detecting the presence of clots throughout
the body, including in the lower extremities
(Fig. 6). As such, by adopting the limited body im-
aging protocols, many instances of venous throm-
bosis in the lower extremities are frequently
missed. Therefore, total-body imaging by dedi-
cated TB-PET systems will play a major role in the
early detection and treatment of venous thrombo-
embolism in patients with malignant disorders.

Hyperinflammatory state
The process of oncogenesis is not merely invasion
of tumor cells throughout the body. There is exten-
sive interaction between the immune system and
tumor cells, which results in significant control of
the disease. This paradigm of healing from within
resulted in novel treatment options, from
immune-check-point inhibitors to chimeric antigen
receptor T-cell therapy.48,49 Engagement of the
immune system in this prolonged battle on the
one hand and effects of treatment options, on
us involving the left renal vein with concern for deep
left) Axial contrast-enhanced CT scan, and (right) axial
ke within the filling defect within the left common
ein thrombosis in this location.



Fig. 6. A 65-year-old man with melanoma on the left
upper back, on BRAF/MEK inhibitor since April 2012,
which was held on December 21, 2012, secondary to
toxicity, with biopsy-proven gastric metastasis and
left axillary nodal metastasis. One day before the
PET scan, the patient had 21 edema from the mid-
upper arm to the hand and 11 edema in the left
calf and foot. A coronal fused 18F-FDG PET/CT image
shows increased metabolic activity within the left
lower leg veins (arrow) corresponding with an acute
deep vein thrombosis.
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the other hand, create dysregulation of immune
system function, which may result in a subclinical
inflammatory state in many organ systems.48–50

This condition could have long-term negative ef-
fects and monitoring this condition could provide
invaluable insight in the preventive aspects of
chronic cancer care. Although FDG-PET plays a
major role in this process, it has certain limitations
where the adjacent biological process is also
hypermetabolically active. To overcome this limi-
tation, one approach is to use positron-emitting
nanoparticles to image macrophages.51

Bone metabolism
Cancer-induced bone loss, through either cyto-
kine dysregulation caused by oncogenesis or cal-
cium metabolism alteration caused by treatment,
is a well-established phenomenon. Bone fragility
and resulting fractures play an important role in
mortality and morbidity of oncology patients.
NaF-PET imaging provides invaluable information
regarding bone turnover52 and various quantitative
methods have been investigated.53,54 Evaluation
of bone turnover in each patient’s follow-up imag-
ing examinations could prevent many devastating
disease-related fractures.

Metastasis beyond eyes-to-thighs field of view
Although the claim of distal extremity bonemarrow
metastasis has been mentioned as the grounds for
extending the PET field of view beyond conven-
tional base-of-skull to mid-thigh, there is sparse
red marrow below the knee in the adult population
and the chance of having bone marrow metastasis
in such a milieu is extremely rare. Until strong
experimental evidence shows contrary, this possi-
bility cannot be a justifying reason for extension of
the field of view. However, in pediatric imaging, the
presence of red marrow in distal extremities signif-
icantly increases such a possibility and mandates
head-to-toe imaging.

Inflammation

Autoimmune disorders are multisystemic by defi-
nition,55 even though the primary manifestation
could be in one organ-system. For example, rheu-
matoid arthritis involves many other systems
beyond synovium and joints. Even the joint
involvement is not limited to 1 location or even
the appendicular skeleton. The patient with rheu-
matoid arthritis may present with joint problems,
but may also develop interstitial lung disease, or
C1 to C2 subluxation. Any attempt to quantify
rheumatoid arthritis burden of disease by local im-
aging, such as hand radiographs, is prone to
fundamental problems. The lack of a comprehen-
sive imaging biomarker to capture the totality of
this disease is a major pitfall in treatment moni-
toring (hand radiographs are not sufficient). As
such, we believe assessing inflammation in
various organs and structures as well as osseous
abnormalities that are associated with musculo-
skeletal diseases and disorders will benefit signif-
icantly from total-body imaging with PET.
Although FDG will be of great value for assessing
inflammation and muscle metabolism (Fig. 7),



Fig. 7. FDG-PET maximum intensity projection (MIP) of the upper body (A) and lower body (B) of a patient with
rheumatoid arthritis. Synovial inflammation was assessed by segmenting FDG-avid joints using an adaptive
thresholding algorithm (ROVER software, ABX GmbH, Radeberg, Germany). Metabolically active volume
(MAV), max standardized uptake value (SUVmax), mean SUV (SUVmean), partial volume-corrected SUVmean

(pvcSUVmean), total lesion glycolysis (TLG), and partial volume-corrected TLG (pvcTLG) were calculated and
summed for each segmented region. The overall pvcTLG for this patient was 820.0.
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NaF will allow the detection of osseous abnormal-
ities and calcium aberrancies in patients with sys-
temic inflammation (Fig. 8). Improved temporal
resolution with a 1-minute or less acquisition
time is also an advantage that will lead to
decreased motion artifact and partial volume ef-
fects. This property could be particularly helpful
for evaluation of inflammatory diseases of the
bowel.1,56,57 Inflammatory vasculitides often affect
multiple body regions.44

In addition to autoimmune disorders, viral infec-
tions have proven over and over again to be a
multisystem disease. The emerging evidence by
studying severe acute respiratory syndrome
coronavirus-2 pathogenesis (coronavirus
disease-2019 disease) is a salient example to
remind us that viruses have systemic effects on
the body beyond the primary site of infection that
may initially go unrecognized.58,59 Similarly, total-
body human immunodeficiency virus burden
in vivo has been suggested using TB-PET
imaging.60

Cardiovascular

Atherosclerosis, as the most common cause of
morbidity and mortality in the elderly population,
is a systemic disease and frequently involves
many arteries throughout the body.61,62 Although
cardiac and cerebral complications of atheroscle-
rosis are the main causes of morbidity and mortal-
ity in the affected population, no other organ is
immune to the serious consequences of this dis-
ease. Therefore, there is a dire need for an imaging
modality that allows screening the entire body for
detecting and characterizing atherosclerotic pla-
ques in their early stages and before they cause
significant and irreversible damage to various or-
gans in the body. During the past 5 decades struc-
tural imaging techniques such as CT, MR imaging,
and ultrasound imaging have been extensively
used for detection of this disease but they are
known to suffer from many shortcomings.63–65 It
is well-established that these modalities are insen-
sitive for the early detection of the plaques and
assessing their response to medical and other in-
terventions. During the past 2 decades, attempts
have been made to detect and quantify this com-
mon disease at the molecular and cellular levels
and before it causes structural changes in the arte-
rial system.66 In particular, PET/CT scans and
PET/MR scans have been used to visualize and
quantify inflammation and calcification in plaques



Fig. 8. NaF-PET maximum intensity projection (MIP) of the upper body (A) and lower body (B) of a patient with
rheumatoid arthritis. Focal areas of high bone formation in the joints were segmented using an adaptive thresh-
olding algorithm (ROVER software, ABX GmbH, Radeberg, Germany). Metabolically active volume (MAV),
maximum standardized uptake value (SUVmax), mean SUV (SUVmean), partial volume-corrected SUVmean

(pvcSUVmean), total calcium metabolism (TCM), and partial volume-corrected TCM (pvcTCM) were calculated
and summed for each segmented region. The overall pvcTCM for this patient was 1898.8.
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throughout the body.67,68 FDG-PET imaging has
been successfully used to detect inflammation in
various organs owing to a variety of causes. Acti-
vated inflammatory cells, such as those within
atherosclerotic plaques, are highly glycolytic and
as such are readily visualized by FDG-PET. Simi-
larly, molecular calcification can be assessed by
radioactive fluoride (NaF) in various arteries far in
advance of macroscopic calcification that is visu-
alized by CT imaging.69 By now, the NaF-PET
technique has been shown to be very sensitive
for detecting early evidence for atherosclerosis in
the arterial system throughout the body.43 As
noted elsewhere in this article, delayed imaging
(hours after the administration of either FDG or
NaF) is essential to achieve successful
results.70–72

TB-PET imaging instruments are well-suited for
assessing patients with atherosclerosis at various
stages of the disease. This imaging methodology
allows early detection of many diseases and disor-
ders, as well as also careful monitoring of disease
course after various interventions. Novel quantita-
tive techniques that have been developed in
recent years allow measurement of GDA and
provide a single number for disease affecting
each organ as well as the entire body. This mea-
surement has been termed the athero burden,
when the approach is adopted in patients with
suspected or proven atherosclerosis. We believe
systematic quantification will be of great value for
the management of affected patients.

Osteoporosis

Osteoporosis is a major source of morbidity and
mortality in the elderly population, particularly in
postmenopausal women. Osteoporosis can also
manifest in patients with cancer as osteoblasts
are exposed to chemotherapeutic agents. This
metabolic disorder commonly manifests patholog-
ically in the spine and the lower extremities and is
associated with significant fractures and compli-
cations related to immobility such as pulmonary
embolism and high mortality. NaF-PET imaging is
increasingly used for early detection of osteopo-
rosis far in advance of its detectability by structural
imaging techniques such as dual energy x-ray ab-
sorptiometry scans (Fig. 9). It is apparent that the
diffuse nature of this disorder requires total-body
metabolic assessment with a modality that can



Fig. 9. NaF-PET maximum intensity pro-
jections (MIP) portraying active calcifi-
cation in a 36-year-old man (A) and a
76-year-old man (B). Systemic osteo-
blastic metabolism was assessed by
measuring NaF uptake at the femoral
neck and in the whole skeleton. The
mean standardized uptake value
(SUVmean) in the femoral neck and
whole skeleton of the younger subject
was 6.7 and 5.2, respectively, whereas
the SUVmean in the femoral neck and
whole skeleton of the older subject
was 1.8 and 2.4, respectively.
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readily screen for this serious disease. It is
possible that TB-PET scanning with NaF will
become the modality of choice for both early
detection of osteoporosis by innovative global
assessment techniques and for the early assess-
ment of response in this population.
Metabolic bone disease could be characterized

by NaF TB-PET imaging with sub-mSv patient ex-
posures. Whole body bone metabolism and min-
eral content could be quantified synergistically by
combining TB-PET imaging with photon-counting
CT scans.
Other Applications

In pediatric imaging, TB-PET can make the entire
body image acquisition extremely fast73 compared
with the conventional PET-CT instruments with a
limited field of view. Longer scans require appro-
priate measures to decrease the movement of
the patient, such as sedation. The need for seda-
tion has deprived pediatric patients of the benefits
of many useful imaging techniques. TB-PET imag-
ing can change this challenging situation. In addi-
tion to a shorter study time, this technology could
significantly decrease the radiation dose. In mod-
ern oncology practice, 84% of pediatric patients
live for more than 5 years after their diagnosis
compared with 58% in the 1970s,74 and we should
be cognizant of the realities of radiation exposure
over the long term in these patients.
SUMMARY

TB-PET provides clinicians the ability to take a
comprehensive approach to medical imaging
and for imaging scientists may use a systems
biology approach to analyze the TB PET images
and data. The entire tracer physiology within the
patient’s body over a given scan time interval
can be portrayed, telling a more complete story
of the patient’s disease process. This information
was always present in PET imaging; however, we
were limited in our ability to listen. After the injec-
tion of a radiotracer to the patient, the patient
has paid a fixed cost of radiation exposure. It is
our ethical and professional obligation as physi-
cians to obtain as much information as possible
for asking the patient to expose himself or herself
to that cost. Decreased scan times, lower tracer
dose, economies of scale, and added clinical use-
fulness will also contribute to the economics of
TB-PET imaging, which is projected to be a 5- to
6-fold capital investment over conventional PET/
CT scans or in the neighborhood of $10 million.1

Conventional PET imaging has less signal and
therefore less bandwidth compared with TB-PET
imaging, as if taking the medical history of a pa-
tient, but only listening to 1 word in each sentence.
TB-PET imaging allows molecular imaging physi-
cians to sharpen their ears as they listen to the pa-
tient, as Osler famously said, “listen to your
patient, he is telling you the diagnosis.”75
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Molecular imaging physicians can be more atten-
tive to the patient and his or her disease process
through the lens of TB-PET imaging.

Enhanced reimbursement from the TB PET
needs to be justified by evidence based studies
of the benefits of the TB PET over conventional
PET. Various new types of PET examinations
made possible by TB-PET imaging need reim-
bursed commensurate with their clinical value.
These new examinations may even be able to
occur during the same clinical encounter (per-
formed on the same day, but requiring additional
scanner resources and time) or ordered retrospec-
tively after the original data has been acquired
(similar to adding an additional laboratory test to
a previously acquired phlebotomy sample). Exam-
ples include but are not limited to delayed PET im-
aging, dynamic whole body PET imaging (GDA),
organ or tissue-specific physiologic activity quan-
tification (eg, glomerular filtration rate, quantitative
pulmonary perfusion, among others).
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