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A B S T R A C T   

Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant 
public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials 
and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle 
and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy 
and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral 
infection. This article provides an overview of five viral infectious diseases with high global prevalence: influ-
enza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coro-
navirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each 
disease are discussed.   

1. Introduction 

Viral infectious diseases have had a catastrophic impact in the past 
century. The “Spanish flu” pandemic of 1918, caused by the H1N1 
influenza A virus, claimed the lives of 50 million people. The acquired 
immunodeficiency syndrome (AIDS) pandemic was started in the early 
1980s, yet over 37 million people are still living with the disease in 2020 
[200]. Health organizations have put together countless initiatives, 
including treatment, prevention, and detection strategies to combat the 
spread and re-emergence of viral infectious diseases [1]. Despite these 
efforts, fighting viral diseases has remained a formidable task. Presently, 
the coronavirus disease-2019 (COVID-19) pandemic has impacted 
nearly every continent within a few months, infecting millions of people, 
and causing hundreds of thousands of mortalities [2]. 

Viruses propagate only inside the living cell and their lifecycles 

include five stages: attachment to the host cell, fusion/cell entry, 
replication inside the host cell, assembly, and release from the host cell 
[131]. A significant number of antiviral agents have been developed to 
target host cell receptors and/or stages of the viral lifecycle. These 
antiviral agents can be divided into six classes, including nucleoside and 
non-nucleoside inhibitors, integrase inhibitors, protease inhibitors, 
fusion inhibitors, and coreceptor antagonists [131]. While current drugs 
have shown to be effective in reducing morbidity and mortality associ-
ated with the viral infection, the rapid mutation rate in the viral genome 
enables viruses to quickly adapt and develop drug resistance [98]. This 
challenge emphasizes the need for the discovery and development of 
novel molecules, such as peptide-based agents. 

Peptides can be divided into two groups: natural and synthetic. 
Natural peptides, such as antimicrobial peptides (AMPs), have been 
shown to present antiviral and immunosuppressant activity and are 
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reviewed extensively [134,41]. Other examples of natural peptides 
include hormones, neurotransmitters, and immunomodulators [226, 
194]. Alternatively, synthetic peptides are de novo peptides that are 
conceptualized by rational designs or discovered by the use of in vitro 
peptide discovery platforms such as phage and mRNA display [77,218, 
44]. Both natural and synthetic peptides can contain proteinogenic and 
non-proteinogenic amino acids as building blocks, which can improve 
the pharmacokinetic properties and enhance their efficacy and safety 
profiles [77,204] (Fig. 1). 

Natural or synthetic peptides have drawn great attention in a variety 
of applications as therapeutics, vaccines, and diagnostic agents. Due to 
their high specificity and ability to access hard to reach targets, peptides 
as therapeutics can offer the combined advantages of small and large 
molecules [139]. As vaccines, peptides are popular modalities for 
inducing anti-viral immune response driven by B and/or T cells. Peptide 
optimization such as multimerization and fusion to immunostimulatory 
adjuvants can be used to further enhance the immune response [140, 
107,135]. Moreover, peptides are employed in detection assays to di-
agnose various infectious diseases. Peptide-based diagnostic reagents 
are generally preferred due to their specificity, safety, suitability, and 
flexibility [107]. In this article, we provide an overview of the five in-
fectious diseases; influenza (flu), chronic hepatitis B (CHB), AIDS, severe 
acute respiratory syndrome (SARS), and COVID-19. The current FDA 
approved therapeutics are reviewed for each disease and the applica-
tions of novel peptide-based agents are summarized. We highlight the 
discovery and development of peptide-based candidates under various 
development stages (pre-clinical and clinical) and their potentials as 
therapies, vaccines, and diagnostics. A summary of the strategies dis-
cussed in this article is depicted in Fig. 2. 

2. Influenza 

Influenza (flu), a highly contagious respiratory disease caused by 
influenza virus, is classified into three types: influenza A, B, and C. 
Influenza types A and B are the major causes of the seasonal epidemics 
[92] and caused 36 million illnesses during the 2018–2019 flu season 
[30]. Two viral capsid proteins, Hemagglutinin (HA) and Neuramini-
dase (NA) play key roles during viral infection [82,187]. Based on the 
different combinations of HA and NA proteins, influenza A and B viruses 
are further classified into different groups and subtypes [31]. HA is 
presented on the viral surface as a homotrimer composed of HA1 and 
HA2 subunits linked by a disulfide bond. The infection event is triggered 
by HA1 binding to sialylated receptors on the host cell surface. Upon 
binding, the virus enters the host cell by endocytosis. The acidic envi-
ronment of the endosome induces conformational changes in HA2, 

resulting in exposure of the fusion initiation region (FIR). This allows 
FIR to interact with the host endosomal membrane. This is followed by 
the interaction of matrix-2 (M2) ion channel with the viral envelope and 
release of viral ribonucleoproteins (RNPs) and genome into the host cell 
cytosol. The viral RNA is then replicated, translated, and assembled into 
viral particles. Virus particles then leave the host cells by budding out 
when NA cleaves sialic acid to enable viral release [8]. Due to their 
critical functions, viral HA, NA, and M2 proteins have been the focus of 
influenza therapies. 

FDA approved influenza therapeutics targeting M2 and NA proteins 
shorten the disease time-course and reduce the severity of symptoms. 
Adamantane derivatives, amantadine (Symmetrel) and rimantadine 
(Flumadine), are small molecule inhibitors that target M2 proteins 
encoded by influenza A viruses. [111]. Orally delivered oseltamivir 
(Tamiflu), intranasally administered zanamivir (Relenza), and intrave-
nously injected peramivir (Rapivab) are FDA approved NA inhibitors 
that prevent the virus release from infected host cells. In 2018, FDA 
approved Baloxavir marboxil (Xofluza) for influenza A and B. Xofluza 
inhibits polymerase acidic endonuclease, an enzyme essential for viral 
replication [112]. Favipiravir (Avigan), which also blocks viral repli-
cation is approved for influenza in Japan [67] and it is currently in 
clinical trials for the treatment of COVID-19. It is important to note that 
the use of adamantane is no longer recommended due to its poor 
tolerability and a high rate of drug resistance [151]. In addition, resis-
tant viral mutants have shown decreased sensitivity to oseltamivir [28]. 
The emergence of resistant influenza viruses mandates the discovery of 
novel therapeutics with high specificity and efficacy. The developments 
of antiviral peptides for the treatment of influenza is discussed next. 

Naturally occurring AMPs, such as defensins and cathelicidins, pro-
vide great starting scaffolds for drug development. Mouse β-defensin-4 
(mBD4) has been shown to have antiviral activity against influenza A 
virus (H5N1 and H1N1). Truncations of mBD4 identified a 30-residue 
long peptide P9 that interacted with HA at high affinity. Pretreatment 
of P9 with the virus was shown to alter endosomal acidification and 
inhibit viral RNA release and replication. Potent antiviral activities of P9 
against influenza viruses (H1N1, H3N2, H5N1, H7N7, H7N9) were re-
ported in MDCK cells and mice [231]. θ-defensin, another member of 
defensins, is found in non-human primates. Synthetic θ-defensin, called 
retrocyclin neutralizes influenza virus by inducing its aggregation and 
enhancing its uptake by neutrophils [93]. Two families of cyclic pep-
tides, Hapiviren and Diprovin, were designed based on retrocyclin and 
were shown to have neutralizing activity against H1N1 and H3N2 vi-
ruses [55]. Cathelicidin, another class of naturally occurring AMPs, can 
disrupt the viral envelope to achieve potent antiviral activity. Tripathi 
and colleagues have shown that the helical fragment of LL-37, a human 

Fig. 1. Schematic of the natural and synthetic peptides. Natural and synthetic peptides can contain both proteinogenic and non-proteinogenic amino acids to achieve 
antiviral function. 
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cathelicidin, is essential for its antiviral activity. Helical fragment of 
LL-37 showed greater activity in viral reduction with H1N1 strain (IC50 
3.2 μM) than the full-length LL-37 (IC50 11.3 μM) [197]. 

In addition to the naturally occurring peptides that are derived from the 
innate immune system, some proteins have shown potential as the starting 
point for the discovery and development of anti-viral peptides. Four ex-
amples will be discussed next. First, lactoferrin, found in bovine milk was 
shown to bind to HA and inhibit the infection of influenza subtypes H1N1 
and H3N2. By molecular docking, three fragments on lactoferrin, 
SKHSSLDCVLRP (418–429), AGDDQGLDKCVPNSKEK (506–522), and 
NGESSADWAKN (552–563) were identified with the inhibitory activity 
against influenza virus at picomolar and femtomolar concentrations [7]. 
Scala and colleagues identified minimum pharmacophore of the most 
potent peptide (SKHSSLDCVLRP) and generated three tetrapeptides 14 
(VLRP), 15 (SLDC) and 17 (SKHS) with broader anti-influenza activity. 
Tetrapeptide 17 was more active than the parental peptide in the 
neutralization assay in MDCK cells [184]. The second example, a 20-resi-
due peptide EB derived from the signal sequence of fibroblast growth 
factor 4, was reported to exhibit antiviral activity against influenza viruses, 
including the H5N1 subtype. EB (RRKKAAVALLPAVLLALLAP) bound 
specifically to HA, prevented viral cell entry in the MDCK cell line, and had 
protective activity in mice at low micromolar concentration [106]. In the 
third example, a suppressor of cytokine signaling protein called tyrosine 
kinase inhibitor peptide was used to develop a family of 12–16 residue long 
anti-viral peptides termed FluPep (FP) for targeting influenza. FluPep 
inhibited HA binding to host cells and cell entry. One of the FP peptides 
(FP4: RRKKWLVFFVIFYFFR) showed nanomolar efficacy for Influenza A 
virus subtypes H1, H3, and H5 in a plaque-reduction assay. To compensate 
for the high hydrophobic content of FP peptides [149] and to enhance their 

solubility, Alghrair and team constructed gold and silver nanoparticle–FP 
conjugates. Interestingly, the peptide-nanoparticle conjugates showed 
enhanced solubility and increased activity in plaque assay using MDCK 
cells. The authors suggested that the use of FluPep-functionalized nano-
particles might be safe for delivery to target organs [5]. The last example 
includes the NA inhibitory peptide (PGEKGPSGEAGTAGPPGTPGPQGL) 
derived from cod skin hydrolysates. The peptide was reported to have 
considerable anti-viral activity and hence potential utility in preventing 
influenza virus infections. However, the peptide was shown to be highly 
susceptible to degradation in the presence of the simulated in vitro 
gastrointestinal fluid, suggesting that oral administration was not feasible 
[118]. 

The broadly neutralizing antibodies (bnAbs) targeting HA protein 
have also been utilized to generate peptides with improved potency. A 
linear peptide, P1 (SQLRSLEYFEWLSQ) was designed based on the 
complementarity-determining region loops of the heavy chain and 
framework region of two bnAbs called FI6v3 and CR9114 [108]. P1 
sequence was optimized by incorporation of unnatural amino acids 
5-phenyl-norvaline1 (Nva), ornithine2 (Orn), β-Alanine11, N-methylated 
Leu3, and dichloro-Phe6 (cyclization between position 2 and 11). This 
effort resulted in the discovery of an 11-residue cyclic peptide P7 
(Nva-Orn-meLEYchlFEWLS-βAla) that targeted influenza A viruses 
(H1N1, H5N1) with a 100-fold increase in potency (IC50 30− 70 nM and 
KD 17–37 nM). P7 inhibited HA conformational rearrangement in the 
endosome, preventing viral fusion with the host cell membrane [108]. 

In a parallel approach, viral proteins are used to develop anti-viral 
peptides. For example, a 16-residue long peptide, Flufirvitide-3, 
derived from the fusion initiation region of the HA protein, has shown 
high efficacy in plaque inhibition assay and in vivo studies against 

Fig. 2. Schematic of peptide applications in targeting viral infectious diseases. Utilization of peptides as therapeutics, vaccines, or diagnostic reagents to combat viral 
diseases is illustrated here. 
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influenza virus and has completed phase I trials [11]. In silico and bio-
informatic approaches were utilized to design peptides based on highly 
conserved regions of HA1 and HA2. As a result, nine peptides were 
identified that bound to HA stalk regions and had anti-viral activity at 
micromolar concentrations against H1N1 and H5N2 strains in MTT 
reduction assay using MDCK cells [130]. In a separate study, a 
HA-binding pentapeptide (ARLPR) was grafted into different carbohy-
drate scaffolds called carbosilane dendrimers. The scaffolds presented 
the HA-binding peptide with the needed flexibility, stability, and mul-
tivalency. In particular, the dumbbell-shaped carbosilane dendrimer 
had the strongest inhibitory activity of 0.72 μM and 0.6 μM against 
H1N1 and H3N2, respectively [83]. 

Novel peptide discoveries are facilitated by the use of in vitro peptide 
selection platforms. Peptide f1 (ARLSPTMVHPNGAQP) was identified 
from the phage library and inhibited the interaction of sialylglyco- 
conjugate receptors on the host cell surface with viral HA protein. 
Optimized f1 was an alkylated peptide (C-18-s2(1− 5) C17H35CO- 
ARLPR-NH) with IC50 values of 1.9 μM and 1.6 μM for H1N1 and H3N2, 
respectively. The alkylation was implemented to enhance inhibitory 
activity through multivalency. The docking simulation suggested that 
the peptide makes the same hydrogen bond interactions with HA as the 
sialic acid [137]. Recently, a novel peptide inhibitor (errKPAQP) against 
influenza NA protein was identified from a peptide library, comprised of 
L and D amino acids. The peptide bound to NA with nanomolar affinity 
and inhibited H1N1 infection at μM concentration in MDCK cells. 
Administration of the peptide in infected mice reduced virus-induced 
inflammation, lung tissue damage, and mortality [34]. Potential pep-
tide therapies are summarized in Table 1. 

The administration of influenza vaccines is recommended to prevent 
virus infection. During 2017–2018, the influenza vaccination prevented 
91,000 influenza-related hospitalizations [27]. The current influenza 
vaccine induces a prophylactic antibody response against the HA and NA 
proteins. The preventive vaccines in the market include Trivalent inac-
tivated influenza (TRI) and quadrivalent live attenuated influenza vi-
ruses (LAIV), such as FluMist and Fluzone. New variants of the virus 
emerge constantly, therefore, the type of vaccine preparation must be 
predicted and generated before strain identification for the upcoming 

year. It is often challenging to predict epidemics due to the high di-
versity of viral subtypes [29]. Next, we summarize a few peptide-based 
vaccines that have reached the advanced stages of clinical trials. 

In one study, conserved sequences from influenza proteins that are tar-
geted by T cells (human and mice) were identified using a proprietary 
epitope prediction algorithm. The mixture of chemically synthesized pep-
tides (FLU-v) induced a specific HLA-A*0201-mediated CD8+ T cell response 
in immunized transgenic mice model and significantly increased their sur-
vival rate when the animals were challenged with a lethal dose of influenza 
[190]. Equimolar combination of four peptides (M1: DLEALMEWLKTR-
PILSPLTKGILGFVFTLTVP, NPA: DLIFLARSALILRGSVAHKSC, NPB: PGIA-
DIEDLTLLARSMVVVRP, and M2: IIGILHLILWILDRLFFKCIYRLF) were 
tested in clinical trials and the safety and efficacy were reported. This sug-
gested that FLU-v-like peptides activate the T cell arm of immune response 
and have potential as vaccines [163,164,190]. Multimeric-001 (M-001) is 
another peptide vaccine that has met its primary endpoint in phase II. It 
consists of three repetitions of nine conserved B and T cell epitopes from 
influenza HA, NP, and M1 proteins expressed as a single recombinant 
polypeptide. M-001 immunization was shown to induce B and T cell-specific 
immune responses and offers protection against infection with different 
influenza strains, including H5N1 strain. M-001 is the first universal vaccine, 
which is expected to protect against existing and future seasonal and 
pandemic virus strains [10]. Vacc-FLU by Bionor is another universal 
influenza peptide vaccine in pre-clinical development. A proprietary peptide 
design platform was used to identify the four peptide components of 
Vacc-Flu from the conserved regions of M2 and NP of influenza A. Immu-
nization by Vacc-Flu results in the induction of IFNγ-producing T cells and 
antibody-producing B cells, both of which can protect from severe disease 
symptoms upon infection [90]. 

The currently used influenza diagnostic tests are based on molecular 
assays and antigen detection [202]. FDA-licensed tests are designed to 
detect and differentiate influenza A and B viruses but have a limited 
capability to identify subtypes of influenza A viruses. Therefore, newer 
approaches that are cost-effective, less labor-intensive, easy to perform, 
and able to detect and differentiate influenza subtypes are needed. A 
recently developed approach is a peptide-based molecular beacon 
(PEP-MB) for the detection of Influenza type A using fluorescence 

Table 1 
Summary of potential peptide therapies for Influenza.  

Target 
protein 

Peptide 
Name 

Sequence Derived from IC50 Assay Format Tested Phase Reference 

HA 

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES Cathelicidin 0.9− 11.3 
μM 

Neutralization assay Pre- 
clinical [197] 

GI-20 GIKEFKRIVQRIKDFLRNLV AMP (LL-37) 1.6− 3.2 μM Neutralization assay Pre- 
clinical 

P1, P2, P3 
SKHSSLDCVLRP (1), AGDDQGLDKCVPNSKEK (2), and 
NGESSADWAKN (3) Lactoferrin PM-FM Neutralization assay 

Pre- 
clinical [7] 

Tetrapeptides 
Peptide 14 (VLRP) Lactoferrin 

fM range Neutralization assay 
Pre- 
clinical [184] Peptide 15 (SLDC) and SKHSSLDCVLRP (1), 

Peptide 17 (SKHS) 

P9 NGAICWGPCPTAFRQIGNCGHFKVRCCKIR mouse β-defensin-4 1.5− 4.8 μg/ 
mL 

plaque reduction assay Pre- 
clinical 

[231] 

EB RRKKAAVALLPAVLLALLAP 
fibroblast growth 
factor 4 3− 10 μM 

hemagglutination 
inhibition assay 

Pre- 
clinical [106] 

FP-4 RRKKWLVFFVIFYFFR 
Tyrosine kinase 
inhibitor peptide 

0.05− 0.13 
μM plaque-reduction assay 

Pre- 
clinical [5] 

Flufirvitide-3 - * fusion initiation 
region 

nM range plaque inhibition assay Phase 1 [67] 

P7 (Nva-Orn-meLEYchlFEWLS-βAla Neutralizing 
antibodies 

30− 70 nM AlphaLisa competition 
binding assay 

Pre- 
clinical 

[108] 

C-18-s2(1− 5) C17H35CO-ARLPR-NH Phage library 1.6− 1.9 μM plaque inhibition assay 
Pre- 
clinical [137] 

NA 

peptide P PGEKGPSGEAGTAGPPGTPGPQGL 
Cod skin 
hydrolysates 

3.5 mg/mL NA inhibitory assay 
Pre- 
clinical 

[118] 

P2 errKPAQP 
Binding pockets of 
oseltamivir in NA 4.25 μM 

NA inhibitory assay 
Cytopathic effect (CPE) 
assay 

Pre- 
clinical [34] 

*not available in the literature. 
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resonance energy transfer (FRET). A HA1-specific binding peptide is 
conjugated to two complementary nucleotides on each end. Sulfo--
succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sul-
fo-SMCC) is used to cross-link the complementary nucleotides: a 
Cy3-modified oligonucleotide (Oligo-Cy3) and a black hole quencher 2 
(BHQ2)-modified oligonucleotide (Oligo-BHQ2). In the absence of virus 
particles, PEP-MB constructs form hairpin structures that result in the 
quenching of donor Cy3 by BHQ2. In the presence of the H1N1 virus, 
PEP-MB undergoes a conformational change due to the binding to viral 
HA. As a result, strong fluorescence is emitted and detected by the 
beacon [122]. In another detection method, sialic acid-mimic penta-
peptide (ARLPR) identified by phage display is immobilized on 
boron-doped diamond electrodes using click chemistry. Electrochemical 
detection of HA binding to the peptide indicates the presence of the 
Influenza virus [137,138]. Also, ARLPR peptide dimers can be conju-
gated to poly(glycidyl methacrylate) coated nanoparticles to detect the 
agglutination of the influenza virus. This method can be used as an 
alternative approach to agglutination assay using red blood cells since it 
is more stable with an extended storage period [136]. 

3. Chronic hepatitis B 

Chronic Hepatitis B (CHB) is caused by the hepadnavirus hepatitis B 
virus (HBV), which targets the liver leading to a severe medical condi-
tion. Recent global statistics from the World Health Organization (WHO) 
estimated that 257 million people carried the virus in 2015 [208]. HBV 
is an enveloped virus that is coated with a lipid bilayer and packaged 
with viral polymerase, relaxed circular DNA (rcDNA), and three types of 
antigens: surface antigen (HBsAg), e antigen (HBeAg), and core antigen 
(HBcAg). Upon infection, rcDNA is converted into the host-specific 
covalently closed circular DNA (cccDNA) by the viral polymerase, 
which plays a critical role in HBV replication [165,146,75]. 

The current FDA-approved treatment for CHB is based on two main 
strategies: 1) block HBV replication using nucleoside or nucleotide an-
alogs such as tenofovir and entecavir, which suppress polymerase ac-
tivity, inhibit reverse transcription of viral RNAs, and stop the synthesis 
of cccDNA; 2) stimulate the immune response directly using Interferon α 
(IFN-α) or pegylated interferon. Nucleoside or nucleotide analogs are 
fast-acting and induce minimal drug resistance with a 90 % relapse rate 
within a year after treatment is stopped. IFN-α was expected to provide a 
gold standard therapy due to its immunomodulating function. However, 
only a moderate response rate (30–40 %) was observed in the clinic 
[121,45,192]. Although IFN-α therapy is still being used extensively, 
WHO has recommends the orally administrated tenofovir or entecavir 
for the treatment of CHB due to their minimal drug resistance and side 
effects [209]. Entecavir is an off-patent drug. The two tenofovir block-
busters for CHB approved by FDA are Viread (tenofovir disoproxil 
fumarate) and Vemlidy (tenofovir alafenamide) by Gilead. 

In preclinical research, peptides derived from natural proteins have 
demonstrated promising potential for treating CHB. An example is a 
peptide called PTD-p37 that was designed to inhibit viral regeneration. 
The peptide contained an N-terminal cell-penetrating domain 
(YGRKKRRQRRR) fused to the residues 444–480 of the heat shock 
protein gp96 (p37). Typically, HBV activates the gp96 promoter through 
the NF-κB pathway. This results in an up-regulation of gp96 expression, 
causing positive feedback to stimulate HBV replication in cell culture 
[61]. Moreover, the molecular chaperone gp96 was shown to bind to 
both HBV repressor p53 and p53 E3 ligase Mdm2 to down-regulate p53 
levels by enhancing its ubiquitination and degradation [217,154]. 
Peptide p37 binds to gp96 at the N-terminal helix-loop-helix region 
without interfering with the C-terminal dimerization domain. The pep-
tide interrupts the helix-helix interaction and locks gp96 in an inactive 
"open" conformation. As a result, Mdm2 is disassociated and p53 levels 
are increased [113,120,170]. PTD-p37 treatment reduced HBsAg levels 
and viral proliferation in vitro and in mice [170,61,125]. 

Peptides have also demonstrated significant potential in interrupting 

virus infection in preclinical research. HBsAg is composed of three types 
of envelope glycoproteins: large (L) protein with pre-S1, pre-S2 and S 
domain; middle (M) protein with pre-S2 and S domain; and Small (S) 
protein with S domain only. The pre-S1 domain initiates virus infection 
by binding to the host receptor called sodium taurocholate co- 
transporting polypeptide (NTCP) and the low-affinity HBV co-receptor 
heparan sulfate proteoglycan (HSPG) [195,148,14]. Therefore viral 
cell entry can be blocked by targeting host receptors, NTCP and HSPG, 
or viral antigen HBsAg. These approaches will be discussed next. 

Novel NTCP binding macrocycles of 6–17 residues were identified 
from a random peptide integrated discovery screening platform. Among 
the top ten candidates that were selected based on unique sequences, 
some showed sub-micromolar IC50 for inhibiting HBV cell entry in he-
patocytes, five-fold more potent than CsA in the same assay [156]. 
Another example is a 47-mer lipopeptide derived from pre-S1, Myrclu-
dex-B, that binds to NTCP and inhibit HBV infection in cell culture and 
animal models [203,76,159]. Liposomal formulation of Myrcludex B 
allows for oral administration and has been investigated as a hepatitis B 
peptide drug in the clinic [199]. A Phase IIa clinical evaluation of 
Myrcludex-B in patients with HBeAg Negative CHB was completed in 
2018 (NCT02881008). The clinically used immunosuppressant, Cyclo-
sporin A (CsA), has also been shown to bind to NTCP and efficiently 
block HBV in cell entry [207]. In the search of additional NTCP binders, 
Donkers and colleagues screened Prestwick Chemical Library, 
comprised of 1280 approved and off-patented drugs with known safety 
information. The five most potent drugs were tested in the HBV infection 
assay using human hepatic cell line HepaRG. They are the antidiabetic 
insulin sensitizer Rosiglitazone, the leukotriene inhibitor zafirlukast for 
asthma, antihistamines, and decongestants TRIAC targeting thyroid 
hormone receptor, glutathione transferase inhibitor sulfasalazine for 
inflammation, and pain and vital dye Chicago Sky Blue 6B. All five drugs 
were shown to block HBV infection at similar levels of potency. 
Although, Donker’s unique approach suggested an efficient way for 
developing HBV prevention medicine [53], de novo peptides that spe-
cifically target NTCP may offer broader advantages than pre-existing 
drugs. 

The host receptor, HSPG binds to pre-S1 to initiate the viral inte-
gration to host cells. This is followed by the interaction between HBV 
and the high-affinity receptor NTCP for endocytosis [127,84]. Liu and 
colleagues designed an array of pre-S1 truncations displayed on lipo-
somes (LPs). The cellular attachment of the truncations was tested and 
the fragment pre-S1 (30–42) was identified with the highest affinity to 
mimic the binding of HBV to HSPG. It was shown that the complex 
targeted liver cells and induced endocytosis. The results also offered a 
promising approach for the specific delivery of HBV drugs to human 
liver cells [171,117]. 

The de novo peptide inhibitors of virus pre-S1 were also investigated 
for the treatment of CHB. A short peptide B10 (SGSGLRNIRST) was 
identified by the phage peptide library selection against pre-S1 (1–60). 
The peptide disrupted the interaction of HBV with human hepatocyte 
carcinoma cells [87]. B10 was optimized based on the key motif (LRNIR) 
to generate a concatemer 4B10 (LRNIRLRNIRLRNIRLRNIR) with 
three-fold stronger affinity to pre-S1 (28–42) of HBV. Peptide 4B10 was 
shown to inhibit HBV infection in both primary tupaia and human he-
patocytes [225,71]. In a separate study, a 12-residue random phage li-
brary was selected against pre-S1 region (21–47) resulting in the 
discovery of peptides with a common linear motif (WTXWW) specific for 
pre-S1. The common motif was used to identify novel membrane and 
extracellular proteins that are involved in HBV infection such as lipo-
protein lipase [50]. 

In addition to targeting virus antigens, peptides that block virus 
maturation have also been considered as antiviral therapeutics. A stretch 
of 13 residues corresponding to the C-terminus of the pre-S1 domain 
(PLSPPLRNTHPQA) and amino acids corresponding to the 56–80 region 
of S domain (PISNHSPTSCPPTCPGYRWMCLRRF) bind the core antigen, 
HBcAg. It was suggested that these fragments were responsible for virion 
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maturation during which the pre-S domain of L protein is switched from 
inside to outside of the virion. This topological change allows HBV to 
become a "binder-type particle" and recognizes the receptors on the host 
cells [165,206]. Three β-turn structures in pre-S1 and one in S region 
were identified by NMR spectroscopy as critical regions for this process 
[146]. Although additional work is needed, this finding provided a new 
strategy for designing inhibitors that might prevent the conformational 
change in the pre-S domain and interrupt the HBV morphogenesis. 

Another strategy for treating CHB patients is using vaccine-based thera-
pies. Due to the immune tolerance of CHB patients, vaccine-based therapies 
can help restore the immune response for viral elimination [142]. A pilot 
study of a peptide-based T cell vaccine, CY-1899, was tested on 19 patients 
with CHB. This vaccine is composed of a palmitic acid linked peptide with 
the sequence of the T cell epitope. CY-1899 failed to induce vigorous cyto-
toxic T lymphocyte activity or viral clearance possibly due to T-cell 
exhaustion in CHB patients [89]. Other clinical studies using similar ap-
proaches have also failed to induce a sufficient antibody response in CHB 
patients [65,129,224]. In a separate study, Dou and colleagues designed a 
37-residue peptide SLP (MDIDPYKEFGATVELLSFLPSDFFPSVRDLLDTASAL) 
based on a conserved region in HBcAg. The peptide is comprised of three 
CD4+ T-cell epitopes and three CD8+ T-cell epitopes. In a healthy state, 
CD4+ helper T-cells enhance the immune response regulated by CD8+

T-cells. Activated CD8+ T-cells release inflammatory cytokines resulting in 
killing the infected host cells. In CHB patients, CD8 + T-cells are not activated 
properly by mitogenic stimuli. However, the study showed that human 
monocyte-derived dendritic cells presented fragments of SLP as antigens to 
activate CD8+ and CD4+ T-cells ex vivo and to induce the immune response 
in CHB patients [56,19,115]. 

Peptide-based vaccines have been developed to prevent HBV infec-
tion in healthy individuals. It should be noted that in one study, HBsAg 
(113–135) derived peptides, a B-cell epitope, were displayed on a novel 
chimeric virus-like particle carrier that was derived from the truncated 
roundleaf bat HBcAg. The carrier was further optimized by the intro-
duction of one CD8+ T cell epitope and two CD4+ T cell epitopes. The 
resulted construct was shown to induce a specific antibody response to 
the HBsAg (113–135) with enhanced T cell response. In addition, the 
particle induced a lasting response resulting in the virus DNA clearance 
in mouse model, and effective antibody production in rabbits and cyn-
omolgus monkeys [229]. A grass pollen allergy vaccine, BM32, con-
taining a pre-S domain (pre-S1 and pre-S2) fused with allergen-derived 
peptides, has previously been shown to induce preS-specific immune 
responses. It was tested for HBV-specific immune responses and was 
shown to be successful in inducing IgG antibodies against HBV. BM32 
also protected rabbits from HIV infection as effectively as the approved 
vaccine Engerix-B [43]. Immunoinformatic approaches and bio-
informatic tools have been employed to develop peptide-based vaccines 
for hepatitis B and might hold potentials in future pre-clinical studies 
[37,153]. While peptides-based vaccines have not reached the market 
yet, some FDA approved vaccines for HBV prevention are available. 
These include Pediarix (GlaxoSmithKline Biologicals), VAXELIS (MSP 
Vaccine Company), Twinrix (GlaxoSmithKline Biologicals), Recombivax 
HB (Merck & Co, Inc), ENGERIX-B (GlaxoSmithKline Biologicals), and 
HEPLISAV-B (Dynavax Technologies Corporation). 

Peptides are also used for the diagnosis of HBV. Traditionally, HBV 
DNA can be detected by polymerase chain reaction (PCR). HBsAg and 
HBcAg can be detected using immunostaining. Queiroz de Souza and 
colleagues designed a recombinant peptide complex (rMEHB) by 
assembling four conserved HBcAg epitopes (epitope 1: 61–83 aa; epitope 
2: 107–118 aa; epitope 3: 128–133 aa; and epitope 4: 134–145 aa). 
rMEHB exhibited high sensitivity as a detection agent in ELISA by pre-
senting multiple epitopes for binding to the anti-hepatitis B core anti-
body [48]. 

4. Acquired immunodeficiency syndrome 

Acquired Immunodeficiency Syndrome (AIDS) is a disease caused by 

human immunodeficiency virus (HIV). HIV can directly weaken the 
immune system and make it vulnerable to other pathogens. The viral 
envelope (Env) protein is a key driver of the viral binding and fusion to 
the target cells and contains two major non-covalently associated gly-
coproteins, surface subunit gp120 and transmembrane gp41. These 
glycoproteins surround the nucleocapsid containing viral RNA and 
reverse transcriptase. The binding of viral gp120 to the CD4 receptor 
exposes its binding site to the chemokine coreceptor. Depending on the 
cell type, different chemokine receptors are recruited, for example, 
CXCR4 on T-cells and CCR5 on macrophages are identified as CD4 
coreceptors. After binding of the virus to the host cells, gp41 undergoes a 
receptor-activated conformational change to form a six-helical bundle 
(6HB). The 6HB initiates viral entry by triggering the insertion of the 
fusion peptide (hydrophobic N-terminal fragment of gp41) into the host 
cell membrane [220,16,32]. Ultimately, the viral and host membrane 
fuse together followed by the insertion of viral genetic material in the 
cytosol. The viral RNA is transcribed to dsDNA. Integrase then carries 
dsDNA through the nucleopore to the nucleus and inserts it into the host 
chromosome causing lifelong infection. The viral DNA is replicated, 
translated, and assembled at the cell membrane as an immature poly-
peptide chain, which is cleaved by the viral proteases to form mature 
infectious virion [66]. 

Most of the FDA approved anti-HIV drugs target viral reverse tran-
scription factor, proteases, integrases, and structural proteins to stop the 
fusion, entry, replication, or maturation of the virus. Since the first 
approved HIV drug azidothymidine in 1987, a reverse transcriptase in-
hibitor, more than 30 antivirals for AIDS have been approved [33]. 
Currently, the main antiviral therapies are small molecules and only a 
few are protein, peptide, or oligonucleotide-based therapies. In 2003, 
the FDA approved the first peptide-based fusion inhibitor, Enfuvirtide, a 
36 residue long peptide designed to mimic the C-terminal heptad repeat 
(CHR) of the helical region of gp41 [102]. In 2018, Albuvirtide, a pep-
tide fusion inhibitor, was approved in China [222]. Within the past 
decade, the development of peptide-based fusion/entry inhibitors is 
centered around targeting gp120 variable loops and gp41 functional 
regions [227,169]. Some of these efforts are summarized in Table 2. 

A few natural peptides act as the first line of defense to protect 
against HIV infection. AMPs from bacteria, plants, animals, and humans 
have been extensively reviewed for their anti-HIV activities [205,41, 
144] and some have been considered as potential microbicide candi-
dates [158]. Microbicides are a preventive option used to stop the 
transmission of HIV through sexual intercourse in women. As mentioned 
earlier, retrocyclins are natural θ-defensins produced by primates. Ret-
rocyclins have been shown to be capable of binding to both HIV-1 and 
host cell glycoproteins to prevent HIV entry and have been considered as 
microbicides [158]. The only human cathelicidin-derived AMP, LL-37, 
has also shown anti-HIV activity. Three peptides, LL-37 and its two 
fragments LL13− 37 and LL17− 32, inhibit HIV-1 protease with weak 
potency with no reports of toxic effects [213]. 

Peptides that bind to gp41 have emerged as potential treatments for 
AIDS. An example is DP-178 (T-20), which binds to CHR and prevents 
the formation of 6HB. As a result, viral fusion to host cells is inhibited 
[104,211]. This peptide is currently marketed under the name Enfu-
virtide [116]. Despite the safety profile and efficacy of Enfuvirtide, its 
poor stability in serum and large-dosage requirement have highlighted 
the need for other peptide-based drugs. Sifuvirtide (SFT), a 
second-generation HIV-1 gp41 fusion peptide developed by FusoGen 
Pharmaceutical, Inc. is currently in phase III clinical trials in China. SFT 
is an optimized version of Enfuvirtide with 10-fold enhanced efficacy 
and prolonged half-life [141]. Other advantages of SFT include stability 
and higher selectivity toward rigid membrane models, such as saturated 
dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin (SM). The 
ability of SFT to strongly interact with rigid lipidic areas on the fusion 
site possibly contributes to its improved efficacy [86,26]. Another 
example of a peptide that interacts with gp41 is a PIE12 (Pocket-specific 
Inhibitor of Entry). PIE12 is a trimerized D-peptide identified using 
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phage display and has a picomolar binding affinity to trimeric gp41 and 
a potency in the mid picomolar to low nanomolar range. Further, the 
half-life of PIE12-trimer was improved three-fold by cholesterol 
conjugation making the peptide less vulnerable to renal filtration in rat 
models. The optimized pegylated D-peptide (Cholesterol-PIE12--
trimer-PEG31) with its sustained-release formulation has provided 
feasible dosing over an extended period in a non-human primate model 
[173]. Another example is the P3 peptide, which targets HIV-1 gp41 
HR1 site. P3 is a 34 amino acid peptide derived from HIV-2 helical 
region 2 of gp41that blocks HIV infection at a sub-nanomolar concen-
tration in both HIV-1 and HIV-2 primary isolates [21]. It was suggested 
that the alpha-helical structure of P3 provides resistance to proteases 
compared to the unstructured peptides like T-20. Due to the high sta-
bility in the human vaginal environment (pH 3.5–4.5) and the ability to 
retain its bioactivity at 25◦, 37◦, and 65 ◦C for a weeklong period, P3 
can be a potential candidate for the development of microbicides [15]. 
A novel lipopeptide, LP-19 that is derived from the integration of 
multiple design approaches, targets the conserved pocket region of 
gp41 and prevents viral fusion to host cells. LP-19 with a 
membrane-anchoring lipid tail showed high affinity and potency in 
vitro for inhibiting HIV-1 and HIV-2 entry. LP-19 exhibited extended 
half-life in rhesus macaques and drastically reduced viral loads in 
infected monkeys [38]. Peptides derived from viral sequences, 
including gp41 can be potentially immunogenic. However, it is possible 
to lower the immunogenicity risk through peptide engineering. The 
novel HIV fusion inhibitor, V2o, is derived from the gp41 heptad repeat 
2 region of HIV-2 and HIV-1. The removal of MHC-I epitopes from the 
naturally derived peptide reduced its immunogenicity and improved its 
antiviral activity profile. V2o efficiently inhibited the viral entry in 
PM-1 cells infected with lentiviral vector particles with the IC50 in the 
picomolar range [22]. It is worth mentioning that peptides derived 
from host cells that are involved in viral infection have also been 
considered. An example is peptide 2C which is derived from the 
C-terminal portion of the extracellular loop of CCR5. C2 competes with 
CCR5 for binding to gp120 [54] and inhibits HIV-1 entry at a 
double-digit micromolar concentration in vitro [52,18]. 

Despite over 30 years of effort, there is no available vaccine to 
prevent HIV infection and progression. Most vaccines that have been 
developed have failed to induce a protective immune response against 
HIV-1 infection in clinical trials. Eliciting neutralizing antibodies using 
gp120 as an immunogen is a less than ideal strategy for developing HIV 
vaccines. The VAX003 and VAX004 trials conducted by VaxGen Inc. 
determined the safety and efficacy of two bivalent subtypes B and E 
recombinant gp120 proteins, AIDSVAX(B/B) and AIDSVAX(B/E), 
respectively. The trials failed during phase III due to insufficient anti-
body induction and inability to maintain immune response after sub-
sequent boosts [162,64,12]. The RV144 trial (Thia trial) that combined 
two failed vaccines, recombinant Canarypox vector ALVAC-HIV 
(vCP1521) and AIDSVAX (B/E), failed to show sufficient efficacy for 
approval by the Thailand Ministry of Health [174]. In 2019, the Na-
tional Institutes of Health announced phase III clinical trials of Imbo-
kodo (HVTN705/HPX2008) in women in Southern Africa and Mosaico 
(HVTN706/HPX3002) in men and transgender persons to evaluate 
vaccine efficacy [51]. The Ad26-based mosaic vaccine, containing Evn, 
reverse transcriptase Pol, and capsid protein Geg, showed 100 % im-
mune response in humans when combined with high-dose of gp140 
boost [13]. 

Despite the lack of success, tremendous effort has been made to 
develop vaccines. Some of this work that has employed peptides will be 
discussed next. The variable loops of gp120 (V1-V3) have shown 
promise as vaccines. Peptides corresponding to the variable loop 3 (V3) 
of gp120 are more accessible compared to other loops, hence have been 
marked as neutralizing epitopes. Immunization with the 31–39 amino 
acid long V3-peptides has induced generation of bnAbs in mice that 
could possibly block the interaction of gp120 with host co-receptors 
[96,60]. Cyclization of V3 has enhanced its immunogenicity, Ta
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resulting in a 30-fold stronger HIV-1 neutralizing response in rabbits 
[145]. In addition to the loops of gp120, a minimal epitope derived from 
the external region of gp41 (EC26-2A4ΔM: ELLELDKM) has also shown 
potential in inducing HIV-neutralizing antibodies upon immunization of 
mice [177]. Another example is Vacc-4 × . Vacc-4x is comprised of four 
synthetic peptides derived from HIV capsid protein p24, which is present 
at high levels during the early and late stages of HIV infection. In REDUC 
clinical study, administration of Vacc-4x as part of combination therapy 
with an antiretroviral drug, Romidepsin, resulted in the activation of 
CD8+ T-cells and the reduction in HIV load in patients [191,212,178]. 

Peptides have also played a critical role in developing HIV diagnostic 
reagents. The US Centers for Disease Control and Prevention (CDC) 
recommends two types of diagnostic tests for AIDS; p24 antigen test for 
early-stage detection and HIV-1 and HIV-2 antibody test for early to 
chronic stage detection. Commonly used HIV tests range from immu-
nofluorescence to nucleic acid-based assays [99]. Peptides can be useful 
tools to diagnose monoclonal antibodies and antigens in HIV patients. 
The FDA has approved OraQuickb HIV-1 rapid antibody test, which 
detects anti-gp41 antibodies in saliva, serum, plasma, or whole blood 
using synthetic gp41 peptide [152]. Another example is VIKIA®. This 
test uses HIV-1 gp41 and HIV-2 gp36 synthetic peptides immobilized on 
a strip. VIKIA® is sensitive and reliable, and it only requires a microliter 
volume sample size [73]. Another diagnostic assay called Alere Deter-
mine™ HIV 1/2 Ag/Ab Combo relies on a combination of synthetic 
peptides and recombinant antigens derived from gp41, gp120, and gp36 
and can detect both HIV-1/2 antibodies and the HIV-1 p24 antigen 
[114]. Peptides are also used in applications with biosensors. Examples 
include an electrochemical peptide-based sensor developed for the 
detection of HIV anti-p24 antibodies [70] and a bifunctional color-
imetric/fluorescence assay that uses short peptides derived from HIV-1 
p17 protein tagged to a sensitive dye (P-17 antibodies are prevalent in 
the early stages of infection). Biosensors are advantageous due to their 
rapid turnover and minimal use of reagents and equipment [183]. 
Another sensor-based assay utilizes a 35-residue peptide fragment 
derived from gp41 (579–613) polymerized on a surface of quartz crystal 
microbalance to detect the majority of anti-HIV-antibodies in biological 
samples [132]. 

5. Severe acute respiratory syndrome 

Severe acute respiratory syndrome (SARS) is caused by SARS coro-
navirus 1 (SARS-CoV-1), a subgroup B betacoronavirus. The SARS-CoV- 
1 genome consists of 29.7 Kb positive-stranded RNA composed of 
replicase and structural regions [47]. The replicase region encodes two 
polyproteins that contain 16 non-structural proteins (nsp1 through 
nsp16) required for viral replication and transcription. The polyproteins 
are cleaved into individual functional proteins by two proteases, 
papain-like protease (PLpro) and 3C-like protease (3CLpro or Mpro) [189]. 
The structural region encodes four primary structural proteins; spike 
protein (S), envelope protein (E), membrane glycoprotein (M), and 
nucleocapsid protein (N) along with several accessory proteins that 
interfere with the host innate immune response with unknown or poorly 
understood function. The viral infection begins when the S protein binds 
to the host receptor, angiotensin-converting enzyme 2 (ACE2). This al-
lows cellular entry where the viral RNA genome is released, transcribed, 
and translated. The newly formed viral proteins and genomic RNA 
assemble in the endoplasmic reticulum-golgi intermediate compartment 
and fuse to the plasma membrane releasing the virus [49]. 

The first known case of SARS occurred in southern China in 
November 2002 [49]. The disease spread to more than 30 countries, 
infected over 8000 individuals, and resulted in about 800 deaths [80]. 
SARS-CoV-1 was identified as the causative agent [58,157] and the 
pandemic was controlled in less than four months through the measures 
of infection control instead of drug prevention or therapy [214]. During 
the SARS outbreak, ribavirin was most frequently used to inhibit viral 
RNA synthesis [74]. Ribavirin is a guanosine analog that inhibits 

guanosine-triphosphate (GTP) synthesis, viral mRNA capping, and viral 
RNA-dependent RNA polymerase [49,20]. At the time, ribavirin was 
used for Hepatitis C virus (HCV) therapy [233] and pediatric respiratory 
syncytial viral (RSV) infection [42]. The reported uses of ribavirin in 
SARS cases showed conflicting results with numerous methodological 
issues and its effect could not be distinguished from other treatments 
such as corticosteroids or other antivirals. Ribavirin treatment for SARS 
was not tested in clinical trials, so its efficacy remains to be assessed [20, 
167]. Since the SARS outbreak 17 years ago, all antiviral drugs or vac-
cines tested in controlled trials have shown to be ineffective [235] and 
lack translation in antiviral efficacy from pre-clinical studies to human 
patients [36]. Below we discuss the current developments in 
peptide-based therapies, vaccines, and detection methods specific to 
SARS-CoV-1 and how they can help fill the 17-year void. 

Discovery efforts have been focused on targeting SARS-CoV-1 
structural proteins. In one study, bioinformatic analysis was used to 
identify 10 peptides from the S protein sequence. Two peptides (P8: 
PSSKRFQPFQQFGRDVSDFT and P9: CANLLLQYGSFCTQLNRALSGIA) 
blocked the interaction of viral S protein with the host ACE2 receptor 
and showed promising viral neutralization in syncytia formation models 
at nearly 50 % [133]. In a separate study, a set of 20-residue peptides 
derived from S protein fragments were investigated. Four peptides (P2: 
PTTFMLKYDENGTITDAVDC, P6: YQDVNCTDVSTAIHADQLTP, P8: 
QYGSFCTQLNRALSGIAAEQ and P10: IQKEIDRLNEVAKNLNESLI) 
showed significant antiviral effects in cytopathic effect (CPE)-based as-
says, a reduction in viral titer in TCID50 assays, as well as a reduction in 
intracellular viral RNA levels as determined by quantitative real-time 
PCR (qRT-PCR). The antiviral effects of P8 were further confirmed by 
electron microscopy, which showed the absence of virus in the 
P8-treated cells and the presence of SARS-CoV-1 particles in the un-
treated cells [232]. It should be noted that the sequence corresponding 
to 737–753 (QYGSFCTQLNRALSGIA) of the S protein was shared in both 
studies mentioned above, warranting further work to optimize this 
peptide. In another study, S protein derived peptide S471− 503 (ALN-
CYWPLNDYGFYTTTGIGYQPYRWVLSFEL) was identified and shown to 
block the interaction between receptor binding domain (RBD) and ACE2 
in a competition ELISA and inhibit plaque formation of SARS-CoV in 
Vero E6 cells [95]. Additional viral structural proteins have been studied 
as potential targets. N protein from the nucleocapsid forms a complex 
with the viral RNA [128]. A 15-mer peptide phage display library was 
panned against purified N protein. As a result, six phage clones that 
bound to the N protein in ELISA were identified. The selected peptides 
had high homology with the peptide SNA5 (GGGWFCPIVRGRVSC) that 
appeared at the highest frequency among the selected peptides. 

Targeting viral proteases has been exploited for peptide antiviral 
drug therapies. Molecular modeling and docking studies were used to 
identify an octapeptide AVLQSGFR that docked to the viral Mpro pro-
tease [39,59]. The peptide acted as an enzyme inhibitor with confirmed 
antiviral properties against SARS-CoV-1 [68]. The octapeptide showed a 
dose-dependent inhibition of SARS-CoV-1 in Vero E6 cell-based assays 
with low toxicity, suggesting that it can serve as a starting scaffold for an 
effective SARS-CoV-1 protease inhibitor. In addition, the peptide P9 
(NGAICWGPCPTAFRQIGNCGHFKVRCCKIR), mentioned earlier, ex-
hibits antiviral effects against multiple respiratory viruses including 
influenza viruses and SARS-CoV-1. By binding to the viral glycoprotein, 
P9 was able to alter endosomal acidification, block viral membrane 
fusion, and RNA viral release [231]. P9 showed efficacy in cell-based 
assays and viral load reduction in small animal models when used as 
prophylaxis against SARS-CoV-1. The potential peptide-based therapies 
for SARS are summarized in Table 3. 

SARS-CoV-1 vaccines can be used to prevent viral infection and 
transmission thereby aid in the control of outbreaks. Inactive virus 
particles generated by formaldehyde, UV light, and β-propiolactone 
were common strategies to serve as vaccines [103] and tested for safety 
in Phase I clinical trials in China [123]. Despite the promising safety 
results, these candidate vaccines induced an immunopathologic 
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respiratory disease in small animal studies when the immunized mice 
were challenged with SARS-CoV-1 [198]. Consequently, attention was 
diverted to other approaches. Synthetic peptides that overlapped the 
entire S protein were tested against antisera from small animals 
immunized with inactive SARS-CoV-1 sera and from SARS patients [88]. 
The results revealed a major immunodominant epitope of S protein at 
residues 528− 635. Therefore, the synthetic peptide S603− 634 was 
generated and showed to react with sera from all SARS patients, but not 
with control serum samples from healthy donors or hepatitis patients. 
This approach was shown to be effective to design and optimize 
peptide-based vaccines against SARS and to provide a potential antigen 
for diagnostic application. In another study, bioinformatic analysis was 
employed for vaccine development using peptides from the major 
structural N protein [124]. Two peptides, N1 and N2, were predicted to 
have similar Antigenic Index (AI) to induce antibody generation. Rabbits 
immunized with synthetic N1 and N2 peptides produced specific anti-
bodies against both peptides. Only N1 peptide-induced antiserum 
showed strong binding to recombinant SARS-CoV-1 N protein by west-
ern blot. The immunogen N1 peptide reacted to sera of SARS patients in 
ELISA, suggesting that N1 peptide could serve as the epitope of the N 
protein to induce an immune response. 

Currently, SARS-CoV-1 infection is diagnosed by detection of viral 
RNA in clinical samples by qRT-PCR, serological detection of specific 
antibody to SARS-CoV-1, and virus growth in cell culture, which re-
quires a biosafety level III facility [176]. SARS-CoV-1 specific peptides 
can be a much safer and cost-effective alternate. In the studies above, the 
S603− 634 and N1 peptide immunogens could also be used as a tool for 
detecting SARS-CoV-1 antibodies in patient serological samples. PL8 
(PSSKRFQPFQQFGRDVSDFTDSVRDPKTSE) showed a 70 % positive 
response rate to sera from diagnosed SARS patients and 5% 
false-positive response to uninfected individuals, suggesting that further 
development is needed to optimize the peptide sequence for accurate 
diagnosis [133]. 

The surveillance of bat coronaviruses in the years since the 2003 
SARS outbreak revealed a diverse family of SARS-related coronaviruses 
(SARSr-CoVs), with warnings that spillover into humans was already 
happening and that additional surveillance and precautions were 
necessary to prevent a likely future pandemic [94,150,105]. 

6. Coronavirus disease 2019 

Coronavirus disease 2019 (COVID-19) is a novel infectious disease 

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2). The virus shares 79 % genetic similarity with SARS-CoV-1 and its 
29.9 Kb genome consists of the same replicase and structural regions 
[216,62]. SARS-CoV-2 utilizes the host ACE2 receptor for cellular entry 
with higher affinity compared to its other family members [35,215]. The 
S protein contains a furin cleavage site which could contribute to the 
increased infectivity of SARS-CoV-2 relative to SARS-CoV-1 [91,155]. 

A series of COVID-19 cases were first detected in Wuhan China in 
December 2019, WHO declared a global health emergency by January 
30, 2020, and a global pandemic two months later [9,193]. As of August 
7th, 2020, over 19 million confirmed cases and 715,163 deaths world-
wide have been reported [2]. In a situation similar to the SARS outbreak 
of 2003, no FDA approved vaccines or antivirals were available to 
combat the disease [188]. With an immediate need for COVID-19 
therapies, attention quickly turned to existing drugs. Liu et al. created 
an extensive overview of notable published scientific articles, key viral 
target proteins, existing drugs with potential therapeutic use, select 
patents for drug repurposing, small molecules in development, and 
patents on therapeutic antibodies against SARS-CoV-2 [126]. In addi-
tion, Gordon et al. used affinity-purification mass spectrometry to 
identify 66 druggable human proteins that interact with 26 SARS-CoV-2 
proteins, and reported 69 compounds at various stages (approved, 
clinical or preclinical) that target these interactions [46]. Of the po-
tential therapeutics, almost none are peptide-based drugs. Here we 
discuss some of the current peptides under development as possible 
future therapeutics for SARS-CoV-2, summarized in Table 4. 

The co-crystal structure of S protein RBD with ACE2 led to the iden-
tification of a 23-residue peptide (SBP1) that disrupts the protein-protein 
interaction between the virus and host receptor and prevents viral cell 
entry. SBP1 (IEEQAKTFLDKFNHEAEDLFYQS) was derived from α1 helix 
region of the human ACE2 and bound to SARS-CoV-2 RBD with a KD of 
47 nM determined by biolayer interferometry [228]. SBP1 has yet to be 
tested in cell-based assays and animal models of SARS-CoV-2 infection. 
Another peptide in development is EK1 (SLDQINVTFLDLEYEMK-
KLEEAIKKLEESYIDLKEL), which is derived from the heptad repeat 2 
(HR2) domain of the S protein. After binding to the RBD, heptad repeat 1 
(HR1) and HR2 interact with each other to form a 6HB fusion core 
bringing the viral and host membrane in close proximity for fusion. EK1 
peptide binds to the HR1 domain inhibiting the viral infection as shown in 
S-mediated cell-cell fusion assays [221]. A similar lipidation strategy that 
was used to develop anti-HIV-1 peptide LP-19, was implemented to 
improve the antiviral activity and half-life of the EK1 peptide. EK1 was 

Table 3 
Summary of potential peptide therapies for SARS.  

Peptide 
Name 

Sequence Derived from Target IC50 Assay Format Tested Phase Reference 

P8 PSSKRFQPFQQFGRDVSDFT S protein ACE2 receptor * Syncytia inhibition 
assay 

Pre- 
clinical 

[133] 

P9 CANLLLQYGSFCTQLNRALSGIA S protein ACE2 receptor * Syncytia inhibition 
assay 

Pre- 
clinical 

[133] 

P2 PTTFMLKYDENGTITDAVDC S protein ACE2 receptor 112.5 μg /mL, 
(IC90) 

Cytopathic effect 
(CPE)-based assay 

Pre- 
clinical 

[232] 

P6 YQDVNCTDVSTAIHADQLTP S protein ACE2 receptor 113.0 μg /mL, 
(IC90) 

Cytopathic effect 
(CPE)-based assay 

Pre- 
clinical 

[232] 

P8 QYGSFCTQLNRALSGIAAEQ S protein ACE2 receptor 24.9 μg /mL, 
(IC90) 

Cytopathic effect 
(CPE)-based assay 

Pre- 
clinical 

[232] 

P10 IQKEIDRLNEVAKNLNESLI S protein ACE2 receptor 73.5 μg /mL, 
(IC90) 

Cytopathic effect 
(CPE)-based assay 

Pre- 
clinical 

[232] 

S471− 503 ALNCYWPLNDYGFYTTTGIGYQPYRWVLSFEL S protein ACE2 receptor * Competition ELISA, 
plaque assay 

Pre- 
clinical 

[95] 

SNA5 GGGWFCPIVRGRVSC Phage display library N protein n/a Monoclonal phage 
ELISA 

Pre- 
clinical 

[128] 

octapeptide AVLQSGFR Structure-based drug 
design and modeling 

Mpro 2.7 × 10− 2 

mg/L 
Cytopathic effect 
(CPE)-based assay 

Pre- 
clinical 

[39] 

P9 NGAICWGPCPTAFRQIGNCGHFKVRCCKIR β-defensin-4 Endosome 
acidification 

5 μg/mL plaque reduction 
assay 

Pre- 
clinical 

[231] 

*not available in the literature. 
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linked to cholesterol or palmitic acid through either a glycine-serine 
linker, polyethylene glycol (PEG) spacer, or both combination [38,221]. 
EK1C4 (EK1-GSGSG-PEG4-Chol) was found to be the most potent inhib-
itory peptide in cell-cell fusion assays and inhibition plaque reduction 
assays. In another study, the aforementioned P9 peptide [231] was used 
as the parent peptide to develop P9R with antiviral activity against 
SARS-CoV-2 [230]. Three weakly positive-charged amino acids in the P9 
(H21, K23, and K28) were substituted with arginine to increase the 
overall net positive charge from +4.7 to +5.6 (P9R: NGAICWGPCP-
TAFRQIGNCGRFRVRCCRI). It was hypothesized that a peptide with a 
stronger net positive charge could further neutralize protons in the en-
dosome to inhibit endosomal acidification, thereby preventing viral RNA 
release. P9R showed 1000-fold enhanced potency compared to its parent 
for inhibition of SARS-CoV-2 replication in a multicycle growth assay. 

The PLpro and Mpro enzymes of SARS-CoV-2 are also targets for 
peptide-based inhibitors. Through the use of a combinatorial library, one 
group has developed peptide inhibitors against Mpro and PLpro [180,179]. 
Substrates for both proteases were identified using a library that con-
tained proteogenic and non-proteogenic amino acids. The best substrate 
candidates were then converted into peptide inhibitors through the 
addition of irreversible reactive group at the C-terminus, resulting in Mpro 

inhibitor QS1 (Ac-Abu-Tle-Leu-Gln-VS), and PLpro inhibitors VIR251 and 
VIR250 (Ac-hTyr-Dap-Gly-Gly-VME and Ac-Abu(Bth)-Dap-Gly-Gly-VME, 
respectively). Kinetic analysis of these peptides against the SARS- CoV-2 
Mpro and PLpro indicated inhibition. 

With the increasing number of infected individuals and lack of effective 
antiviral therapies, the need for SARS-CoV-2 vaccine development has been an 
international priority. The current vaccine developments include RNA vac-
cines, DNA vaccines, recombinant protein vaccines, viral vector-based vac-
cines, live attenuated vaccines, and inactivated vaccines [6]. An mRNA-based 
vaccine co-developed by Moderna and the Vaccine Research Center at the 
National Institutes of Health has begun dosing patients with mRNA-1273 in 
their Phase III study, COVE (Coronavirus Efficacy) [143]. The results from 
their Phase I study showed that mRNA-1273 was safe and well-tolerated. It 
elicited Th1-biased CD4 T cell responses, produced neutralizing antibody titers 
in 100 % of evaluated participants at the 100 μg dose [101]. Another mRNA 
based vaccine, co-developed by Pfizer and BioNTech, has advanced the 
candidate BNT162b2 into Phase II/III study [161]. Phase I/II results showed 
that BNT162b2 was safe and well-tolerated and stimulated the production of 
neutralizing antibodies and elicited CD4+ and CD8+ T cell responses against 
the RBD [160]. While both aforementioned mRNA vaccines encode for the 
SARS-CoV-2 S proteins, other viral recombinant proteins are being investi-
gated [126]. One group has employed immune-informatics to identify and 
characterize SARS-CoV-2 S protein-based epitopes in silico for vaccine devel-
opment [119]. Li et al. used a myriad of online tools to analyze the structure of 
SARS-CoV-2 S protein to predict and identify highly antigenic B-cell and T-cell 

epitopes [219,69,201,23,63,57]. The peptide epitopes were further charac-
terized for allergenicity, physiochemical features, toxicity, and stability [3,196, 
185]. The immuno-informatic approach has identified four peptide epitopes 
(VRQIAPGQTGKIAD, VLGQSKRVDFCGKG, GLTGTGVLTESNKK, and KIA-
DYNYKLPDDFT). Unlike mRNA vaccines, peptide-based vaccines require 
careful design to identify epitopes that are capable to induce a strong immune 
response against the desired pathogen and the strategies reported by Li and 
colleagues can be used for other targets of interest. 

Kalita and team utilized a similar in silico approach to design a multi- 
peptide subunit-based epitope vaccine against SARS-CoV-2. The vaccine 
contained human β-defensin as an adjuvant and 33 highly antigenic 
epitopes of cytotoxic T-lymphocyte, helper T-lymphocyte, and B-cell 
linked by specific linkers [110]. The highly antigenic epitopes were 
derived from N, M, and S protein as determined by prediction tools [79, 
175,97,17,182,81]. Further, computational analysis suggested that the 
multi-epitope subunit vaccine was non-toxic, thermostable, and immu-
nogenic [57,168,4,181,166,24,172,210]. Molecular docking and dy-
namics studies validated the stability of the vaccine construct [110,109] 
and in silico cloning proposed potential expression in microbial expres-
sion system [78]. The extensive bioinformatics data suggest that the 
multi-epitope based subunit vaccine has a high probability of protective 
efficacy and safety against SARS-CoV-2. However, its synthesis and 
experimental evaluation have to be conducted to validate the pre-
dictions. Additionally, it is important to note that there are on-going 
efforts to generate peptide-based vaccines specific to SARS-CoV-2 with 
the internal discovery platforms from Generex, Vaxil, IMV Inc., and 
Axon Neuroscience. 

Current laboratory tests for SARS-CoV-2 diagnostics involve the 
detection of viral RNA by qRT-PCR and the detection of anti-SARS-CoV- 
2 antibodies [186]. Tests based on qRT-PCR are commonly used with 
samples collected from the nasopharyngeal and throat swabs or saliva. 
The qRT-PCR targets one or more SARS-CoV-2 genes from the E, N, S, 
polymerase, or open reading frame 1 (ORF1). Serological testing is 
utilized for patients with mild symptoms or who are asymptomatic. In a 
peptide-based diagnostic, 20 biotinylated synthetic SARS-CoV-2 anti-
gens from the ORF1a/b, S, and N proteins were studied [25]. Among the 
peptides tested, a peptide from the S protein showed high specificity to 
SARS-CoV-2 with no cross-reactivity. Sera samples were added to the 
biotinylated S peptide in complex with streptavidin-coated magnetic 
beads and the presence of SARS-CoV-2 antibodies was detected by 
luminescence. In this assay IgG and IgM from COVID-19 patients were 
detected with an accuracy of 71.4 % and 57.2 %, respectively. 

7. Conclusion 

Infectious diseases are an ongoing global health concern with a 

Table 4 
Summary of potential peptide therapies for COVID-19.  

Peptide 
Name 

Sequence Derived from Target IC50 Assay Format Tested Phase Reference 

SBP1 IEEQAKTFLDKFNHEAEDLFYQS ACE2 receptor S protein * Kinetic binding assay 
using bio-layer 
interferometry (BLI) 

Pre- 
clinical 

[228] 

EK1C4 SLDQINVTFLDLEYEMKKLEEAIKKLEESYIDLKEL- 
GSGSG-PEG4-Chol 

S protein, HR2 domain S protein, HR1 
domain 

15.8 
nM 

cell-cell fusion assay, 
plaque reduction assays 

Pre- 
clinical 

[221] 

P9R NGAICWGPCPTAFRQIGNCGRFRVRCCRI β-defensin-4 Endosome 
acidification 

0.9 μg/ 
mL 

plaque assay Pre- 
clinical 

[230] 

QS1 Ac-Abu-Tle-Leu-Gln-VS Hybrid combinatorial 
substrate library 
(HyCoSuL) 

Mpro n/a Kinetic analysis Pre- 
clinical 

[179] 

VIR251 Ac-hTyr-Dap-Gly-Gly-VME Hybrid combinatorial 
substrate library 
(HyCoSuL) 

PLpro n/a Kinetic analysis Pre- 
clinical 

[180] 

VIR250 Ac-Abu(Bth)-Dap-Gly-Gly-VME Hybrid combinatorial 
substrate library 
(HyCoSuL) 

PLpro n/a Kinetic analysis Pre- 
clinical 

[180] 

*not available in the literature. 
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significant consequence of morbidity and mortality. The COVID-19 
pandemic is the most recent example that has caused unprecedented 
global initiatives to expedite therapy, vaccine, and diagnostic develop-
ment. Challenges such as rising microbial resistance and poor specificity 
and efficacy of the anti-viral compounds demand the discovery of novel 
molecules. In this review, we have highlighted the potential peptide- 
based anti-viral therapeutics and vaccines in early-development and 
their application in the diagnosis of viral infections. Peptide-based 
therapeutics hold great promises as a novel approach due to their high 
specificity, efficacy, and safety. However, the use of naturally and syn-
thetically derived peptides is limited by their short in vivo half-lives 
caused by proteolysis and renal clearance. Incorporation of D-amino 
acid in peptide sequences has been shown to increase peptide potency 
and proteolytic stability. The small size of peptides results in renal 
filtration; therefore, lipid moieties are introduced to add to their size and 
improve their half-life of peptides. Peptide-based therapies with 
extended-release dosing hold potential in the future for HIV drugs and 
can alleviate daily drug administration. Nanoparticle conjugation of 
peptides has been shown to enhance their solubility and efficacy and 
provide delivery to the targeted cell. In summary, peptide-based thera-
pies such as Enfuvirtide is FDA approved for AIDS, while others such as 
Flufirvitide-3 (phase I) and Myrcludex-B (phase IIa) for influenza, and 
Sifuvirtide (phase III in China) for AIDS are ongoing clinical trials. 

Peptide-based vaccines are considered as a novel means for the in-
duction of a robust immune response. A few peptide-based vaccines 
have shown great potential in the clinical studies, including FLU-v-like 
peptides (phase I), Multimeric-001, and Vacc-4 × . The use of minimal 
microbial components in peptide-based vaccines can eliminate some of 
the problems associated with the use of whole organisms or proteins, 
such as allergic and autoimmune responses. However, low immunoge-
nicity can be a limiting factor for peptide-based vaccines and may 
require the use of adjuvants [140]. Lastly, peptides have been used in 
innovative technologies, such as biosensors, to diagnose viral infections. 
Overall, as discussed herein, peptides can be used to help combat 
different viral diseases. 
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