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Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to 

reconstruct gene regulatory networks and predict functions for non-coding genetic variation. 

DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs 

simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of 

samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking. 

Here, we develop a scalable footprinting workflow using two state-of-the-art algorithms: 

Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE DNase-seq 

experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We 

validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We 

demonstrate that the locations, depth, and tissue specificity of footprints predict effects of genetic 

variants on gene expression and capture a substantial proportion of genetic risk for complex traits.

Graphical Abstract

In Brief

DNase-seq footprinting provides a means to predict genome-wide binding sites for hundreds of 

transcription factors (TFs) simultaneously. Funk et al. analyze data from the ENCODE consortium 

to create a resource of footprints in 27 human tissues, demonstrating associations of tissue-specific 

TF occupancy with gene regulation and disease risk.
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INTRODUCTION

Regulation of gene expression by transcription factors (TFs) forms the basis for tissue- and 

cell-type differentiation arising from complex interplay between the TFs and the chromatin 

architecture in gene regulatory regions (Neph et al., 2012a; Tewhey et al., 2016). In humans, 

genetic perturbation of TF binding sites is thought to be an important mechanism by which 

single-nucleotide polymorphisms (SNPs) influence risk for human disease (ENCODE 

Project Consortium, 2012; Gusev et al., 2014; Maurano et al., 2012). Thus, characterizing 

the cell-type-specific occupancy of TFs at their genomic binding sites is a critical goal in 

genomics, providing insight into networks of TFs and their cell-type-specific target genes, as 

well as causal mechanisms underlying risk for human disease (Ament et al., 2018; 

Claussnitzer et al., 2015; Gupta et al., 2017; Moyerbrailean et al., 2016; Pearl et al., 2019).

Mapping human gene regulation requires comprehensive resources of tissue- and cell-type-

specific TF binding sites. Major efforts over the past decade have produced vast quantities of 

public epigenomic data that have dramatically expanded the functional annotation of the 

human genome (Encode Project Consortium, 2004; Battle et al., 2017; Ward and Kellis, 

2016), yet our understanding of cell-type-specific TF binding sites remains far from 

complete. Annotation of TF binding sites based solely on the locations of sequence motifs is 

imprecise because only ~1% of motif instances are occupied by a TF at any given time 

(Neph et al., 2012a). Similarly, information about the locations of promoters and enhancers 

lacks sufficient specificity because many genetic variants in these regions do not affect gene 

expression (Tewhey et al., 2016). TF occupancy can be ascertained with high sensitivity and 

specificity through chromatin immunoprecipitation followed by deep sequencing (ChIP-

seq), in which an antibody specific to a TF is used to pull down genomic DNA fragments 

occupied by that TF in a given sample. However, high-quality ChIP-seq data have been 

generated for only a minority of all human TFs and often used standard cell lines rather than 

disease-relevant human tissues.

Genomic footprinting is a higher-throughput approach that predicts TF genomic occupancy 

by combining information from open chromatin assays (such as DNase sequencing [DNase-

seq]) with information about the locations of sequence motifs recognized by the DNA 

binding domains of TFs. DNase-seq assays are predicated on accessibility of genomic DNA 

to DNase I, where regions of open chromatin are susceptible to cleavage by DNase I. 

Binding of TFs and other DNA binding proteins can lead to a relative difference in the 

number of cleavage events in discrete regions along the genome, resulting in a footprint 

(Galas and Schmitz, 1978). Computational algorithms have been developed to identify 

footprints from high-throughput DNase hypersensitivity (DHS) data, typically using one of 

two strategies: (1) sliding window approaches in which the relative number of DNase 

cleavage events are counted along a sliding window of the genome, agnostic to the absence 

or presence of a TF binding motif (Boyle et al., 2011; Gusmao et al., 2014; Neph et al., 

2012b; Piper et al., 2013; Sung et al., 2014) and (2) approaches that begin with the known 

location for a TF binding motif and model the DNase cleavage patterns around it for all sites 

in the genome (Cuellar-Partidaet al., 2012; Kähärä and Lähdesmäki, 2015; Pique-Regi et al., 

2011; Sherwood et al., 2014; Yardımcı et al., 2014). Validation of these approaches typically 

has involved comparison of the footprints for individual TFs to binding sites found by ChIP-
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seq. Notably, the computational identification of footprints from high-throughput data 

remains an area of active research, because existing algorithms detect genomic occupancy 

for only a subset of TFs. Moreover, because of redundancy in the sequence specificity of 

TFs, footprinting generally cannot distinguish which member of a TF family is occupying a 

footprint. Nonetheless, the accuracy and reproducibility of TF binding site predictions from 

footprinting analysis has begun to rival that of ChIP-seq, and DNase-seq footprinting has 

successfully been used to predict the binding sites for hundreds of TFs in a parallel 

approach.

One of the most important applications of comprehensive atlases of TF binding sites will be 

to functionally annotate genetic risk variants for human diseases. Many studies have shown 

that disease-associated SNPs are enriched in gene regulatory regions, including open 

chromatin regions identified through DNase-seq and ATAC-seq experiments (de la Torre-

Ubieta et al., 2018; Finucane et al., 2015; Gusev et al., 2014; Maurano et al., 2012). 

However, genome-wide association study (GWAS) risk loci are defined by large sets of 

genetically correlated SNPs with similarly strong statistical associations to disease, of which 

only a subset are thought to be functional and causal for disease risk. It remains 

controversial how many of these causal SNPs disrupt gene regulation by altering the specific 

base pairs occupied by TFs versus other mechanisms. Several studies have identified risk 

loci for traits such as obesity and schizophrenia in which causal variants appear to 

functionally alter binding sites for key TFs (Claussnitzer et al., 2015; Gupta et al., 2017; 

Pearl et al., 2019). However, other studies question the generalizability of this insight and 

indicate that TF binding sites in existing databases do not fully predict causal variants 

(Moyerbrailean et al., 2016). One explanation for this discrepancy is that existing TF 

binding site databases do not include sufficient amounts of epigenomic data from disease-

relevant tissues. Because the gene regulatory consequences of non-coding SNPs are likely to 

vary dramatically across tissues and cell types (Claussnitzer et al., 2015; Fairfax et al., 

2014), these existing databases may miss context-specific effects of variants on TF 

occupancy. In addition, there is considerable variability in the sensitivity and specificity of 

footprinting algorithms, and it is unclear which approaches will be best suited for this task.

Here, we developed a comprehensive resource of genomic footprints across 27 human 

tissues, using data from 192 DNase-seq experiments from the Encyclopedia of DNA 

Elements (ENCODE). Before our work, there was no publicly available, scalable workflow 

using these data for the purpose of producing footprints. These analyses revealed an 

expansive landscape of tissue-specific genomic occupancy for 1,530 TFs. We validated our 

database based on ChIP-seq and expression quantitative trait loci (eQTLs), and we 

demonstrated that tissue-specific footprints are strongly and specifically enriched for 

disease-associated genetic variation. We have made our footprint database and the 

underlying cloud-based computational workflow available in a user-friendly and intuitive 

format (links available in STAR Methods) (Madduri et al., 2019).
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RESULTS

A Comprehensive Atlas of Genomic Footprints across Human Tissues

ENCODE-generated DNase-seq FASTQ files from 192 experiments in 27 tissues were 

downloaded from the ENCODE data portal (https://www.encodeproject.org/). The tissue-

specific genomic occupancy of 1,515 TFs was then predicted through genomic footprinting 

analyses using the workflow pictured in Figure 1A and detailed in STAR Methods. First, 

sequence reads were aligned to GRCh38 using SNAP (Zaharia et al., 2011). Because the 

DNase-seq data consist of short reads, we generated two alignments: one using the default 

20 bp seed length (Seed20) and another using a 16 bp seed length (Seed16). We then 

identified regions of open chromatin in each of the 192 experiments using F-seq, followed 

by detection of footprints using both HINT and Wellington algorithms. Footprints detected 

in each of the 192 experiments were then grouped by tissue, producing 27 tissue-specific 

footprint maps, with separate maps for each seed size and footprinting algorithm. In general, 

seed size had only a modest impact. ~70% of the footprints had complete overlap between 

the two seed sizes (Figure S1A). In addition, we observed only a moderate relationship 

between the number of footprints found in a sample and the depth of sequencing (Figure 

S1B). Overall, HINT identified more footprints than Wellington.

Footprints from HINT and Wellington are identified without consideration of underlying 

motif sequence. Therefore, to predict which TFs occupy each footprint, we used Find 

Individual Motif Occurrences (FIMO) to create a catalog of all genome-wide instances of 

1,530 sequence motifs recognized by 1,515 TFs (Grant et al., 2011). In addition to the motif-

TF mappings provided by the aforementioned databases, we expanded the motif-TF 

mappings to incorporate families of TFs with similar DNA sequence specificity, using 

information from TFClass (Wingender et al., 2015) (Tables S1 and S2; Figure S2). This 

resulted in ~1.34 billion sequence-to-TF matches (p < 10−4) before intersection with 

footprints, spanning almost 80% of the genome. These motif instances were then intersected 

with the footprints from Wellington and HINT to produce an atlas of predicted TF 

occupancy in each tissue.

When considering all samples from all tissues, the most liberal thresholds resulted in 34% 

coverage of the genome being represented in the atlas for at least one tissue. The brain had 

the highest genome coverage at 14.9%, followed by skin (9.8%) and lymphoblast (8.9%). 

Urinary bladder had the lowest percentage of coverage at 1.1% (Figure 1B). Sample size and 

sequencing depth were the main determinants for the number of tissue-specific footprints 

identified in our atlas. However, intrinsic biological differences in tissue complexity also 

influence the number of distinct footprint locations. For example, we found strong overlap in 

footprint locations across the 46 experiments from skin (average pairwise Jaccard similarity 

index = 0.28), consistent with skin being a relatively homogeneous tissue. By contrast, the 

footprints detected in the 29 experiments from brain were less homogeneous (average 

pairwise Jaccard similarity score = 0.16), which likely reflects the highly specialized and 

disparate cell types and cell-type-specific gene regulation across brain regions. As a 

consequence, we identified more brain footprints than skin footprints, despite having 50% 

more skin samples.
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An outstanding question is to what extent additional samples would add previously unseen 

footprints. To address this, using footprints derived from the HINT algorithm with seed 

length 20 (HINT20), we ordered the brain samples from most to fewest footprints and 

calculated the additional percentage of the genome covered by each sample (Figure 1C). The 

first sample contributed 3.25 million footprints spanning 1.75% of the genome, whereas the 

last sample added 235,000 novel footprints and 0.04% novel genome coverage. We repeated 

the same analysis using only high-quality footprints based on HINT and Wellington scores 

(see the next section). As expected, this analysis revealed even greater overlap across 

samples, because many footprints detected in only a single sample are of low quality (Figure 

1C, bottom). These results suggest that at least for well-sampled tissues such as brain, our 

atlas captures most detectable footprints.

Validation and Filtering of Footprints with ChIP-Seq and Machine Learning

Next, we sought to validate TF binding site predictions in our atlas and chose appropriate 

thresholds at which footprints reliably indicate TF occupancy. For this purpose, we 

compared footprints from 21 DNase-seq experiments in lymphocytes to predicted TF 

binding sites (peak regions) from ChIP-seq of 66 TFs in the same cell type. The genomic 

background for this analysis is the set of all genome-wide instances of the sequence motifs 

recognized by a given TF. On their own, these motif instances have an extremely high false-

positive rate > 90%. We used the footprints from all 21 samples to define two scores at each 

genomic location: (1) the best footprint score, defined as the highest score at this location in 

any samples, and (2) the footprint fraction, defined as the proportion of independent samples 

with a non-zero footprint score. We then tested for a linear relationship between these 

footprint scores and the likelihood that a motif instance corresponded to a true-positive 

binding site from ChIP-seq, testing performance via the Matthews correlation coefficient 

(MCC), area under the receiver operator curve (AUROC), and area under the precision-recall 

curve (AUPR). The most accurate predictor was the best HINT20 score, which achieved a 

maximum MCC of 0.42, corresponding to AUROC > 0.9 (Figure 2). The high AUROC was 

driven by true negatives, which comprise 3,936,242 of the 4,110,504 total observations. 

Most true negatives had low HINT scores. True positives often had a high HINT score, but 

high HINT scores also had a significant false-positive rate (Figure S3). True and false 

positive here are soft assignments, because ChIP-seq experiments are imperfect predictors of 

TF occupancy.

We were curious whether performance could be improved by combining footprint scores 

from multiple algorithms with additional information about genomic context. We employed 

a supervised machine-learning approach, treating the ChIP-seq peaks as true positives. We 

employed two machine-learning algorithms: linear regression and gradient boosting trees 

implemented with XGBoost. We constructed and evaluated a comprehensive model that 

included as predictors the footprint scores from both HINT and Wellington using both the 16 

bp and 20 bp seed sizes. Additional predictors included a score for the strength of the match 

to the sequence motif, TF class, guanine-cytosine (GC) content, and distance to a 

transcription start site (TSS). We compared this comprehensive model to predictions based 

on footprint scores alone, as well as to a baseline model that considered motif scores and 

genomic context but ignored footprinting data.
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In the comprehensive model, gradient boosting and linear regression achieved maximum 

MCCs of 0.42 and 0.40, respectively (Figure 2), The predictor with the largest contribution 

to accuracy was the best HINT20 score, followed by the HINT20 footprint fraction (Figure 

3). Prediction accuracy was lower in the baseline models but remained better than chance 

(gradient boosting, MCC = 0.32; linear regression, MCC = 0.27) (Figure 2). In these models, 

distance to the TSS was the most significant contributor to the prediction. Although the 

maximum MCCs of the HINT20 footprint-only versus comprehensive models were identical 

(0.42), the footprint-only model had a relatively small threshold window within which both 

true-positive and false-negative error rates were well controlled. Therefore, incorporating 

information about genomic context does not dramatically improve prediction accuracy but 

could potentially improve the robustness of these predictions.

We used machine-learning models to select appropriate cutoffs for high-quality footprints. 

We determined that a HINT score > 200 and a Wellington score < −27 were optimal filtering 

thresholds to control both false-positive and false-negative errors. Applying these filters 

reduced the percentage of coverage of the genome from 34% to 9.8% across all tissues 

(Figure 1B). This filtered estimate is in line with current estimates for the fraction of the 

genome that is actively involved in gene regulation. HINT20 footprints with scores > 200 

were used in downstream analyses unless otherwise specified.

Footprints Predict Effects of Genetic Variants on Gene Expression

An important goal for footprinting is to predict the gene regulatory effects of non-coding 

SNPs. It has previously been shown that most haplotypes with cis-acting effects on gene 

expression (eQTLs) contain SNPs that are located within DNase I hypersensitive regions 

(Handel et al., 2017). However, DHS regions span a large fraction of the genome, and many 

SNPs within DHS regions have no evidence for influencing gene expression. It remains 

controversial whether footprints more precisely capture the causal variants on eQTL 

haplotypes: some recent studies found that only a small fraction of eQTL haplotypes overlap 

footprints (Handel et al., 2017; Moyerbrailean et al., 2016), whereas others have suggested 

stronger enrichment (Degner et al., 2012; Schwessinger et al., 2017). To address this 

question, we examined overlap between footprints in our database with eQTLs from the 

Genotype-Tissue Expression (GTEx) consortium.

We evaluated overlap between footprints (HINT20 score ≥ 200) from our database with 

eQTLs in 44 tissues from GTEx (v.V6p) (Battle et al., 2017). We focused on 1,561,655 

genetic variants significantly associated with the expression of a nearby gene (<1 MB) and 

in the 95% credible set for that gene in at least one tissue, based on Bayesian fine mapping 

with CAVIAR (Hormozdiari et al., 2014); i.e., the set of variants with 95% likelihood to 

contain the causal eSNPs for the gene. Across all eQTL and footprint tissues, we found that 

163,330 of these 1,561,655 variants intersected a TF binding site from our footprint database 

(TFBS-eQTLs). Counts of TFBS-eQTLs in individual tissues from our footprint database 

ranged from 743 (urinary bladder) to 71,692 (extra-embryonic structure) (Figure 4A). We 

tested whether this overlap was greater than expected by chance by mapping footprints to all 

11,959,406 genotyped and imputed variants in the GTEx V6p dataset, followed by 

resampling permutations. We found significant enrichments (p < 0.001) for all 27 footprint 
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tissue × 44 eQTL tissue combinations. The overlap of footprints and eQTLs in mismatched 

tissues likely reflects that many of the strongest footprints and eQTLs are detected in 

multiple tissues (Battle et al., 2017). Sample size differs dramatically between tissues both in 

our footprint database and in GTEx, making it difficult to discern biologically relevant 

tissue-specific effects. Therefore, in subsequent analyses, we considered all eQTLs together, 

regardless of the tissue in which they were discovered.

We also determined whether eQTL SNPs with the highest likelihood of being causal variants 

from linkage-disequilibrium (LD)-based fine mapping with CAVIAR were also the most 

likely to overlap a footprint. eQTL variants that overlapped a footprint had higher posterior 

probabilities for being causal than eQTL variants that did not overlap footprints (t = −61.4, p 

<< 1e–308). Indeed, we detected a strong positive association between a variant’s posterior 

probability of being causal and the strength of enrichment for footprints that was consistent 

across footprints from all 27 tissues (Figure 4B). Focusing on the 3,193 eQTL variants with 

posterior probabilities > 0.8, we found that 29.2% (932) overlap a footprint. Resampling 

permutations indicated that this overlap for tissue-specific footprints is ~10- to 40-fold 

greater than expected by chance. These results suggest that a large fraction of eQTLs may be 

explained by causal variants that alter TF binding sites, with many of these effects captured 

by footprints in our database.

Tissue-Specific Footprints Are Enriched for Disease-Associated SNPs

Finally, we tested the hypothesis that high-scoring footprints are enriched for genetic 

variants associated with disease risk. To address this question, we studied genome-wide 

summary statistics from well-powered GWAS of eight immune-related traits and 27 

psychiatric, behavioral, and cognitive traits (STAR Methods; Table S3). We hypothesized 

that heritability for immune traits would be specifically associated with footprints in 

lymphocytes, whereas heritability for neuropsychiatric traits would be specifically 

associated with footprints in the brain.

When considering all tissue-specific footprints from our database (HINT20 score > 0 in any 

sample), we found that footprints from brain tissue were strongly enriched for heritability 

for brain-related traits and footprints from lymphoblasts were strongly enriched for 

heritability for immune-related traits. However, because most base pairs that are open 

chromatin have a non-zero footprint score, this result is not distinguishable from previously 

reported enrichments of heritability in open chromatin. We therefore examined whether 

footprints with higher scores contributed more to heritability than footprints with lower 

scores. We used a partitioned heritability approach in which we divided footprints into 

deciles based on their maximum tissue-specific footprint scores. We found that footprints 

with the highest scores in brain contributed disproportionately to heritability to brain-related 

traits but were not strongly associated with immune traits (Figure 5A). Conversely, 

footprints with the highest scores in lymphoblasts contributed disproportionately and 

specifically to heritability in immune-related traits (Figure 5B). Interestingly, we also found 

that positions of open chromatin in the brain that had low footprint scores (bottom decile) 

contributed disproportionately to risk for brain-related traits. Motif enrichment analyses of 

the top versus bottom deciles indicated that these segments of open chromatin are enriched 
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for binding sites for distinct families of TFs. For instance, motifs recognized by several 

neurodevelopmental TFs (e.g., the LMX family) were disproportionately found in the 

bottom decile; these neurodevelopmental TFs are known to bind DNA more transiently than 

other TF classes, leaving a less distinct footprint signature (Baek et al., 2017) (Table S4). 

Altogether, our results support the hypothesis that the enrichment of disease risk in open 

chromatin disproportionately results from variants that affect TF binding and indicate that a 

footprint’s score is positively associated with disease risk for many TFs.

DISCUSSION

Here, we have described a uniform workflow for DNase genomic footprinting and generated 

a comprehensive atlas of TF binding sites in 27 human tissues. We validated these footprints 

using data from ChIP-seq and eQTL experiments. At optimal thresholds, footprints in our 

database span 9.8% of the human genome, describing an expansive landscape of tissue-

specific TF occupancy. We found strong, tissue-specific enrichments of footprints for 

disease-associated SNPs from GWAS, demonstrating the utility of our database to 

characterize gene regulatory mechanisms underlying human disease.

Machine-learning approaches yielded several insights. First, footprinting information 

improved predictive accuracy compared with a baseline model. Because ChIP-seq is an 

imperfect gold standard, some footprints with no corresponding ChIP-seq may nonetheless 

be true binding sites for a TF. Footprinting may identify a broader range of putative binding 

regions relevant to gene regulation, particularly in light of the strong relationship found with 

eQTLs. As a future direction, integration of additional epigenomic data could provide 

additional predictive power to discern active versus inactive binding sites.

We also demonstrated strong enrichments of heritability for complex traits at the highest-

scoring footprints, specifically in disease-relevant tissues. Given that most risk variants in 

GWAS fall within non-coding regions, this finding suggests that disruption of TF binding 

may be a common mechanism by which genetic risk is conferred. These results build on 

previous findings that heritability for complex traits is enriched in open chromatin regions. 

Annotating risk variants with footprint scores improves specificity and mechanistic insight 

compared with annotating these SNPs based only on chromatin state. This finding 

demonstrates the utility of our footprint atlas for fine mapping and other systems-level 

interrogations of complex genetic traits. We found that low-scoring footprints in the brain 

were highly associated with risk and that these footprints disproportionately contained 

motifs for developmental TFs. This indicates that caution should be taken when using hard 

footprint score cutoffs, especially in the brain.

This resource also represents a case study in the development of scalable cloud-based 

systems for large-scale data analysis (Madduri et al., 2019). The Globus Genomics workflow 

used to create this resource can readily be extended to new open chromatin datasets and 

footprinting algorithms as they become available, potentially including newly developed 

approaches for open chromatin profiling in thousands of single cells. This workflow is part 

of a family of interconnected tools being built within our Big Data for Discovery Science 

(BDDS) center (http://bd2k.ini.usc.edu). We have made user-friendly fiat files for all 
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footprints in this analysis available at http://data.nemoarchive.org/other/grant/sament/

sament/footprint_atlas.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Seth Ament 

(SAment@som.umaryland.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Footprint data files are freely available at http://

data.nemoarchive.org/other/grant/sament/sament/footprint_atlas. Code and workflows 

available at https://github.com/globusgenomics/genomics-footprint.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use experimental models.

METHOD DETAILS

Overview—We created and executed footprinting workflows using various tools and 

services built and operated as a part of the NIH Big Data to Knowledge (BD2K) Big Data 

for Discovery Science (BDDS) center (http://bd2k.ini.usc.edu). At a high level, these tools 

enabled authoring and orchestration of complex and multi-tool workflows, transparent and 

elastic scaling on cloud resources, reproducible analysis based on provenance captured using 

minids and Big Data Bags (BDBags) (detailed below). The scalable workflows were built 

using the cloud-based Globus Genomics service (Madduri et al., 2014). These workflows 

include data retrieval from ENCODE using our ENCODE2Bag service that creates a 

portable data unit that encapsulates the entire results of an ENCODE query at a specific 

point in time. The resulting BDBag is passed as input to various analysis workflows that are 

executed in parallel to identify DNA footprints using cloud-based resources. The Globus 

Genomics platform, coupled with the BDDS tools, facilitates reproducibility of complex 

analysis for large cohorts through well-defined and published workflows (Madduri et al., 

2019).

BDBags, Minids—The input data from ENCODE consisted of all available DNase 

Hypersensitivity (DHS) datasets from 27 tissue types. ENCODE provides metadata for each 

tissue type which was exported and included in a BDBag (Chard et al., 2016, IEEE Big 

Data, conference presentation). BDBag is a format for defining a dataset and its contents by 

enumerating the data elements, regardless of their location, and for associating metadata. 

BDBags can be passed between services and materialized (by downloading data elements) 

only when needed. All datasets used in the workflow are identified using minids–a 

lightweight identifier for uniquely identifying a dataset. Minid and BDBag tools provide 

mechanisms for exchanging datasets by name, without regard for location or size, and with 

assurance that the data have not been modified.
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ENCODE2Bag Service and Globus Genomics—The ENCODE2Bag service provides 

a simple web interface for exporting identified, verifiable collections of data from ENCODE. 

The service when given an ENCODE query, dynamically creates a BDBag that is stored on 

Amazon S3, and identified with a minid. The BDBag does not contain the large genomics 

files, but rather includes a manifest file which enumerates the files with their location(s) and 

checksum(s) for verifying integrity when accessed. The summary of the ENCODE query, 

represented as a Tab Separated Value file, is included in the BDBag as metadata to track and 

record provenance. Thus, given a BDBag, a user may, at any point in the future, obtain the 

results of that ENCODE query executed at the original time–an important property for 

reproducibility. BDBag tools abstracts the process by which a BDBag is “materialized.”

Globus Genomics is a cloud-hosted web service that enables rapid analysis of large 

genomics data. The service has over 3000 computationally optimized tools and a collection 

of best practices analysis workflows. Additionally, we added the data management tools 

built as part of the BDDS BD2K center to the service to make it easier for researchers to 

build high performance, reproducible bioinformatics workflows.

Globus provides reliable, secure, and high performance data transfer between Globus 

“endpoints” (Chard et al., 2014). Globus provides a common interface to a variety of storage 

systems ranging from local POSIX file systems, through to cloud object stores (e.g., 

AmazonS3), high performance file systems, and even archival tape storage. Globus is able to 

orchestrate data transfer between any two systems by managing authentication with both 

endpoints, optimizing transfer configurations for transfer rate, recovering from errors, and 

notifying users of transfer status. We used Globus file transfer functionality to move large 

amounts of data from repositories, institutional storage systems, and local computers to the 

high performance, cloud-hosted compute resources used by the workflow.

The analysis workflows require only the minid of the input dataset to perform the analysis. 

The Globus Genomics service uses minid tools to transparently resolve the location of the 

BDBag, it then uses the BDBag tools to identify the contents of the dataset, and finally uses 

Globus to transfer the raw files to the cloud-hosted analysis infrastructure.

Scalable workflow for predicting Transcription Factor Binding Sites—In this 

workflow, we used the above-mentioned tools to materialize the BDBag for each tissue. 

Each tissue type contained DHS data for multiple samples. In addition, each sample had a 

variable number of replicate sequence data. Footprints were generated for the same input 

data using two alignment seed-lengths of 16 and 20 units, respectively. The analysis of the 

data consisted of aligning each replicate sample using the SNAP-aligner (Zaharia et al., 

2011). Once the alignment BAM files were produced for each replicate, they were merged 

using Samtools (Li et al., 2009). The merged BAM file was used to generate regions of open 

chromatin using F-Seq (Boyle et al., 2011) based on the recommended parameters by Koohy 

et al. (2014), with the minimum reported size reduced from 500 bases to 400. Wellington 

was run with the -fdrlimit set to −1, to be the most lenient in reporting. HINT was run using 

standard settings. Neither Wellington nor HINT were run using any cleavage bias correction 

(Gusmaoet al., 2014; Piper et al., 2013). The footprints were then stored in a relational 

database for ease of query.
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The size of the input data (2.5 TB) and variability in replicate quantity for all samples (1591 

FASTQ samples) made for a complex analysis (Figure 1). The Globus Genomics platform 

allowed us to automate this analysis through its support for transparent batch submission and 

parallelization methods. We utilized Amazon EC2 r3.8xlarge instance type with 32 CPUs 

and 244 gigabyte memory per node. The analysis of all tissues generated over 5 TB of data 

while using approximately 68,771 CPU hours (2149.1 node hours). The analysis of each 

tissue was executed in parallel. In addition, each patient and their replicates were executed in 

parallel, as well as each footprint algorithm

Alignment—For each tissue type, we started with the FASTQ files from the ENCODE 

portal (encodeproject.org). Some ENCODE experiments contain multiple biological 

samples, while others may contain only a single sample. An ENCODE experiment may 

contain single or paired-end reads, with varying depth of sequencing and varying read length 

in each experiment.

The ENCODE data was generated using short reads (< 50 bases), resulting in a high number 

of potential sequence matches. This led us to produce alignments based on two different 

hash table seed lengths. Each FASTQ file (or paired-end files) was aligned to GRCh38 using 

the SNAP algorithm (Zaharia et al., 2011). SNAP uses a default seed length of 20. We 

additionally aligned to seed size 16, given the shorter sequence lengths. Using the 

experiment groupings from ENCODE, we produced 386 BAM files for each seed.

Identifying regions of open chromatin—Based on work from Koohy et al. (2014), 

who compared four different approaches (F-Seq, Hotspot, MACS and ZINBA) we used F-

seq (Boyle et al., 2008) to identify regions of open chromatin from the aligned BAM files 

using the same recommended parameters. As stated in the F-Seq documentation, the results 

are non-deterministic because it uses a variable seed number in selecting a starting point for 

determining regions of open chromatin. The seed sets the sliding frame at which regions are 

considered, leading to slightly different beginning and ending points of open-chromatin. The 

resulting regions (in BED format) vary slightly when repeated. The variable coverage on the 

edges becomes less of an issue with increased sample numbers.

Motif database curation—As footprints from HINT and Wellington are motif agnostic 

and do not include information on motif matches, we integrated the footprint locations with 

motifs and motif-transcription factor mappings from JASPAR, HOCOMOCO, UniPROBE, 

and SwissRegulon. There is considerable redundancy between these databases, which often 

contain position weight matrices that are similar or identical. A motif in one database can 

also be quite different from the motif in another database associated with the same 

transcription factor, resulting in different mappings. To avoid inclusion of redundant motifs, 

we updated and modified an existing R package, MotifDB (Shannon and Richards, 2017), to 

include the latest versions of all four databases. We evaluated the similarity of all motifs 

using Tomtom (Gupta et al., 2007). Those motifs that were significantly different from the 

2016 release of JASPAR (-log(p value) ≥ 7.3) were retained, yielding a total of 1,530 motifs. 

In addition to the mappings provided by each of the aforementioned databases, we also 

expanded the TF-motif mappings to incorporate families of TFs with very similar DNA 

sequence specificity, using information from TFClass (Wingender et al., 2015). The 
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complete mapping can be accessed through MotifDB by calling the 

“associateTranscriptionFactors” method. The number of original motifs considered for each 

database and the number of motifs and transcription factor mappings retained after filtering 

are found in Table S1.

Collectively, our aggregated collection of motif databases and mappings contains 1,530 

unique motifs recognized by 1,515 transcription factors. Many motifs were associated with a 

single transcription factor, while a few promiscuous motifs were associated with as many as 

60 transcription factors. Two representative examples of these mappings are found in Figure 

S2. An entire map of all motifs and TFs can be found in the Table S2. Reversing the 

association, many transcription factors were associated with one motif, while a few 

transcription factors were associated with > 100 motifs. The total number of motif-

transcription factor mappings considered was 13,242.

Combining footprints with database of motifs—To maximize coverage, and because 

of the potential imprecise nature of footprints, if any part of a known motif overlapped with 

a single base of the footprint, an entry was created. Intersection was done by porting the 

motif instances and footprints into the GenomicRanges R package, using the “any” option.

ChIP-seq validation and machine learning models—We joined all footprints based 

upon location in the genome to create one unified dataset per tissue. To account for the fact 

that the same footprints are often found in multiple samples from the same tissue, we 

retained the best score for each method and added as an additional metric the number of 

times a footprint was found at that location. As HINT is far more sensitive than Wellington, 

we scaled this count metric to one that captured the fraction of samples in which a given 

footprint was found. After we summed the number of footprints for each location, we used 

the highest number of occurrences as the denominator for all footprints in that method, 

resulting in a fractional representation for the occurrence metric. Additionally, we 

recognized that footprint-motif intersections include overlap of any size, but regions with 

higher overlap might indicate higher-confidence cases. To capture this effect, we calculated 

the overlap distance between each motif and its footprints for both seed as a fraction of motif 

length. JASPAR transcription factor class information was one-hot encoded in our feature 

matrix. GC content was calculated for each motif found within a footprint by using a 

window of 100 bases from the center on each side of the motif. Distance in base pairs (BP) 

to the nearest transcription start site (TSS) was calculated for each motif and transformed 

using the arcsinh (hyperbolic arcsine) function.

For purposes of validating the model, we designated chromosomes 2 and 4 as a hold-out set 

that was left untouched until the very end after all model parameter sets had been tested. 

Chromosomes 1, 3, and 5 were used to test the models as different parameters in 

architectures were explored. The remaining chromosomes were used to train the models. We 

trained two classes of models: 1) a basic logistic regression model, and 2) a gradient boosted 

model, which aggregates an ensemble of decision trees to learn a nonlinear decision 

boundary. Regression models were constructed for their ease of interpretability, as well as 

for a baseline to which we compare the performance of the boosted models. We trained 

logistic regression models not only for all features in the ensemble, but on each feature 
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individually, in order to get an idea of which features were most predictive of ChIP-seq hits. 

The boosted model was chosen based on its predictive power, as gradient boosted trees have 

been shown to offer state of the art performance for tasks of this nature (Olson et al., 2018). 

We used the R package XGBoost to create this model using a maximum tree depth of 7, 200 

rounds of boosting, and a logistic regression optimization criterion (Chen and Guestrin, 

2016).

One challenge that we encountered in creating this model is that the number of footprints for 

a given motif (or set of motifs connected to a given transcription factor) is orders of 

magnitude larger than the number of ChIP-seq peaks. This imbalance is problematic in the 

setting of this machine-learning format, as it increases memory requirements significantly 

and results in a poor signal-to-noise ratio. In order to address this issue in our training set, 

we sampled 20 million hits of 264 motifs, combined these motif hits with our lymphoblast 

footprints, then filtered for a 10:1 ratio of negative-to-positives. We did not filter any of the 

ChIP-seq hits in our training set. This resulted in a more balanced training set in which the 

features associated with true positives could be better learned. We also used a statistical 

measure of performance, the Matthews Correlation Coefficient (MCC), that was designed to 

be robust to unbalanced sample sizes in the two classes being compared (Boughorbel et al., 

2017).

eQTL Enrichment—Expression quantitative trait loci (eQTLs) from the Genotype Tissue 

Expression Consortium (GTEx; V6p 95% credible causal sets) (Battle et al., 2017) were 

downloaded from the UCSC Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database) on January 5, 2018. In addition, as a background set, we downloaded the 

table of all 11,959,406 genotyped and imputed variants from the GTEx V6p dataset 

(“GTEx_Analysis_2015-01-12_OMNI_2.5M_5M_450Indiv_chr1-22-

X_genot_imput_info04_maf01_HWEp1E6_variant_id_lookup.txt.gz”) from the GTEx web 

portal (https://www.gtexportal.org/home/; accessed March 16, 2018). GTEx variants were 

converted to hg38 coordinates using the UCSC Genome Browser’s liftOver tool (https://

genome.ucsc.edu/cgi-bin/hgLiftOver) with default parameters. We identified TF binding 

site-altering variants by intersecting the locations of GTEx variants with the locations of TF 

binding sites from DNase-seq footprinting, using the genomic coordinates of motifs that 

overlap a footprint with a HINT score > = 200. Statistical associations between footprints 

and eQTL posterior probabilities were calculated using the t.test() function in R. Statistical 

significance for overlap between variants that alter TF binding sites and variants that are 

eQTLs was calculated from 1,000 re-sampling permutations, drawing variants at random 

from the complete set of genetic variants in GTEx V6p.

Partitioned Heritability Analysis—We utilized a partitioned heritability approach to 

characterize the relationship between footprint confidence scores and relevant phenotypes. 

First, we divided all the pooled footprints in a given tissue type into decile bins based on the 

score assigned to the best HINT20 score (1 = lowest scores, 10 = highest scores). We then 

used portioned LD Score Regression (LDSC) (Finucane et al., 2015) to assess each decile’s 

contribution to heritability for several disease traits. The immune traits assessed were 

ulcerative colitis, type 1 diabetes, rheumatoid arthritis, primary biliary cirrhosis, multiple 
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sclerosis, lupus, Crohn’s disease, and celiac disease. The neuropsychiatric traits included 

educational attainment, neuroticism, schizophrenia, and bipolar disorder, as well as 23 

additional brain-related traits taken from the top 100 most heritable traits in the UK Biobank 

(Table S3) (Bentham et al., 2015; Bradfield et al., 2011; Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014; Cordell et al., 2015; Dubois et al., 2010; 

Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011; Jostins et al., 2012; 

Okada et al., 2014; Okbay et al., 2016; Sawcer et al., 2011). The top and bottom brain 

deciles were compared using a chi-square test, and we used the residuals to determine over- 

and under-represented TFs in both deciles.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNase-I genomic footprints were identified with HINT and Wellington. Thresholds for 

selecting high-quality footprints were evaluated via a gradient boosting model, comparing 

footprint locations to true-positive TF binding sites from ChIP-seq. Overlap of footprints 

with eQTLs was evaluated with bootstrap permutations and t tests. Enrichment of footprints 

for SNPs associated with risk for human traits was calculated with stratified LD score 

regression. Details are provided in the Method Details section, above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Comprehensive map of TF occupancy in human tissues from DNase-seq 

footprints

• Footprints contain genetic variants associated with changes in gene 

expression

• Tissue-specific associations of footprints with genetic risk for complex traits
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Figure 1. Footprint Atlas Workflow and Coverage Statistics
(A) Footprints workflow overview. Each tissue type can have multiple quantities of patients 

and replicates. Each replicate is aligned using SNAP-aligner. All replicates for each patient 

are merged using Samtools. Finally, footprints for each BAM file are produced using 

Wellington and HINT and stored in a database.

(B) Percentage of the genome covered by the footprints for each tissue type and all tissues. 

Yellow is without filtering, and dark blue is filtering with HINT score > 200 and Wellington 

score < −27 (each method has its own scale and distribution).

(C) Footprints from the brain for HINT20 are ordered based on the number of footprints and 

summed. The light blue graphs represent the total number of footprints in each sample (top 

is without filtering on score; bottom is filtered as in B). The dark blue line represents the 

cumulative percentage of the genome covered.
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Figure 2. Predictive Performance on a Held-Out Test Set of a Gradient-Boosted Decision Tree 
(GBDT) Model of the 62 TFs (264 Motifs) in the ENCODE-Generated ChIP-Seq Samples
We compare with baseline models that use only motif information, TSS distance, and GC 

content and to a linear model that uses all of these.

(A) Results using motifs devoid of footprint scores and metrics but including the following 

features: GC content, motif score, distance to TSS, and TF classes.

(B) Results for footprints generated from both Seed16 and Seed20 alignments using all 

aforementioned features, footprint scores, and footprint metrics. The GBDT model obtains 

the best performance by nearly all metrics, though the amount by which it outperforms the 

linear model on the footprint data is in some cases marginal enough that an interpretable 

linear model may be preferred for some applications.

The threshold in the third column refers to the decision boundary at which the continuous 

output of the models, which varies between zero and one, is thresholded and a classification 

decision is made. The aggregate models obtain good performance over a relatively wide 

range of thresholds compared with the models using individual methods.
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Figure 3. Importance Matrix Quantifying the Contribution of Each Feature when Trained and 
Tested on the ENCODE ChIP-Seq Dataset for 62 TFs

Funk et al. Page 23

Cell Rep. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Footprints Overlap with Genetic Variants that Affect Gene Expression
(A) Counts of eSNPs overlapping predicted TF binding sites across all DHS tissues. 

Barplots indicate the total number of eSNPs overlapping footprints across all GTEx tissues.

(B) Comparison of CAVIAR eQTL scores with the fold enrichment for TFBS-eQTLs.
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Figure 5. Partitioned Heritability of Tissue-Specific Footprints in Related GWAS by Footprint 
Confidence Score Decile
(A) Partitioned heritability of brain footprints by decile in 27 summarized brain-related 

traits. Box plots indicate the median and interquartile range of −log10 (p values ) across the 

27 traits.

(B) Heritability of lymphoblast footprint deciles in 8 summarized immune-related traits. 

Decile 1, lowest scores; decile 10, highest scores.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Deposited Data

Footprint BED files This paper http://data.nemoarchive.org/other/grant/sament/sament/footprint_atlas/bed/

Footprint extended TSV 
files

This paper http://data.nemoarchive.org/other/grant/sament/sament/footprint_atlas/extended/

ENCODE DNase-seq https://www.encodeproject.org/ RRID: SCR_015482. For specific accessions/experiments, see http://
data.nemoarchive.org/other/grant/sament/extended/

Expression quantitative 
trait loci (eQTLs)

Battle et al., 2017 http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/

Background genotyped 
variants

Battle et al., 2017 https://storage.googleapis.com/gtex_analysis_v6/reference/
GTEx_Analysis_2015-01-12_OMNI_2.5M_5M_450Indiv_chr1-22-
X_genot_imput_info04_maf01_HWEp1E6_variant_id_lookup.txt.gz

Educational attainment 
GWAS

Okbay et al., 2016 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Years_of_Education2.sumstats

Schizophrenia GWAS Schizophrenia Working Group 
Working Group of the 
Psychiatric Genomics 
Consortium, 2014

https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Schizophrenia.sumstats

Neuroticism GWAS Okbay et al., 2016 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Neuroticism.sumstats

Bipolar Disorder 
GWAS

Psychiatric GWAS Consortium 
Bipolar Disorder Working 
Group, 2011

https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Bipolar_Disorder.sumstats

Alcohol intake 
frequency GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/bi7t4rekkhpa4ks/
1558.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Alcohol usually taken 
with meals GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/ra3tw6s1kw31ywn/
1618.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Age completed full 
time education GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/o1o31tevhou822f/
845.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Job involves heavy 
manual or physical 
work GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/zswrzp8s19j28sz/
816.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Job involves mainly 
walking or standing 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/de1u2yul4cffb1i/
806.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Age at first live birth 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
bqjiqclxdb195d6/2754_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Fluid intelligence score 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/t3lrfj1id8133sx/
20016_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Fedup feelings GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
kv6ltvrmkrugfy1/1960.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Frequency of tiredness 
lethargy in last 2 weeks 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/usoitcixaa39gtw/
2080.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Mood swings GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
q4yv2y5u07z7qc6/1920.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Seen doctor GP for 
nerves anxiety tension 
or depression GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/ow0kr506vn2fiox/
2090.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Number of incorrect 
matches in round 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
nb54tjjsoijf2x4/399_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
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REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Mean time to correctly 
identify matches 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
ysx8s20g8la9lm1/20023_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Daytime dozing 
sleeping narcolepsy 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/chtk02fbduvzv3r/
1220.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Getting up in morning 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
0v2exws5j8z4yo7/1170.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Morningevening person 
chronotype GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/h6vnprrobkdia2d/
1180.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Nap during day GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/q8fynq2rnkgttoi/
1190.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Sleep duration GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/7tgjc9s68gp9d5a/
1160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Sleeplessness insomnia 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/jeolythrs18jk9p/
1200.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Snoring GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
dvmbzveuc0htuj3/1210.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Current tobacco 
smoking GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
nwqshg5soaayh03/1239.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Ever smoked GWAS http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
2vxlmq7q7ozxgf9/20160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Past tobacco smoking 
GWAS

http://www.nealelab.is/uk-
biobank/

https://www.dropbox.com/s/
29b2w1qc9erzlo4/1249.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0

Celiac GWAS Dubois et al., 2010 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Celiac.sumstats

Lupus GWAS Bentham et al., 2015 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Lupus.sumstats

Primary biliary 
cirrhosis GWAS

Cordell et al., 2015 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
PASS_Primary_biliary_cirrhosis.sumstats

Type 1 Diabetes GWAS Bradfield et al., 2011 https://data.broadinstitute.org/alkesgroup/sumstats_formatted/
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Software and Algorithms

SNAP Zaharia et al., 2011 http://snap.cs.berkeley.edu/

Samtools Li et al., 2009 http://samtools.sourceforge.net/

F-Seq Boyle et al., 2008 http://fureylab.web.unc.edu/software/fseq/

FIMO Grant et al., 2011 http://meme-suite.org/doc/download.html

HINT Gusmao et al., 2014 http://www.regulatory-genomics.org/hint/introduction/

Wellington Piper et al., 2013 https://pythonhosted.org/pyDNase/

Tomtom Gupta et al., 2007 http://meme-suite.org/doc/download.html

Cell Rep. Author manuscript; available in PMC 2020 September 01.

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/ysx8s20g8la9lm1/20023_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/ysx8s20g8la9lm1/20023_irnt.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/chtk02fbduvzv3r/1220.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/chtk02fbduvzv3r/1220.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/0v2exws5j8z4yo7/1170.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/0v2exws5j8z4yo7/1170.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/h6vnprrobkdia2d/1180.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/h6vnprrobkdia2d/1180.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/q8fynq2rnkgttoi/1190.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/q8fynq2rnkgttoi/1190.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/7tgjc9s68gp9d5a/1160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/7tgjc9s68gp9d5a/1160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/jeolythrs18jk9p/1200.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/jeolythrs18jk9p/1200.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/dvmbzveuc0htuj3/1210.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/dvmbzveuc0htuj3/1210.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/nwqshg5soaayh03/1239.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/nwqshg5soaayh03/1239.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/2vxlmq7q7ozxgf9/20160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/2vxlmq7q7ozxgf9/20160.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/29b2w1qc9erzlo4/1249.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/29b2w1qc9erzlo4/1249.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Celiac.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Celiac.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Lupus.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Lupus.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Primary_biliary_cirrhosis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Primary_biliary_cirrhosis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Type_1_Diabetes.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Type_1_Diabetes.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Crohns_Disease.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Crohns_Disease.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Multiple_sclerosis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Multiple_sclerosis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Rheumatoid_Arthritis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Rheumatoid_Arthritis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Ulcerative_Colitis.sumstats
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/PASS_Ulcerative_Colitis.sumstats
https://www.ncbi.nlm.nih.gov/grc/human
http://snap.cs.berkeley.edu/
http://samtools.sourceforge.net/
http://fureylab.web.unc.edu/software/fseq/
http://meme-suite.org/doc/download.html
http://www.regulatory-genomics.org/hint/introduction/
https://pythonhosted.org/pyDNase/
http://meme-suite.org/doc/download.html


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Funk et al. Page 28

REAGENT or 
RESOURCE

SOURCE IDENTIFIER

GenomicRanges Lawrence et al., 2013 https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

XGBoost Chen and Guestrin, 2016 https://xgboost.readthedocs.io/en/latest/

LiftOver Hinrichs et al., 2006 https://genome-store.ucsc.edu

LDSC Finucane et al., 2015 https://github.com/bulik/ldsc

Other

JASPAR MotifDB http://jaspar.genereg.net/

HOCOMOCO MotifDB https://hocomoco11.autosome.ru/

UniPROBE MotifDB http://thebrain.bwh.harvard.edu/uniprobe/

SwissRegulon MotifDB http://www.swissregulon.unibas.ch/

BDBags Madduri et al., 2019 https://github.com/fair-research/bdbag

ENCODE2Bag Madduri et al., 2019 https://github.com/fair-research/encode2bag
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