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Abstract
The CaMK subfamily of Ser/Thr kinases are regulated by calmodulin interactions with their C-terminal regions. They are 
exemplified by Ca2+/calmodulin dependent protein kinase 1δ which is known as CaMK1D, CaMKIδ or CKLiK. CaMK1D 
mediates intracellular signalling downstream of Ca2+ influx and thereby exhibits amplifications of Ca2+signals and poly-
morphisms that have been implicated in breast cancer and diabetes. Here we report the backbone 1H, 13C, 15N assignments 
of the 38 kDa human CaMK1D protein in its free state, including both the canonical bi-lobed kinase fold as well as the 
autoinhibitory and calmodulin binding domains.
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Biological context

Protein kinases are important mediators of signal transduc-
tion, with approximately a 30% of all human proteins being 
phosphorylated (Cohen 2001). Their deregulation con-
tributes to cancer and many other diseases, and is a major 

focus of drug discovery efforts (Marsden and Knapp 2008). 
To date, 518 members have been identified in the human 
kinome, and are grouped into 10 sub families (Manning et al. 
2002). Those that belong to calmodulin dependent kinases 
(CaMK) group share a similar domain organization. All are 
activated by binding of Ca2+/calmodulin to their C-terminal 
regulatory region, releasing the catalytic domains to phos-
phorylate Ser/Thr residues in protein substrates to alter their 
functionality (Hook and Means 2001; Soderling and Stull 
2001). No resonance assignments for any CaMK member 
have been reported, limiting analysis of their solution struc-
tures and interactions.

The structure of CaMK1D consists of various functional 
modules. The kinase domain resembles the canonical kinase 
fold first identified in PKA, which consists of a smaller 
β-sheet lobe which binds ATP connected by a hinge to the 
larger α-helical lobe where substrates are recognized. The 
β-sheet lobe features the P-loop and mobile αC helix, whilst 
the α-helical lobe presents the catalytic and activation loops 
(Knighton et al. 1991). Like other CaMK proteins, the kinase 
domain is negatively regulated by an adjacent C-terminal 
auto-inhibitory domain (AID), a helix-loop-helix motif 
which occludes the substrate and ATP binding sites (Gold-
berg et al. 1996; Swulius and Waxham 2008). The overlap-
ping calmodulin binding domain (CBD) is recognized by 
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calmodulin, which disengages the AID to activate the kinase 
(Haribabu et al. 1995; Yokokura et al. 1995; Matsushita and 
Nairn 1998).

Phosphorylation of Thr180 in the activation loop 
increases CaMK1D activity and is mediated by calcium 
calmodulin dependent protein kinase kinase (CaMKK). 
Diverse tissues express CaMK1D including brain, colon, 
liver, ovary, pancreas, prostate, spleen, testis, and thymus 
(Ishikawa et al. 2003). Its levels are amplified in basal-like 
breast tumors, which have a particularly poor clinical out-
come. Engineered overexpression of CaMK1D in nontumor-
genic cell lines causes increased cell proliferation, migration 
and invasion, indicating its oncogenic role (Bergamaschi 
et al. 2008). The subcellular distribution of CaMK1D is pre-
dominantly cytoplasmic, but once activated it can translo-
cate to the nucleus (Sakagami et al. 2005). Increased protein 
expression levels and altered regulation of glucose process-
ing have indicated a role for CaMK1D in diabetes (Fogarty 
et al. 2014; Haney et al. 2013).

The design of selective inhibitors and drug leads for 
kinases such as CaMK1D is challenging due to the high 
degree of conservation within the ATP binding pocket 
(Vulpetti and Bosotti 2004). NMR spectroscopy provides 
an efficient route for identifying efficient lead molecules, 
novel binding pockets and induced conformational changes 
(Diercks et al. 2001). However, protein kinases are chal-
lenging to study by NMR, often yielding poor spectra due to 
their intrinsic dynamics and large molecular weights. Thus 
few protein kinases have been assigned (Langer et al. 2004; 
Vogtherr et al. 2005, 2006; Gelev et al. 2006; Vajpai et al. 
2008; Masterson et al. 2009; Xiao et al. 2015; Serimbetov 
et al. 2017; Sanfelice et al. 2018). Following optimization of 
solution conditions, the autoinhibited human CaMK1D was 
found to be amenable to NMR analysis, yielding resolved 
spectra under physiological buffer conditions. This infor-
mation has been used to aid in the design of small molecule 
inhibitors of CaMK1D and development of lead candidates 
for therapeutic intervention (Fromont et al. 2020).

To enable investigation of CaMK1D’s solution structure 
and interactions, we have assigned the majority of the back-
bone resonances of CaMK1D using 2H, 15N and 13C-labelled 
protein.

Methods and experimental

The construct of CaMK1D comprising the wild type human 
kinase catalytic domain and autoinhibitory domain (residues 
1–333) included an N-terminal His6-tag. The E. coli BL21 
DE3 RIPL codon plus strain (Stratagene) was transformed 
and grown at 37 °C in M9 minimal media supplemented with 

30 μg/mL, kanamycin, 34 μg/mL chloramphenicol, 15NH4Cl 
and 13C6-glucose in 99.9% 2H2O until reaching an O.D 
600nm of 0.4. The culture was cooled to 18 °C and induced 
with 1 mM IPTG for 24 h. The cells were centrifuged at 
7000 g for 15 min and resuspended in 50 mM Hepes pH 
7.5, 500 mM NaCl, 0.5 mM TCEP, 5 mM imidazole, 0.02% 
NaN3 supplemented with an EDTA-free complete protease 
inhibitor cocktail (Roche). The cells were lysed by French 
press and the resulting cell lysate centrifuged at 75,000×g 
for 45 min. The supernatant was filtered through a 0.45 µM 
filter and CaMK1D was purified by Ni2+NTA-affinity chro-
matography (GE Healthcare). The His6-tag was removed 
with TEV protease followed again by purification on the 
Ni2+NTA-affinity column. Final purification was achieved 
by Superdex-75 (GE Healthcare) size exclusion chroma-
tography in 50 mM Na phosphate pH 7.5, 150 mM NaCl, 
0.5 mM TCEP, 0.02% NaN3, which indicated that the protein 
was monomeric. The CaMK1D sample was exchanged into 
an NMR buffer containing 50 mM Na phosphate pH 7.0, 
75 mM NaCl, 0.5 mM TCEP, 0.02% NaN3 using an Amicon 
Ultra-15 centrifugal device (Millipore) and concentrated to 
1.2 mM in a 600 µL final volume containing 10% 2H2O.

The NMR experiments were performed at 298 K on Var-
ian Inova 800 and 900 MHz NMR spectrometers equipped 
with triple resonance cryogenic probes with Z-axis pulse 
field gradients. Backbone assignments were made from 
TROSY versions of 1H,15 N-HSQC, HNCO, HN(CA)CO, 
HN(CO)CA, HNCA, HNCACB and HN(COCA)CB (Gard-
ner and Kay 1998). Spectra were processed with NMRPipe 
(Delaglio et al. 1995) and analysed using CCPN analysis 
(Vranken et al. 2005).

Extent of assignments and data deposition

The 1H,15N-TROSY HSQC of the 37.8 kDa deuterated 
CaMK1D protein in its inactive state is shown (Fig. 1). 
The backbone HN resonances of 255 residues were 
assigned out of a possible 322, representing 79% cover-
age, and including residues from every structural and func-
tional element (Fig. 2). Of those amino acids assigned, 
98% include C’, 100% include Cα, and 99% include 
Cβ chemical shifts. Of all 11 proline residues, 10 were 
assigned, with 80% including C’, 60% including Cα and 
40% including Cβ chemical shifts. The remaining Pro219 
could not be assigned as it is N-terminal to another pro-
line. Residues which could not be assigned were 1, 6, 9, 
34–35, 56, 63–66, 68–70, 74–77, 82, 84–85, 99–102, 141, 
143–144, 146, 164–169, 172, 174, 178–182, 186–187, 
199–200, 212–213, 216, 251–254, 260, 303–305, 317–325 
and 327. The unassigned residues are mostly found in loop 
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regions, αC helix and C-terminus (Fig. 2). Incomplete 
assignments in the activation loop and C-terminus also 
coincided with the disorder and high B-factor values seen 
for these respective regions in the PDB (2jc6). Resonance 
assignments in these typically exposed and mobile ele-
ments were presumably compromised by peak broaden-
ing caused by intermediate or slow time scale dynamics. 
Assignments were also complicated by peak overlap near 
the center of the TROSY HSQC spectrum (Fig. 1). Several 
residues exhibited a second set of weaker or equivalent 
resonances, including for example Gly103, Gly217 and 
Asp223 suggesting additional conformers (Fig. 1, green 

boxes). The Ser residue at the extreme N-terminus which 
is retained from the TEV site after protease cleavage also 
could not be assigned. Isolated residue assignments were 
made for Glu67, Ala83, His142, Leu145 and Tyr 198 
based on their unique chemical shifts, intra- and inter-
residue correlations in the triple resonance spectra, and 
the CaMK1D structure.

The chemical shift values for the 1H, 13C and 15 N reso-
nances of CaMK1D have been deposited at the BioMa-
gResBank (https​://www.bmrb.wisc.edu) under accession 
number.

Fig. 1   TROSY HSQC spectrum of deuterated CaMK1D at 1.2  mM 
concentration in 50 mM Na phosphate pH 7, 75 mM NaCl, 0.5 mM 
TCEP, 0.02% NaN3 collected at 298 K on a 800 MHz Varian Inova 
spectrometer. The blue box (denoted A) is an expansion of the 
crowded central region of the spectrum. The red box (denoted B) fur-

ther expands the congested central region. Backbone HN peaks are 
labeled with their assignments. Trp sidechain HN groups are indi-
cated by W-sc. Green boxes highlight examples of residues exhibiting 
more than one conformation

https://www.bmrb.wisc.edu
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