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Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters
GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant
for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes,
whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose
concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose
absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLMwhereas high-capacity D-glucose
absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review
describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and
carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed.
Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as
glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small
intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide
transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that
inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose
transporters, and for interplay between D-fructose transport and metabolism, are discussed.
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2-[18F]DG 2-Deoxy-2-[18F]-D-glucose
FGID Functional gastrointestinal disorder
5-FU 5-Fluorouracil
GIP Glucose-dependent insulinotropic hormone
GLP-1 Glucagon-like peptide 1
GLP-2 Glucagon-like peptide 2
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GNG Gluconeogenesis
HFI Hereditary fructose intolerance
HNF Hepatic nuclear factor
HSP Heat shock protein
HuR Human antigen R
IEC Intestinal epithelial cell
IFM Isolated fructose malabsorption
IIP Ileal interposition
KHK Ketohexokinase
LXR Liver X receptor
LPS Lipopolysaccharide
MAP Mitogen-activated protein
NAFLD Nonalcoholic fatty liver disease
NHE Na+–H+ exchanger
ODC Ornithine decarboxylase
OGTT Oral glucose tolerance test
ORT Oral rehydration therapy
3-OMG 3-O-Methyl D-glucoside
PET Positon emission tomography
PPAR Peroxisome proliferator–activated receptor
PYY Peptide YY
RELM-β Resistin-like molecule beta
RYGB Roux-en-Y gastric bypass
SNV Single nucleotide variation
STZ Streptozotocin
TGFβ1 Tissue growth factor beta 1
SGK Serum- and glucocorticoid-inducible kinase
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
TGN Trans-Golgi network
TLR Toll-like receptor
TRIOK Triosekinase
URE Uridine-rich element
YFP Yellow fluorescent protein
VSG Vertical sleeve gastrectomy

Introduction

Absorption of monosaccharides in the small intestine is
pivotal for caloric intake of mammalians and adjusted in
accordance with food supply, food composition, and ener-
gy demand in diverse physiological and pathophysiological
situations. In respect to caloric intake, D-glucose, D-galac-
tose, and D-fructose are the most relevant monosaccharides.
For absorption, monosaccharides must cross a layer of ep-
ithelial cells that are connected by tight junctions which do
not allow permeation of monosaccharides [189, 192].
Because monosaccharides are hydrophilic, they cannot per-
meate cell membranes passively. Hence, for absorption of
D-glucose, D-galactose, and D-fructose, transporters in the
luminal brush border membrane (BBM) and basolateral
membrane (BLM) of small intestinal epithelial cells

(IECs) are required. In addition, the carbohydrate metabo-
lism in small IECs has been adjusted to allow an adequate
t r an sce l l u l a r movemen t o f nonphospho ry l a t ed
monosaccharides.

In this review, the functions and membrane locations of
transporters for D-glucose, D-galactose, and/or D-fructose
expressed in the small intestine are described. They belong
to the SLC2 family with facilitative diffusion transporters
(GLUTs) and the SLC5 family with Na+-D-glucose
cotransporters (SGLTs). D-Glucose and D-galactose are
transported across the brush border membrane of small
intestinal enterocytes via the Na+-D-glucose cotransporter
SGLT1 and leave the enterocytes across the basolateral
membrane via GLUT2 (Fig. 1). The driving force of
SGLT1-mediated monosaccharide transport is provided
by the transmembrane Na+ gradient and membrane poten-
tial that are generated by the Na+-K+-ATPase. GLUT5 in
the BBM and BLM is responsible for transport of D-fruc-
tose across the BBM and BLM (Fig. 1). At high D-glucose
concentration in the small intestine, GLUT2 is also incor-
porated into the BBM and supports uptake of D-glucose
and D-galactose across the BBM. In the next part of the
review, the regulation of the most relevant small intestinal
monosaccharide transporters, namely the Na+-D-glucose
cotransporter SGLT1 and the facilitative diffusion systems
for D-glucose, D-galactose, and/or D-fructose GLUT2 and
GLUT5, is depicted. Therefore, the general knowledge
about regulation of these transporters as well as their spe-
cific regulations in the small intestine is compiled. In ad-
dition, the combined action of the transporters for adapta-
tion of monosaccharide absorption to different physiolog-
ical conditions is discussed. Because monosaccharide
transporters are also expressed in enteroendocrine cells
and contribute to stimulation for enterohormone secretion,
also the expression and physiological functions of mono-
saccharide transporters in enteroendocrine cells are
reviewed.

Small intestinal monosaccharide transporters play im-
portant roles during emergence, progression, and treatment
of various diseases. Covering these issues, diseases are
reviewed that are caused by or associa ted with
malfunctions of small intestinal glucose transporters.
Also, current knowledge about effects of diabetes on glu-
cose transporters in the small intestine and about the im-
pact of small intestinal inflammations of different genesis
on glucose transporters is compiled. In addition, therapeu-
tic measures are discussed that are based on the function or
change of function of small intestinal glucose transporters
such as oral hydration therapy, parental nutrition, and bar-
iatric surgery. Finally, antidiabetic food components, anti-
diabetic drugs, and lead compounds of antidiabetic therapy
are discussed that inhibit or downregulate SGLT1 or
GLUT2 in the small intestine.
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Transport mode, selectivity, and location
of glucose transporters expressed in the small
intestine

Na+-D-glucose cotransporter SGLT1

In the small intestine of mammals, high expression of the Na+-
D-glucose cotransporter SGLT1 (SLC5A1) was observed on
the mRNA and protein level [424]. In the duodenum of hu-
man, rat, and mice, different relative levels of SGLT1/Sglt1
mRNA were determined following the order human > mouse
> rat [195]. Proteomic analysis revealed that Sglt1 is the most
abundantly expressed plasma membrane protein in mouse
small intestine [422]. In mouse and human, minor expression
of SGLT1/Sglt1 mRNA expression was also observed in the
colon [65, 253, 431].

SGLT1/Sglt1 is a secondary active transporter that translo-
cates one D-glucose molecule together with two sodium ions
into cells employing the inwardly directed sodium gradient
that is generated by the (Na+/K+)-ATPase as driving force
[231]. Human SGLT1 transports D-glucose and D-galactose
with respective apparent Km values of 0.5 mM and 1 mM at
physiological membrane potential and inward-directed Na+

gradient, whereas it does not interact with D-fructose
(Table 1) [424]. SGLT1/Sglt1-mediated uptake is inhibited
by phlorizin but not by phloretin and cytochalasin B [424].

SGLT1/Sglt1-related immunoreactivity was detected in
BBMs of IECs and in enteroendocrine cells [25, 132, 142,
155, 253, 387, 410]. Apart from some differences in segment

distribution, similar membrane location of SGLT1/Sglt1 was
observed in different species. In human IECs, SGLT1 protein
was observed not only in the BBM but also in subapical ves-
icles [410]. Similarly, in differentiated CaCo-2 cells, a model
of human enterocytes, SGLT1, was localized to the BBM and
intracellular vesicles [198]. The intracellular location of
SGLT1/Sglt1 in enterocytes is consistent with data revealing
a D-glucose-dependent regulation of the exocytotic pathway
of SGLT1/Sglt1 in the small intestine of mouse and humans
[66, 341, 408]. In rats, the BBM abundance and transport
capacity of Sglt1 per unit length in the jejunum was higher
compared to that in the duodenum and ileum [25, 83, 142,
203]. These differences are mainly due to the different length
of the villi and microvilli. Whereas in BBMs along the small
intestinal villi very strong SGLT1/Sglt1-related immunoreac-
tivity was observed, only weak or no staining was detected in

Table 1 Characteristics of uptake of D-glucose, D-galactose, and/or D-
fructose by human SGLT1, GLUT2, GLUT 5, and GLUT7

Transporter Approximate Km value (mM) Reference

D-Glucose D-Galactose D-Fructose

SGLT1 0.5 1 n.i. [424]

GLUT2 17 92 76 [182]

GLUT5 n.d. n.i. 6 [46]

GLUT7 0.3 n.i. 0.06 [236]

n.i., no interaction; n.d., not determined

Fig. 1 Location of
monosaccharide transporters in
enterocytes that are involved in
small intestinal absorption of D-
glucose, D-galactose, and D-
fructose. The locations were
determined in different species
including humans. Highly
expressed transporters are
outlined bold. Locations of
monosaccharide transporters
observed under various
physiological and
pathophysiological conditions are
indicated in green. GLUT2 that
was only observed in the BBM at
high small intestinal D-glucose
concentrations or in some
pathological conditions is
indicated in yellow. The Na++K+-
ATPase in the BLM generating
the inwardly directed Na+

gradient is also depicted
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BBMs of enterocytes in the crypts [25, 30, 83, 142, 168, 231].
This is consistent with the observation that enterocytes are
dividing within the crypts and differentiate during migration
along the villi [109, 112]. In human and rat, similar abundance
of SGLT1/Sglt1-related immunoreactivity was observed in
BBMs of jejunal enterocytes of female and male [25, 410].

In mouse and human small intestine, SGLT1/Sglt1-related
immunoreactivity was also detected in enteroendocrine K
cells secreting glucose-dependent insulinotropic hormone
(GIP) and in L cells secreting glucose-dependent secretion
of glucagon-like peptide 1 (GLP-1) [132, 410].

Glucose facilitator GLUT2

In the small intestine of mammals and rodents, also high ex-
pression of GLUT2/Glut2 (SLC2A2) was observed in most
species [123, 394, 431]. The abundance of GLUT2/Glut2
mRNA in the duodenum of human, mouse, and rat follows
the order rat > mouse >> human [195]. In mice, a similar
abundance of Glut2 mRNA was observed in the jejunum,
ileum, and colon [345].

GLUT2/Glut2 is a facilitated diffusion system that trans-
ports D-glucose, D-galactose, and fructose in human with ap-
parent Km values of ~ 17 mM, ~ 92 mM, and ~ 76 mM, re-
spectively (Table 1) [133, 182]. GLUT2/Glut2-mediated
transport is inhibited by phloretin and cytochalasin B but not
by phlorizin. Of note, human GLUT2 transports D-glucos-
amine with an apparent Km of ~ 0.8 mM [403].

Betweenmeals when the glucose concentration in the small
intestinal lumen is low or in human mucosa biopsies that were
taken after food traces had been removed by bowl rinsing,
GLUT2/Glut2-related immunoreactivity was observed at the
BLM of small intestinal enterocytes [70, 98, 345, 395]. In
membrane vesicles derived from BLMs of rat small intestine,
glucose transport with properties similar to Glut2 was ob-
served [63]. In the presence of high glucose concentrations,
in various species, GLUT2/Glut2-related immunoreactivity
was also detected in the BBM and phloretin- or gluosamine-
inhibited glucose uptake was detected in BBM vesicles [5, 73,
132, 134, 189–191]. In addition, phloretin- or gluosamine-
inhibited glucose uptake was detected in BBM vesicles
[132, 189].

Fructose facilitator GLUT5

In the small intestine of mammals and rodents, also GLUT5/
Glut5 (SLC2A5) is expressed abundantly [46, 92, 188, 195].
Similar for SGLT1/Sglt1 and GLUT2/Glut2, species differ-
ences were observed for the abundance of GLUT5/Glut5
mRNA in the duodenum following the order rat > human
>> mouse. In human, mRNA abundance of GLUT5 is higher
in the jejunum compared to that in the ileum [46].

In human and rodents, GLUT5/Glut5 is an efficient facili-
tative diffusion system which is specific for D-fructose [46,
266, 311]. Fructose uptake by GLUT5/Glut5 is not inhibited
by phlorizin, phloretin, and cytochalasin B. Human GLUT5
transports D-fructose with an apparent Km of 6 mM (Table 1)
[46].

In human and rodents, GLUT5/Glut5 was localized to the
BBMof small intestinal enterocytes [28, 46, 70, 81, 254, 358].
Of note, in one study, GLUT5-related immunoreactivity was
also detected in the basolateral membrane of human
enterocytes [36].

Glucose facilitators with nonresolved functional
significance

GLUT1

In the small intestine of human, mice, and rat, mRNA of the
erythroid glucose facilitator GLUT1/Glut1 (SLC2A1) was de-
tected [59, 122, 195, 334, 402, 431]. In rat with streptozotocin
(STZ)-induced diabetes, Glut1-related immunoreactivity was
observed in the BLM and the BBM of small intestinal
enterocytes [39]. After duodeno-jejunal bypass (DJB) in rats,
Glut1 in the BLM and basolateral uptake of 2-deoxy-
2[18F]fluoro-D-glucose (2-[18F]DG) in the alimentary jejunal
limb were higher compared to the respective jejunal segment
of sham-operated animals [59, 334]. Because Glut1 was not
detected in the small intestine of nondiabetic rats [39], it is not
supposed to contribute significantly to D-glucose absorption in
healthy individuals.

GLUT7

In human small intestine and colon, mRNA of GLUT7
(SLC2A7) was detected [236]. Human GLUT7 transports D-
glucose and D-fructose with apparent Km-values of 0.3 mM
and 0.06mM, respectively, but does not accept D-galactose as
substrate (Table 1) [236]. Because Glut7 related immunoreac-
tivity was located to the BBM of rat small intestinal
enterocytes [236] it could be relevant for fructose absorption
at low fructose concentrations.

GLUT8

In the small intestine and colon of mice and in CaCo-2 cells,
expression of Glut8 (SLC2A8) was observed [89, 169, 326,
327, 381]. In IECs and after expression of GLUT8/Glut8 in
different cell types, GLUT8/Glut8 was located to intracellular
vesicles [169, 243, 327]. Different to the small intestine, plas-
ma membrane location of Glut8 in blastocytes was promoted
by insulin [19, 169, 243, 307, 344]. After expressing a
GLUT8mutant with an inactivated N-terminal dileucinemotif
in oocytes, uptake of 2-deoxy-D-glucose (2-DOG) with an
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apparent Km of 2.3 mM was measured [169]. Different to
wild-type mice, the abundance of Glut12 in enterocytes of
Glut8-knockout mice was increased in response to a high-
fructose diet [84]. Based on these observations, the hypothesis
was raised that GLUT8/Glut8 interacts with GLUT12/Glut12.
The functional role of GLUT8/Glut8 in the small intestine is
enigmatic.

GLUT12

In human small intestine, GLUT12 (SLC12)-related immuno-
reactivity was observed in a Western blot [323]. After expres-
sion in Xenopus oocytes, GLUT12-mediated uptake of 2-
DOG was demonstrated that was inhibited by D-fructose and
D-galactose [324]. In mice in which Glut2 was overexpressed,
the absorption of D-fructose in the small intestine was in-
creased 2.5-fold [84]. After expression of GLUT12 in
Chinese hamster ovary cells, the transporter was localized to
the Golgi and the plasma membrane [117]. In human skeletal
muscle cells, a N-terminal dileucine motif corresponding to
the abovementioned dileucine motif in GLUT8 was required
for insulin-dependent changes of GLUT12 abundance in the
plasma membrane [4, 117, 377]. Further studies are required
to elucidate the functional role of GLUT12/Glut12 in the
small intestine.

SGLT4

SGLT4 (SLC5A9) has been cloned from human [391].
Expressing human SGLT4 in COS-7 cells the authors ob-
served Na+-dependent AMG uptake with an apparent Km val-
ue of 2.6 mM that could be inhibited by high concentrations of
D-glucose, D-fructose, and D-galactose. It was observed that
human SGLT4 is highly expressed in the small intestine and
to lower degrees in pancreas, skeletal muscle, lung, kidney,
caecum, colon, and testis [65]. Expression of Sglt4 was also
observed in mouse small intestine [31]. So far, plasma mem-
brane location of SGLT4/Sglt4 in IECs has not been deter-
mined. Also, transport of D-glucose, D-fructose, and D-galac-
tose by SGLT4/Sglt4 has not been demonstrated and charac-
terized. Hence, the relevance of SGLT4/Sglt4 for absorption
of D-glucose, D-fructose, and D-galactose has not been
resolved.

Regulation of monosaccharide transport
in the small intestine

Nonspecific and specific regulations

In the small intestine, nonspecific and specific adaptations are
developed to cover different energetic demands for monosac-
charide absorption [112]. In nonspecific adaptations, small

intestinal capacity for uptake of different monosaccharides
and nutrients is changed in parallel, whereas specific adapta-
tions affect uptake of individual or few monosaccharides. In
nonspecific adaptations, the overall absorptive capacity of the
small intestine is changed. This includes changes of the ab-
sorptive surface, the number of the enterocytes (hyperplasia),
their size (hypertrophy), and the degree of their differentiation.
The absorptive surface is determined by small intestinal
length, height of villi, and length of microvilli. Enterocyte
stem cells located within the crypts divide and migrate onto
the villi. They differentiate during migration and are exfoliat-
ed at the top of the villi exhibiting life spans between days and
weeks [112]. Nonspecific adaptations of the small intestine are
slow and require few days at minimum. They have been ob-
served in response to changed nutrition [361], during diabetes
[246, 343], and after surgical interventions [40, 136].

Specific adaptations of monosaccharide absorption include
changes in the amount of transporter molecules in the BBM
and/or BLM of IECs. They may be due to transcriptional and/
or posttranscriptional regulations of individual transporters
and may occur within minutes, hours, or days. Specific regu-
lations of monosaccharide transporters have been observed
following a diurnal rhythm, directly after uptake of
carbohydrate-rich meals, in response to carbohydrate content
of diets, in response to hormones and neuronal activation,
accompanied with diseases, and after surgical interventions.
Since regulatory signals such as carbohydrates and hormones
may regulate different glucose transporters, coordinated regu-
lations of transporters in the BBM and BLM are possible.
Current knowledge about regulations of small intestinal trans-
porters for D-glucose, D-galactose, and D-fructose in humans is
fragmentary for several reasons. Thus, only some of the po-
tentially involved regulatory mechanisms have been investi-
gated and only very few investigations have been performed
with human small intestine. All in vivo measurements were
carried out in rodents. Additional investigations were per-
formed in cultivated cells derived from porcine kidney
(LLC-PK1 cells) or from human intestinal tumors (Caco2
cells) or after expression of transporters in cultivated epithelial
cells or oocytes. In Table 2, a survey about the investigated
regulatory mechanisms, species, and employed methods are
presented.

Regulation of SGLT1

Basic knowledge about transcriptional regulation in human

Several factors that regulate the transcription of human
SGLT1 at the promotor region have been identified (Fig. 2).
For example, binding of hepatic nuclear factor (HNF) 1, tran-
scription factor SP1, and cAMP response element–binding
protein (CREB) to the 5′ region of the human SGLT1 gene
and their effects on transcription have been demonstrated

1211Pflugers Arch - Eur J Physiol (2020) 472:1207–1248



[259, 417]. Employing murine STC-1 cells derived from in-
testinal endocrine cells, data were obtained which suggest that
glucose-induced upregulation of transcription of ovine
SGLT1 is dependent on the integrity of the HNF-1 consensus

sequence in the promotor [404]. Binding of transcription fac-
tor HNF-1β to the promotor of rat SGLT1 has been demon-
strated [319]. In Chinese hamster ovary cells transfected with
rabbit Sglt1, transcription was stimulated after inhibition of
protein kinase C [57].

Basic knowledge about transcriptional and
posttranscriptional regulation derived from studies
with LLC-PK1 cells

In LLC-PK1 cells that are derived from porcine kidney, ex-
pression and function of endogeneous SGLT1 is upregulated
during confluence [12, 267]. This may be considered a model
for upregulation of SGLT1 in the small intestine during dif-
ferentiation of enterocytes. In subconfluent LLC-PK1 cells,
SGLT1 mRNA abundance, glucose uptake, and PKC activity
are low whereas in confluent LLC-PK1 cells, SGLT1 mRNA
abundance, glucose uptake, and PKC activity are high [12,
205, 267, 353]. When PKC is blocked in confluent cells, de-
differentiation is induced and expression SGLT1 mRNA and
SGLT1 protein is decreased. Dedifferentiation and decreased
SGLT1 expression is also induced when confluent LLC-PK1
cells are incubated with polyamines, whereas differentiation
combined with an increase of SGLT1 abundance is promoted
when synthesis of putrescine is blocked by inhibition of orni-
thine decarboxylase (ODC) [302]. Regulatory protein RS1
(RSC1A1) [222, 406] is involved in confluence-dependent
regulation of SGLT1 transcription [205] (Fig. 2). RS1 has
been shown to affect expression of human SGLT1 in bacteria
(R. Poppe and H. Koepsell, unpublished data). Porcine
SGLT1 exhibited a 5-fold higher nuclear abundance in
subconfluent compared to confluent LLC-PK1 cells [115,
205]. Nuclear abundance of RS1 is regulated via a nuclear
shuttling domain that contains a Ca2+-dependent calmodulin
binding site and is associated with a PKC-dependent phos-
phorylation site, and nuclear abundance of RS1 is modulated
by PKC [115] (Fig. 2).

The higher overall abundance of SGLT1 mRNA in conflu-
ent versus subconfluent LLC-PK1 cells associated with de-
creased PKC activity and increased PKA activity is partially
due to effects of PKC and PKA on the stability of SGLT1
mRNA [303, 353]. In LLCP-K1 cells, two transcripts of
SGLT1mRNAwith 2.2 and 3.9 kilobases (Kb) were observed
which differ in length of the 3′ untranslated region. Whereas
PKC decreases the stability of both transcripts [353], cAMP
and PKA stimulate the stability of the 3.9-kb transcript [232,
303]. The cAMP-induced increase of mRNA stability is due
to binding of human antigen R (HuR), an RNA-binding pro-
tein of the embryonic lethal abnormal vision family, to 47
nucleotides in a 120 nucleotide long uridine-rich element
(URE) in the 3′ untranslated region of the 3.9-kb SGLT1
transcript [244]. Expression of HuR was increased by cAMP
and binding of HuR was increased by cAMP-dependent

Table 2 Description of the studies reported in this review in which
regulations of monosaccharide transporters were investigated that are
supposed to be relevant for absorption of D-glucose, D-galactose, and D-
fructose in human small intestine

Level of
regulation

GLUT2/
Glut2

GLUT5/
Glut5

SGLT1/Sglt1

Transcription Human:
e.c.c.;
rodents:
in vivo

Human:
e.c.c., C;
rodents:
in vivo

Human: e.c.c., C; pig: L;
sheep: in vivo; rabbit:
e.c.c.; rodents: in vivo

mRNA
stability

Human: C Pig: L

Translation
or protein
stability

Rodents:
in vivo
(n.d.)

Rodents:
in vivo
(n.d.)

Sheep: in vivo (n.d.); rabbit:
e.o. (p.s.)

Protein
trafficking

Rodents:
in vivo

Human: e.o.; rabbit: e.o.;
rodents: in vivo

Different levels of regulation were investigated in different species
in vivo and in vitro. For in vitro studies, two cell models and different
expression systems were employed

C, measurements in Caco2 cells derived from human; L, measurements in
LLCP-K1 cells derived from pig; e.o., transporter expression in oocytes
of Xenopus laevis; e.c.c., transporter expression in cultivated cells; n.d.,
no differentiation between translation and protein stability was per-
formed; p.s., protein stability was investigated

Fig. 2 Transcriptional regulation of SGLT1/Sglt1. Response elements in
the promotor of human SGLT1 and components that were shown to be
involved in transcriptional regulation of SGLT1/Sglt1 are indicated.
Components that participate in transcriptional regulation in the small
intestine are marked with yellow. If they participate in D-glucose-depen-
dent regulation, they are indicated in red. EGFR, epithelial growth factor
receptor; Rg1, ginsenoside component Rg1; SGK, serum- and corticoid-
stimulated kinase; CREB, cAMP response element- binding protein- ;
CBP, cAMP response element protein–binding protein; PER1, period
circadian regulator 1; BMAL1, brain and muscle ANRT-like 1; SP1-1,
specificity protein 1 subtype 1; HNF1, hepatic nuclear factor 1
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phosphorylation of non-identified cellular proteins. Of note,
cytoplasmic HuR levels are regulated by AMP-stimulated
protein kinase (AMPK), which is stimulated by metformin
[413, 440].

When confluent LLC-PK1 cells were cultivated with
25 mM versus 5 mM D-glucose in the medium, the transcrip-
tion of SGLT1 was decreased after 2 days [205, 284]. The
glucose-dependent regulation of SGLT1 in LLC-PK1 cells
differs from the glucose-dependent regulation of SGLT1 in
the small intestine because it goes into the opposite direction
and appears to be independent of RS1 [205].

After a 2 h incubation of confluent LLC-PK1 cell at 42 °C,
cytosolic heat shock protein (HSP) 70 and SGLT1-mediated
glucose uptake were increased. The upregulation of SGLT1
activity was mediated by tissue growth factor beta 1 (TGFβ1)
and associated with translocation of SGLT1 and HSP70 to the
apical cell side [171, 383]. The data suggest that the exocytotic
pathway of SGLT1 is influenced by TGFβ1 and may be ac-
tivated by HSP70 (Fig. 3).

Basic knowledge about posttranscriptional regulation
derived from studies with oocytes of Xenopus laevis

Studies in which human SGLT1 or human SGLT1 fused to
yellow fluorescent protein (YFP-SGLT1) was expressed in

Xenopus laevis oocytes were employed to characterize short-
term regulations of SGLT1 abundance in the plasma membrane.
Oocytes expressing SGLT1 were incubated for short time pe-
riods with membrane permeant modifiers and/or injected with
various compounds, and effects on transport or plasma mem-
brane abundance of the transporter were analyzed. The oocytes
were incubated with PKA or PKC [156, 407] and/or injected
with inhibitors of endocytosis or exocytosis [407], with brefeldin
A that destroys the Golgi, with protein RS1 (RSC1A1), or with
peptides derived fromRS1 [341, 405, 408]. After time periods up
to 60 min, SGLT1-mediated uptake of α-methyl-D-glucoside
(AMG) or AMG-induced currents, membrane capacitance
reflecting the plasma membrane surface area, or plasma mem-
brane abundance of YFP-SGLT1 was measured. Upregulation
of AMG-mediated inward currents and increase of plasmamem-
brane capacitance were observed several minutes after stimula-
tion of SGLT1 expressing oocytes with PKA or PKC [156, 407].
Because no short-term changes in SGLT1 activity were detected
when endocytosis was inhibited by imipramine or chlorproma-
zine whereas short-term downregulation was observed after in-
hibition of exocytosis by botulinum toxin B or after destroying
the Golgi with brefeldin A [104, 407], the exocytotic pathway is
supposed to be mainly involved in short-term regulation of
SGLT1 (Fig. 3). The exocytotic pathway of SGLT1 was accel-
erated by Janus-activated kinase (JAK) [166] and shown to be
dependent on dynamin and caveolin 1 [104, 407]. Evidence was
provided that protein RS1 is critically involved in regulation of
the dynamin-dependent exocytotic pathway of SGLT1 by decel-
erating the release of SGLT1 containing vesicles from the Golgi
[407] (Fig. 3). Thus, downregulation of human SGLT1 by injec-
tion of RS1 or the RS1-domain RS1-Reg was abolished when
the Golgi was destroyed with brefeldin A [407, 408], and RS1
and porcine SGLT1 were colocated at the trans-Golgi network
(TGN) in LLC-PK1 cells [212]. RS1-Reg contains multiple con-
sensus sequences for protein kinases, and the affinity for down-
regulation of human SGLT1 by RS1-Reg was increased after
activation of PKC or calmodulin-stimulated kinase 2 (CamK2).
This suggests that kinases modulate RS1-Reg-mediated short-
term regulation of SGLT1 [408]. Short-term regulation of
SGLT1 abundance by RS1-Reg is D-glucose-dependent and in-
volves the interaction of RS1with ODC. Since D-glucose-depen-
dent regulation has been shown to be relevant for the small
intestine, it is described in the next chapter.

Proteasomal degradation of rabbit SGLT1 after
ubiquitination by the ubiquitin ligase Nedd4-2 has been
shown to be blunted by the serum- and glucocorticoid-
inducible kinases SGK1 and SGK3 (Fig. 3) [87].

Transcriptional regulation in the small intestine by epithelial
growth factor

Epithelial growth factor (EGF) activates transcription of
SGLT1/Sglt1 in the small intestine [417] (Fig. 2). EGF binds

Fig. 3 Membrane trafficking of SGLT1/Sglt1. The scheme is based on
experiments in which SGLT1 from human or rabbit was expressed in
oocytes, and on experiments with mouse small intestine. Components
which have been shown to be involved in short-term regulation of
SGLT1/Sglt1 in the small intestine are indicated in yellow. The
proteasomal degradation pathway is not well explored. RELM, resistin-
like molecule; HSP, heat shock protein; TGF, tissue growth factor; JAK,
Janus-activated kinase; AMPK, AMP-activated protein kinase; CamK,
calmodulin-stimulated kinase; ODC, ornithine decarboxylase; NEDD,
neural precursor cell expressed developmentally downregulated; SGK,
serum- and glucocorticoid-stimulated kinase
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to the EGF receptor (EGFR) that is supposed to be localized in
the BLM of enterocytes [308]. Binding of EGF to EGFR
stimulates phosphorylation of cAMP response element–
binding protein (CREB) by tyrosine kinases including
serum- and corticoid-stimulated kinase (SGK) 1 (Fig. 2).
After phosphorylation, CREB migrates into the nucleus and
activates SGLT1/Sglt1 transcription by binding to cAMP re-
sponse element (CRE) in the promotor. This activation of
transcription is modulated by cAMP response element
protein–binding protein (CBP). In the small intestine of dia-
betic db/db mice, stimulation of Sglt1 expression by SGK1
was demonstrated [240].

Diurnal regulation in the small intestine

Rats kept with free access to food and 12-h lightening ingest
and absorb ~ 90% of their daily food and have a higher capac-
ity for glucose absorption during night time [116, 125, 374].
The capacity for glucose absorption peaks in the late light/
early dark phase. During night time, also an increase of su-
crase activity was observed [148]. The higher glucose uptake
and sucrase activity during night time were independent from
lightening schedule [280, 373] and persisted in starved ani-
mals [124, 375].

Consistent with the notion that SGLT1/Sglt1 is rate limit-
ing for glucose absorption [132], circadian rhythmicity
peaking in the late light/early dark phase was also observed
in rodents for abundance and transcription of Sglt1 mRNA,
for abundance of Sglt1 protein, and for Sglt1-mediated glu-
cose transport [69, 177, 319, 389, 390]. Since in the small
intestine of monkeys different SGLT1 mRNA abundance
was observed at 9 a.m. versus 10 p.m. [319], also humans
are supposed to exhibit a circadian periodicity of small intes-
tinal SGLT1 expression.

Limited information about the potential molecular mecha-
nism for rhythmic regulation of SGLT1/Sglt1 transcription is
available. Transcription factors HNF-1α, HNF-1β, histone
acetylation, an mRNA elongation factor, and clock genes ap-
pear to be involved. In rats fed at libitum, binding of transcrip-
tion factors HNF-1α and HNF-1β to the promotor of Sglt1
was different at 10 a.m. versus 4 p.m. [319]. In mice, it was
observed that the circadian expression of Sglt1 mRNA was
associated with histone acetylation and mRNA abundance of
elongation factor BRD4-P-TEFb [428]. Evidence was provid-
ed that the clock gene products, brain and muscle arnt-like
protein (BMAL) 1), and period 1 protein (PER1), are involved
in the diurnal regulation of Sglt1 transcription [23, 177] (Fig.
2).

Like small intestinal glucose absorption, circadian period-
icity of Sglt1 transcription occurs independently of food in-
take. Since the diurnal changes of Sglt1 mRNA abundance
and Sglt1-mediated glucose uptake precede food uptake, they
may be considered anticipatory to food ingestion [389]. The

food-independent periodicity of glucose absorption and Sglt1
expression is accompanied and probably controlled by neuro-
endocrine regulation involving insulin. Thus, diurnal changes
of blood insulin concentration and of insulin sensitivity inde-
pendently of feeding were abolished after truncation of the
vagus nerve [34, 147, 248]. The diurnal food-independent
periodicity of Sglt1 mRNA abundance is supposed to be
mainly due to changes of Sglt1 transcription; however, regu-
lation of mRNA degradation may be also involved.
Noteworthy, the diurnal changes of Sglt1 mRNA were ob-
served in enterocytes at the upper villi [389]. Since
enterocytes need 1 to 2 days to migrate from crypts where
they divide to villi, the diurnal changes of Sglt1 mRNA must
occur in differentiated enterocytes on the villi.

Short-term post-translational regulation in the small intestine
by glucose

Glucose-dependent, short-term upregulation of SGLT1/Sglt1
in the small intestinal BBM has been observed in rodents and
humans. In rat, the Vmax of phlorizin-inhibited glucose uptake
across the small intestinal BBM was increased when the in-
testine had been perfused for 30 min with buffer containing
25 mM of D-glucose [351]. In mouse small intestine, Vmax of
phlorizin inhibited AMG uptake into BBM vesicles and Sglt1
protein in the BBM were increased 30 min after the animals
had been gavaged with D-glucose [132].

Effects of glucose on posttranscriptional and post-
translational regulation of human SGLT1 expressed in oo-
cytes were studied in detail [65, 341, 405, 407, 408]. On
the basis of these data, hypotheses on glucose-dependent
short-term regulation of human SGLT1 were raised (Fig. 3).
Accordingly, D-glucose-dependent upregulation of SGLT1 in
the plasma membrane is due to a glucose-induced accelera-
tion of the exocytotic pathway of SGLT1 from the Golgi that
is modulated by protein RS1 (RSC1A1) [66, 407, 408].
Human SGLT1 or YFP-SGLT1 was expressed in oocytes,
and the post-translational active domain of RS1 (RS1-Reg)
or peptide motifs of RS1-Reg were injected into the oocytes.
The injections were performed without or with coinjection of
non-metabolizable AMG, and effects on SGLT1 in the plas-
ma membrane were analyzed [66, 341, 405, 407, 408]. In the
experiments, either AMG uptake, AMG-induced inward cur-
rents, or fluorescence of YFP-SGLT1 in the plasma mem-
brane was determined. Since RS1-Reg contains multiple con-
sensus sequences for phosphorylation including the function-
al active motif Gln-Ser-Pro (QSP) [405, 408], experiments
were also performed with QSP, Gln-Glu-Pro (QEP), and with
RS1-Reg mutants in which serine residues in potential phos-
phorylation sites were mutated. Additional investigations that
were performed with mouse small intestine, human small
intestinal mucosa, and differentiated Caco2 cells, a model
for human small intestinal enterocytes, revealed that RS1-
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Reg-mediated glucose-dependent regulation of SGLT1/Sglt1
occurs in the small intestine [66, 408] (C.Otto et al. 2020,
unpublished data). Recently, further details about the mecha-
nism of the RS1-Reg-mediated regulation of human
SGLT1 at the TGN were enlightened [66]. Thus, evidence
was obtained that RS1-Reg binds to the ODC which has been
assigned to several intracellular locations but appears to be
also located at the Golgi [185]. It was detected that RS1-Reg
inhibits the enzymatic activity of ODC, i.e., the formation of
putrescine by decarboxylation of ornithine, in a glucose-
dependent manner, and that ODC contains a glucose-
binding site. In addition, evidence was presented that down-
regulation of human SGLT1 abundance in the plasma mem-
brane can also be induced by inhibiting ODC activity, and
that this effect is counteracted by putrescine. Based on these
data, hypotheses have been raised and included in a model
(Fig. 4(A, B)) [200]. At low intracellular D-glucose concen-
tration, the RS1-Reg domain of RS1 binds to ODC and in-
hibits ODC activity reducing the local concentration of pu-
trescine at the TGN. Under this condition, dynamin-
dependent budding of SGLT1 containing vesicles from the
TGN mediated by non-identified budding proteins that inter-
act with putrescine is slow. At high intracellular D-glucose
concentration, D-glucose binds to ODC and induces a confor-
mational change that leads to a dissociation of bound RS1
and results in activation of ODC activity. As a result, the local
concentration of putrescine at the TGN is increased and pu-
trescine binds to the budding protein complex and activates
budding activity of the complex.

Short-term post-translational regulation in the small intestine
by hormones

In rat small intestine, also short-term regulation of Sglt1 by
glucagon 37, glucagon-like peptide 2 (GLP-2), cholecystoki-
nin (CCK), prostaglandin E2, EGF, leptin, insulin, and
resistin-like molecule beta (RELM-β) was observed [64, 67,
149, 158, 211, 261, 305, 347, 378–380]. Glucagon 37 and
GLP-2 are secreted by L cells whereas CCK is secreted by
small intestinal I cells. It was observed that Sglt1-mediated D-
glucose uptake in the small intestine was rapidly upregulated
by vascular infusion with glucagon 37 or GLP-2 whereas it
was rapidly downregulated by serosal application of CCK.
Receptors for glucagon 37 and CCK are located in the BLM
of enterocytes whereas enterocytes do not contain a receptor
for GLP-2 [35, 268, 301, 435]. GLP-2 rather binds to recep-
tors in enteric neurons [35, 140] and stimulates neuronal acti-
vation of enterocytes. This leads to an increase of intracellular
cAMP that activates AMPK, a signal for short-term upregula-
tion of the exocytotic pathway of SGLT1/Sglt1 (Fig. 3). RS1
is probably involved in the GLP-2-mediated short-term regu-
lation of SGLT1 because the effect of GLP-2 infusion was
blunted when the Golgi was dissociated by brefeldin A [64].
L cells in the small intestine express the sweet taste receptor
T1R1/T1R3 and secrete GLP-2 directly after application of a
high concentration of D-glucose or the artificial sweetener su-
cralose to the mucosal side [268]. In mice in which the sweet
taste receptor or the GLP-2 receptor was removed, long-term
upregulation of Sglt1 on the mRNA and protein levels in

Fig. 4 Model depicting the presumed role of RS1 in D-glucose-dependent
release of vesicles containing human SGLT1 from the Golgi (a, b) and the
action of modified peptides derived from RS1-Reg (c) that downregulate
SGLT1 in the BBM. RS1-Reg in RS1 is indicated in gray. TGN, trans-

Golgi network; ODC, ornithine decarboxylase; BP, putrescine-binding
protein of a budding protein complex that induces the release of vesicles
containing human SGLT1 from the TGN
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response to carbohydrate-rich diet was blunted [257, 268]. It
has been suggested that the sweet taste receptor is also in-
volved in glucose-dependent short-term upregulation of
Sglt1; however, no experimental evidence has been provided.

After 20-min arterial perfusion of rat jejunum with 10 nM
insulin, phlorizin-inhibited glucose absorption was decreased
suggesting downregulation of Sglt1 in the BBM after binding
of insulin to the insulin receptor isoform B (IR-B) located in
the BLM [14, 32, 305]. Employing an isolated, jointly per-
fused rat preparation of the small intestine and liver, it was
observed that insulin in the portal vein promoted a rapid in-
crease of phlorizin-inhibited D-glucose absorption [380]. This
stimulation was supposed to be mediated via insulin binding
to a portal insulin receptor that activates parasympathetic
hepatoenteral nerves which upregulate Sglt1 in the BBM
[380].

Short-term upregulation of SGLT1/Sglt1 was also ob-
served after interaction of EGF and prostaglandin E2 [67,
149, 261, 347]. Activation of the prostaglandin E2 receptor
in the BBM of rodents promoted the increase of cytosolic
cAMP that stimulated the exocytotic Sglt1 pathway [85,
347, 350, 421].

In addition, short-term downregulation of SGLT1/Sglt1
abundance in small intestinal BBM can be induced by leptin
[95, 247]. Leptin is secreted by salivary glands and chief cells
in gastric mucosa [20, 49, 139]. By binding to a protein with
structural similarity to the soluble leptin receptor, leptin be-
comes resistant to the acidic pH in stomach [50]. In the small
intestine, leptin binds to the leptin receptor in the BBM and
mediates PKC-dependent downregulation of SGLT1/Sglt1
[29].

Moreover, RELM-β appears to be involved in short-term
upregulation of SGLT1/Sglt1 [211]. RELM-β is expressed in
the digestive tract where it plays a role in host defense but it is
also observed in the blood and can act as hormone [16, 278,
357, 372]. After application of 1 nM RELM-β to the mucosal
side of rat small intestine, RELM-β decreased glucose-
induced short-circuit currents and Sglt1 abundance in the
BBM within 2 min [211].

Long-term regulation in the small intestine in response
to carbohydrate-rich diet

Enhancement of Sglt1 expression and capacity for glucose
absorption in response to increased dietary carbohydrates
was observed in herbivores and omnivores but not in carni-
vores [37, 43, 86, 100, 257, 354, 362]. In rodents, D-glucose,
D-fructose, D-galactose, AMG, 3-O-methyl D-glucoside (3-
OMG), D-mannose, D-xylose, and/or different artificial sweet-
eners were shown to increase Sglt1 expression onmRNA and/
or protein level; however, I has not been clarified whether the
different compounds address the same regulatory mechanism
[28, 199, 233, 257, 265, 362]. After 5-day application of diets

containing high amounts of D-glucose, AMG, D-galactose, D-
fructose, D-mannose, or D-xylose to rats, Sglt1 mRNA in the
small intestine was increased [265]. Monosaccharide-
dependent upregulation of Sglt1 mRNA may occur relatively
rapidly. Thus, an increase of Sglt1 mRNA was also observed
in the small intestine of rats that had been fed for 12 h with
diets containing high amounts of D-glucose, D-fructose, or
sucrose [199, 430]. The data indicate that upregulation of
SGLT1 in response to dietary monosaccharides occurs on
the level of mRNA; however, additional mechanisms includ-
ing changes in metabolism are involved (see below).

Measuring phlorizin binding to mouse enterocytes from
different regions of villi and crypts at different time intervals
after switching to carbohydrate-rich diet, it was observed that
carbohydrate-mediated induction of Sglt1 expression occurred
within the crypts [110, 111, 113].Whereas phlorizin binding in
the crypts was increased 12 h after exposure to carbohydrates,
3 days were required until phlorizin binding on the tips of the
villi was maximally increased. This time lag is supposed to be
due to the time required for crypt enterocytes to migrate onto
villi. Experiments with mice in which the taste receptor T1R3
or the G protein α-gustin that are expressed in G cells, were
removed revealed that long-term upregulation of Sglt1 mRNA
and Sglt1 protein in mice by glucose and artificial sweeteners
was dependent on taste reception [257, 268]. Because mucosal
application of D-glucose or sucralose leads to an acute secre-
tion of GLP-2 and enteric nerves contain GLP-2 receptors (see
below), taste receptor–mediated GLP-2 release from G cells
and neuronal stimulation of Sglt1 transcription are supposed to
be critically involved in diet-dependent upregulation of Sglt1
expression in rodents.

RELM-β which is present in the blood is involved in long-
term regulation of Sglt1 and Glut2 in response to saturated
free fatty acids and glucose [120, 129, 372]. In response to
high glucose, the concentration of RELM-β in rat small intes-
tinal enterocytes was decreased which resulted in a long-term
decrease and increase of Sglt1 and Glut2 in the BBM, respec-
tively [120, 211]. These inverse changes may represent a
mechanism for energy conservation during chronic high glu-
cose load (see below).

Ruminant sheep exhibit an extensive, carbohydrate-
dependent regulation of SGLT1. In the small intestine of
lambs, SGLT1 is highly expressed during breastfeeding when
D-glucose and D-galactose enter the small intestine whereas
SGLT1 expression is largely reduced after weaning when
the rumen where carbohydrates are fermented has maturated
and no hexoses enter the small intestine. In adult sheep,
SGLT1 protein in the BBM and SGLT1-mediated glucose
uptake in BBM vesicles was decreased > 200-fold whereas
SGLT1 mRNA was only decreased about 4-fold [233, 355].
When the small intestine of adult lambs was perfused with
10 mM D-glucose, SGLT1 protein in the BBM and SGLT1-
mediated glucose transport into BBM vesicles were increased
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> 40-fold and SGLT1 mRNA was increased about 2-fold.
After perfusion with 10 mM mannitol, small intestinal
expression of SGLT1 was not changed. Some upregulation
of SGLT1 was also observed after perfusion with the mem-
brane impermeable D-glucose analogue, di(glucos-6-
yl)poly(ethylene glycol) 600 that does not interact with
SGLT1 [99]. The data indicate a dramatic upregulation of
SGLT1 in the presence of D-glucose in the diet that occurs
partially on the level of mRNA but mainly on the translational
or post-translational level. The upregulation appears to be par-
tially independent of glucose uptake and to be partially medi-
ated via sweet taste receptors.

Regulation of GLUT2

Basic knowledge about transcriptional regulation in human

Various transcription factors that interact with consensus se-
quences in the promotor region of human GLUT2 and influ-
ence transcription in hepatocytes have been identified (Fig. 5)
[7]. CCAAT/enhancer-binding proteins (C/EBP) α and β
form dimers which upregulate GLUT2 transcription [194].
Peroxisome proliferator–activated receptor (PPAR) γ that di-
merizes with the retinoid X receptor (RXR) α is involved in
the antidiabetic action of thiazolidinedione that binds to
PPARγ [281]. In hepatocytes, also transcriptional upregula-
tion of GLUT2 by hepatic nuclear factors has been observed
and interaction of HNF1α and forkhead box (FOX) A2 with
HNF consensus sequences in the GLUT2 promoter has been
demonstrated [7, 60]. HNF1α is most abundantly expressed in
the liver but has been also detected in the intestine, kidney,
and spleen [26]. Importantly, glucose uptake and transcription
of GLUT2 in hepatocytes are stimulated by glucose, fructose,
and sorbitol but not by non-metabolized 2-DOG or 3-OMG
[17, 318]. Data have been presented showing that the tran-
scription factor sterol regulatory element-binding protein
(SREBP) 1c that is also expressed in the intestine, is involved
in this regulation [38, 114, 173, 397].

Diurnal regulation in the small intestine

Expression of Glut2 mRNA in the small intestine undergoes
diurnal circuity that is coordinated with Sglt1 and Glut5. In

rodents that were fed ad libitum and kept with a 12-h light/
dark cycle, expression of Glut2 in the small intestine peaked at
the end of the light phase and was lowest at the end of the dark
phase [69, 108, 177, 390]. Vagal innervation was shown to be
critically involved [390] and evidence was presented that the
transcription factor BMAL1 that regulates central clock genes
is required [177].

Short-term post-translational regulation in the small intestine
by glucose

In response to small intestinal glucose concentrations of
30 mM or above, Glut2 is rapidly inserted into the BBM of
the enterocytes [132, 134, 152, 189, 192]. This enables an
effective, energy-saving D-glucose uptake at glucose concen-
trations far above the Km of SGLT1. In parallel, the capacity
for D-fructose uptake into the enterocytes is increased. When
high luminal glucose dissipates, Glut2 abundance in the BBM
decreases with a delay of minutes [189, 396]. Evidence has
been presented that the glucose-dependent increase of Glut2
in the BBM is due to upregulation of exocytosis of Glut2-
containing vesicles; however, it has not been elucidated
whether the vesicles originate from the BLM, an intracellular
vesicle pool or the Golgi.

The mechanism of glucose-dependent incorporation of
Glut2 into the BBM has been investigated in some detail.
PKC may be involved because the BBM abundance of
Glut2 was also increased rapidly when the small intestine
was incubated with PMA [5, 152]. Maximal electrogenic glu-
cose transport by Sglt1 at high intestinal glucose when Sglt1
in the BBM is upregulated and the transporter operates at Vmax

is supposed to trigger Glut2 incorporation into the BBM
(Fig. 6). Sglt1-mediated Na+-D-cotransport causes a depolari-
zation of the BBM that activates Ca2+ uptake via Ca2+ channel
Cav1.3. [269, 270]. The increased intracellular Ca

2+ stimulates
phosphorylation of myosin II by protein kinase C βII (PKC
βII) that is activated upon recruitment to the plasma mem-
brane [192, 250, 251, 401]. Recruitment of PKC βII to the
plasmamembrane is also promoted by RELM-β that has been
also shown to increase Glut2 in the BBM [211].
Phosphorylation of myosin II leads to a rearrangement of the
subapical terminal web that is supposed to facilitate BBM
insertion of Glut2. Because Ca2+ uptake into enterocytes

Fig. 5 Transcriptional regulation of GLUT2. Response elements in the
promotor of human GLUT2 and transcription factors that are supposed to
be involved in the regulation of GLUT2/Glut2 in the small intestine are
indicated. SREBP-1c participates in D-glucose-dependent regulation of

Glut2. C-EBP, CCAAT enhancer–binding protein; PPAR, peroxisome
proliferator-activated receptor; RXR, retinoid X receptor; SREBP, sterol
receptor element–binding protein; HNF, hepatic nuclear factor; FOX,
forkhead box; p300, histone acetyltransferase p300
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was stimulated maximally at 20 mM D-glucose but higher
glucose concentrations were required for insertion of Glut2
into the BBM, an additional glucose-dependent process has
been postulated [192]. This process could be related to
glucose-dependent phosphorylation of AMPK or to paracrine
effects of taste receptor activation in enteroendocrine cells
[192, 211, 412].

Short-term regulation in the small intestine by insulin
and GLP-2

Short-term effects of insulin on plasma membrane abundance
of Glut2 were investigated in the small intestine of mice that
had been kept for 5, 15, or 30 days on fructose-rich diet [396].
After 15 and 30 days on fructose-rich diet, the abundance of
Glut2 in the BBMwas increased due to long-term upregulation
(see below), and the animals became resistant to insulin after
30 days on fructose-rich diet. When the insulin-sensitive ani-
mals kept for 15 days on fructose-rich diet were infused with
insulin under hyperinsulinemic-euglycemic clamp conditions,
the increased BBM abundance of Glut2 due to the fructose-
rich diet was decreased whereas this effect was not observed in
the insulin-resistant animals. The effect of insulin on short-
term, glucose-induced trafficking of Glut2 to the BBM was
investigated in the mice that had been fed for 5 days with
fructose-rich diet. Thirty minutes after glucose gavage of these
mice, Glut2 in the BBM was largely increased; however, this
increase was blunted when insulin had been injected prior to
glucose gavage. The data indicate that insulin induces short-
term removal of Glut2 from the BBM and prevents short-term
glucose-dependent trafficking of Glut2 to the BBM.

Trafficking of Glut2 to the BBM combined with an in-
crease of glucose absorption in rat small intestine was ob-
served after 1-h vascular perfusion with GLP-2 [18].
Evidence was presented that the GLP-2-induced upregula-
tion of Glut2 in the BBM involves activation of enteric
neurons [268].

Long-term carbohydrate-dependent regulation in the small
intestine

After 5-day application of diets containing high amounts of D-
glucose, D-galactose, or D-fructose, the abundance of Glut2
mRNA in rat enterocytes was increased whereas high amounts
of AMG, D-mannose, or D-xylose were not effective [265].
Noteworthy, post-translational upregulation of Glut2 and
Glut5 was observed in mice after 25-week application of
high-fructose diet [91]. This fructose-dependent upregulation
was associated with mRNA upregulation of thioredoxin-
interacting protein (TXNIP) that is involved in regulation of
various metabolic pathways [300]. TXNIP was shown to bind
to human GLUT2 and GLUT5 and increased the abundance
of these transporters after coexpression in Caco-2 cells [91]. In
nondiabetic rodents on standard chow, Glut2 was almost ex-
clusively located in the BLM of enterocytes between meals.
At variance, in animals receiving a glucose-rich and/or
fructose-rich diet, Glut2 was located in both the BLM and
the BBM, between meals [28, 134, 396].

Regulation of GLUT5

Knowledge about transcriptional and epigenetic regulation

The promoter regions of human, rat, and/or mouse GLUT5/
Glut5 contain response elements for cAMP (CRE), glucocor-
ticoid receptor (GR), liver X receptor (LXR), carbohydrate-
responsive element-binding protein (ChREBP), and thyroid
hormone receptor/retinoid X receptor heteromer [255, 260,
283, 385, 441].

In Caco-2 cells transfected with reporter gene constructs
containing the human GLUT5, promoter expression was stim-
ulated by adenylate cyclase [255]. Using the same experimen-
tal setup, transcriptional regulation by thyroid hormone was
observed [260]. It was shown that binding of thyroid hormone
receptor/retinoid X receptor heteromers to the promotor was
blunted by thyroid hormone.

In rat small intestine, Glut5 mRNA was upregulated after
weaning provided that systemic glucocorticoids were present
and fructose had been ingested [385]. Epigenetic regulation is
probably involved because the glucocorticoid-promoted up-
regulation of Glut5 transcription after weaning was associated
with histone H3 acetylation of the promotor [385]. At vari-
ance, sucrose-dependent upregulation of Glut5 mRNA ob-
served after feeding of starved rats with sucrose-rich food
was associated with histone H3 acetylation of the encoding
DNA sequence [162]. Functionality of liver X receptor α re-
sponse element (LXRE) in the murine Glut5 promoter was
suggested by the observation that Glut5 mRNAwas increased
by a LXR agonist [441]. ChREBP and thyroid hormone are
probably involved in upregulation of Glut5 transcription by D-
fructose. Whereas in wild-type mice on high-fructose diet the

Fig. 6 Model depicting components that are involved in targeting of
Glut2 to the BBM at high luminal glucose concentrations. The
underlying experiments were performed in rats. ΔΨ, membrane
depolarization due to Na+-D-glucose cotransport; Cav, voltage-
dependent Ca2+channel; RELM, resistin-like molecule
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abundance of Glut5 mRNA in the small intestine was eight
times higher compared to standard diet, fructose in the diet
had no effect on small intestinal abundance of Glut5 mRNA in
ChREBP knockout mice [283].

The abundance of GLUT5 mRNA is also regulated on the
level of mRNA stability. Thus, the degradation of GLUT5
mRNA in Caco-2 cells was slowed down by cAMP and fruc-
tose [135, 255]. This increase of message stability was due to
cAMP-dependent binding of cytosolic proteins to untranslated
regions of GLUT5 mRNA [135].

Diurnal regulation in the small intestine

In rats kept with a 12-h light/dark cycle and free access to
food, Glut5 mRNA in the jejunum was increased in the late
light/early dark phase similar to the mRNAs of Glut2 and
Sglt1 [58, 69, 108, 177, 390].

Fructose-dependent upregulation in the small intestine

So far, no short-term post-translational upregulation of
GLUT5/Glut5 by monosaccharides has been described.
However, Glut5 in the BBM of rat small intestine was in-
creased within minutes after application of inhibitors of signal
pathways involving epithelial receptor kinase (ERK)/mito-
gen-activated protein (MAP) kinase or phosphoinositol-3 ki-
nase [151].

In rodents, upregulation of Glut5 on the level of mRNA
was observed in response to dietary D-fructose whereas other
monosaccharides were not effective. For example, an increase
of small intestinal Glut5 mRNA was observed when rats were
fed for 5–7 days with a D-fructose-rich diet whereas diets
enriched with D-glucose, D-galactose, AMG, D-mannose, or
D-xylose were not effective [45, 265]. When mice on a
carbohydrate-poor diet were switched to a D-fructose-rich diet,
transcription of Glut5 was enhanced 12 h later [135, 199]. The
onset of dietary upregulation of Glut5 mRNA only requires
several hours. In mice, 4-h perfusion of small intestine with
buffer containing 100 mM fructose provoked a significant
increase of Glut5 mRNA whereas perfusion with 100 mM
glucose was not effective [77, 385]. In addition to mRNA,
also Glut5 protein abundance in cytosol and BBM were
increased.

Carbohydrate-dependent regulation of
monosaccharide absorption

In the following, it will be discussed how the above-described
monosaccharide-dependent regulations of Sglt1, Glut2, and
Glut5 affect small intestinal absorption of D-glucose and D-
fructose. Three regulatory states that are fundamentally differ-
ent from each other will be considered: first, the situation in
individuals on carbohydrate-poor (low-carb) diets after low-

carb meals (Fig. 7a); second, the situation in individuals on
low-carb diets after carbohydrate-rich (high-carb) meals con-
taining large amounts of sucrose that is rapidly split into D-

Fig. 7 Plasmamembrane localization and abundance of Sglt1, Glut2, and
Glut3 in response to carbohydrates in the diet after ingestion of a
carbohydrate-poor or a carbohydrate- and sucrose-rich meal. The under-
lying experiments were performed in rats. a Carbohydrate-poor diet after
a carbohydrate-poor meal. b Carbohydrate-poor diet after a sucrose-rich
meal. c Carbohydrate-rich diet after a sucrose-rich meal. KHK,
ketohexokinase; GNG, gluconeogenesis

1219Pflugers Arch - Eur J Physiol (2020) 472:1207–1248



glucose and D-fructose by sucrase-isomaltase (Fig. 7b); and
third, the situation in individuals on a high-carb diets after
meals containing large amounts of sucrose (Fig. 7c).

In the small intestine of rats on low-carb diet after ingestion
of low-carb food, when the concentrations of D-glucose and D-
galactose are below the respectiveKm values of SGLT1/Sglt1-
mediated uptake (Table 1), the abundance of Sglt1 and Glut5
in the BBM of the enterocytes and of Glut2 in the BLM is low
and Glut2 is not present in the BBM (Fig. 7a). Under this
condition, small concentrations of D-glucose and D-galactose
after low-carb meals are effectively absorbed by secondary
active transport by Sglt1 across the BBM followed by passive
diffusion of intracellularly enriched monosaccharides across
the BLM via Glut2. D-Fructose enters the enterocytes via
Glut5 in the BBM. In a recent study performed in mice, evi-
dence has been provided that about 90% of D-fructose entering
the enterocytes is metabolized and increases the intracellular
pool of D-glucose due to gluconeogenesis [179]. Hence, the
intracellular D-fructose concentration is low and only small
amounts of D-fructose leave the cells via Glut2 and Glut5
(Fig. 7). In the small intestine, ketohexokinase (KHK) phos-
phorylates D-fructose in position 1 and provides the starting
compound for fructolysis (Fig. 8). After removal of KHK in
mice, D-fructose in the serum after high-fructose feeding was
largely increased whereas fructose-induced hyperglycemia
was blunted [296]. Catalyzed by aldolase B (ALDOB), D-

fructose-1-phosphate is split into glyceraldehyde (GA) and
dihydroxyacetone phosphate (DHAP). DHAP and
glyceraldehydephosphate (GAP) formed by triosekinase
(TRIOK)-mediated phosphorylation of GA enter gluconeo-
genesis (GNG) (Fig. 8). GAP enters other metabolic pathways
including fatty acid synthesis.

Glut2 located in the BLM that transports D-glucose, D-ga-
lactose, and D-fructose, is probably not the only transporter for
D-glucose export across the BLM because glucose absorption
was not significantly decreased in Glut2 knockout mice [381].
Because it was observed that D-glucose absorption in Glut2
knockout mice was blocked when glucose-6-phosphate (G-6-
P) translocase in the endoplasmic reticulum (ER) was
inhibited, the hypothesis was raised that uptake of glucose-
6-phosohate into the ER and exocytosis is involved in glucose
transport across the BLM [381]. So far, unequivocal experi-
mental evidence for the existence of this translocation path-
way is missing. Measurement of glucose absorption in the
absence and presence of inhibitors of exocytosis and uptake
measurements in vesicles from small intestinal BLMs of Glut2
knockout mice are recommended. It is possible that Glut1,
Glut7, Glut8, or Glut12 is targeted to the BLM when Glut2
is removed and provides a compensatory path for efflux of D-
glucose.

When rats on low-carb high diet had ingested high-carb
meals containing large amounts of sucrose, it was observed
that the amount of Sglt1 in the BBM was increased and that
Glut2 was present not only in the BLM but also in the BBM
(Fig. 7b). After meals containing large amounts of sucrose, the
concentrations of D-glucose and D-fructose in the small intes-
tinal lumen close to the BBM are > 100 mM because sucrose-
isomaltase degrades sucrose effectively. Under these condi-
tions, Sglt1 and Glut2 transport D-glucose and Glut5 trans-
ports D-fructose at Vmax across the BBM whereas Glut2 trans-
ports D-fructose with about half maximal efficacy (Table 1).
D-Glucose uptake across the BBM ismediated about one-third
by Sglt1 and two-thirds by glut2 [192], whereas D-fructose
uptake across the BBM is mediated to similar proportions by
Glut5 and Glut2 [134]. Computer simulation studies on mea-
surements performed in Caco-2 cells support the concept that
facilitative diffusion of D-glucose across the BBM contributes
to D-glucose uptake into enterocytes at high glucose concen-
trations [6]. The bulk of intracellular D-fructose at high-carb
diet is phosphorylated, split, and transformed to D-glucose by
GNG. Transport of the relatively high amounts of intracellular
D-glucose across the BLM is supposed to be mediated by
GLUT2/Glut2, whereas transport of the relatively small
amounts of intracellular D-fructose is supposed to be mediated
by GLUT5/Glut5 and GLUT2/Glut2.

It has been observed that small intestinal absorption of D-
fructose was stimulated by high concentrations of luminal D-
glucose [159, 330–332]. In humans, a similar effect of D-glu-
cose was observed on the absorption of sorbitol that is not

Fig. 8 Fructolysis and gluconeogenesis, and effects of removal of
carbohydrate-responsive element (ChoRE)–binding protein in mice on
fructose-dependent expression of the involved enzymes. Enzymes that
are upregulated by high-fructose diet in the presence but not in the ab-
sence of ChoRE are indicated in red. Of note, also Glut5 in the luminal
membrane of enterocytes mediating D-fructose uptake is only upregulated
by high-fructose diet if ChoRE-binding protein is expressed in the
enterocytes. Ketohexokinase (KHK), aldolase B (ALDOB), triosekinase
(TRIOK), glucose-6-phosphatase (G6PC), fructose-1,6-biphosphatase
(FBP1), and lactate dehydrogenase (LDH) are upregulated
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transported by GLUT5 [331], and D-fructose absorption was
also stimulated by amino acids which are translocated by
sodium-amino acid cotransporters across the BBM [159].
The stimulation of D-fructose by luminal D-glucose or amino
acids is probably due to water removal from the intestinal
lumen that leads to an increase of the luminal fructose con-
centration and enhances transport efficacy of GLUT5/Glut5.
Cotransport of D-glucose and amino acids with sodium leads
to an increase of sodium in the intercellular spaces and pro-
motes permeation water across the tight junctions.

In response to high-carb diet containing large amounts of
sucrose, the overall expression of Sglt1, Glut2, and Glut5 in
the enterocytes is increased (Fig. 7c). Between meals and after
uptake of low-carb meals, Sglt1 and Glut5 are located in the
BBM whereas Glut2 and probably also Glut5 are located in
the BLM as depicted in Fig. 7 b. After ingestion of high-carb
food with high amounts of sucrose, the same short-term reg-
ulation takes place as in individuals on low-carb diet. Thus,
additional molecules of Sglt1 are incorporated into the BBM
and additional amounts of Glut2 and Glut5 are targeted to the
BBM (Fig. 7c). In consequence, the capacity for absorption of
D-glucose and D-galactose is maximized leading to maximal
increases of plasma glucose after sucrose ingestion. Also, the
capacity of D-fructose uptake into the enterocytes is maxi-
mized leading to maximal D-glucose generation by GNG.
Under these conditions, there is a maximal risk for fructose
intolerance (see below).

Expression and function of SGLT1 and GLUTs
in enteroendocrine cells

Secretion and functions of enterohormones

Secretion of the enterohormones GLP-1, glucagon-like pep-
tide 2 (GLP-2), and peptide YY (PYY) by L cells, GIP by K
cells, CCK by I cells, neurotensin by N cells, and serotonin by
EC cells is involved in the regulation of appetite, gastric emp-
tying, small intestinal motions, D-glucose absorption, and D-
glucose metabolism [21, 62, 137, 314, 317, 320]. The effects
of GLP-2, ghrelin, CCK, neurotensin, and serotonin on appe-
tite and functions of the alimentary tract are mediated by stim-
ulation of neuronal receptors in peripheral neurons and/or
central neurons [24, 314, 369]. At variance, effects of GLP-
1 and GIP on D-glucose metabolism are mainly mediated via
stimulation of insulin secretion by β cells in pancreatic islets
and of insulin-independent D-glucose disposal [21, 78, 210].
In addition to amino acids, peptides, and fatty acids, secretion
of GLP-1 by L cells and of GIP by K cells is stimulated by D-
glucose and D-fructose [72, 193, 215, 251]. In rodents and
humans, L cells are mainly expressed in the ileum and colon
whereas K cells are mainly expressed in the jejunum [317,

320]. Some L cells are also expressed in the duodenum
[143, 382, 393].

Roles of glucose transporters for secretion of GLP-1
and GIP

Discussing the role of glucose transporters in D-glucose sens-
ing by small intestinal L and K cells, the limitations of the
available data must be considered. First, our knowledge about
the mechanisms involved in D-glucose-dependent stimulation
of GLP-1 and GIP secretion is derived from studies in differ-
ent species and in cultured cells. Second, different populations
of the enteroendocrine cells (EECs) may have been investi-
gated because L and K cells consist of different cell popula-
tions that secrete partially different enterohormones [101, 143,
384, 386]. Third, the functional properties of EECs may have
been changed in response to nutrient exposition and during
diabetes [15, 52, 345, 382, 393].

The available data indicate that SGLT1/Sglt1 and GLUT2/
Glut2 are critically involved in glucose-dependent stimulation
of GLP-1 and GIP secretion in the small intestine at high
luminal D-glucose concentrations [132, 271, 322, 382], and
that activation of the sweet taste receptor T1R2/T1R3 hetero-
dimer may participate [121, 178]. Additional proteins have
been associated with D-glucose-dependent secretion of GLP-
1 and GIP. These are (a) voltage-dependent Ca2+ channel(s)
(Cav) and the ATP-regulated K+ channel Kir6.2/Sur1 (KATP)
[251, 279, 282, 315, 325, 382, 393]. Sglt1-mediated D-glucose
uptake triggers glucose-dependent secretion of GLP-1 and
GIP at low and high luminal D-glucose concentrations.
Cotransport of sodium and D-glucose by Sglt1 leads to depo-
larization of the luminal plasma membrane and induces Ca2+

uptake via (a) voltage-dependent Ca2+ channel(s) [295, 316].
Ca2+ uptake may stimulate insertion of Glut2 into the luminal
membrane in enterocytes (Fig. 6). At luminal D-glucose con-
centrations far above the Km for SGLT1/Sglt1, GLUT2/Glut2
in the luminal membrane is supposed to mediate a consider-
able fraction of D-glucose uptake in addition to Sglt1. High
intracellular D-glucose increases carbohydrate metabolism
[294, 316, 393]. The increased metabolism results in an in-
crease of intracellular ATP that may lead to closure of KATP

channels and promote depolarization of the plasma mem-
brane. This may result in the opening of Cav channels located
in the basolateral membrane [316]. The increase of intracellu-
lar Ca2+ may be further enhanced by Ca2+-promoted Ca2+

release from the endoplasmic reticulum. The increase of intra-
cellular Ca2+ causes the exocytosis of vesicles containing GIP
and GLP-1.

Experimental evidence for a pivotal role of Sglt1 in
glucose-induced secretion of GLP-1 and GIP was provided
as follows. In mice, the early secretion of GLP-1 after gavage
with D-glucose was blunted and the secretion of GIP was
abolished when SGLT1 was removed [132, 295, 322].
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Perfusing rat small intestine in vivo, it was observed that the
secretion of GIP and/or GLP-1 was stimulated when the lu-
minal D-glucose concentration was increased from 5 to
100 mM D-glucose and that this increase was blunted by
45% when Sglt1 was inhibited with phlorizin [251]. In
humans, the secretion of GIP and/or GLP-1 during oral glu-
cose tolerance tests (OGTTs) was decreased when SGLT1
was inhibited by oral application of an SGLT1/Sglt1 inhibitor
[88, 176]. It was observed in rodents and humans that secre-
tion of GLP-1 and GIP was also stimulated by non-
metabolizable sugars such as AMG and 3-OMG [251, 271,
321, 382, 425]. This indicates that metabolism and ATP-
mediated closure of the KATP channel were not critical under
the employed conditions. However, in one study performed in
humans, the stimulation of GLP-1 secretion by 300 mM D-
glucose was more pronounced than the stimulation by
300 mM AMG [382].

Relevance of GLUT2/Glut2 for stimulation of GLP-1 and/
or GIP by very high glucose concentrations in the intestinal
lumen was indicated by the following data. In experiments in
which rat small intestine was perfused, secretion of GLP-1 and
GIP was stimulated by 100 mM D-glucose in the presence of
phlorizin, and this Sglt1-independent stimulation was blocked
when Glut2 was inhibited with phloretin or cytochalasin B
[251]. In the same study, it was observed that the secretion
of GLP-1 and GIP in the presence of 100 mM D-glucose was
decreased when KATP channels were blocked by tolbutamide.
In another study in rat, no stimulation of GLP-1 secretion by
1.1 M luminal D-glucose was observed when the KATP chan-
nels were opened by diazoxide or when the Cav channels were
blocked by veratridine [215]. After removal of Glut2 in mice,
the increase of GLP-1 in the blood during the OGTT was
blunted whereas the increase of GIP was not changed [51].
The relevance of GLUT2/Glut2-mediated glucose uptake for
GLP-1 secretion was approved for humans. D-Glucose-depen-
dent GLP-1 secretion by isolated mucosa of healthy individ-
uals was affected by phloretin, the ATP synthesis inhibitor 2,4
dinitrophenol, the KATP channel blocker tolbutamide, and the
L-type Ca2+ channel blocker nifedipine [382]. At variance, in
patients with type 2 diabetes, no effects of the KATP channel
inhibitors glibenclamide and repaglinide on secretion of GLP-
1 and GIP during OGTTs were observed [371].

In rats and humans, secretion of GLP-1 was also observed
after luminal application of D-fructose [321, 370]. Because
fructose is transported by the facilitated diffusion transporters
GLUT5/Glut5 and GLUT2/Glut2 but not by SGLT1/Sglt1,
GLP-1 secretion is most probably not triggered by transport-
related depolarization of the luminal membrane. D-Fructose-
induced secretion is probably mediated by effects of intracel-
lular D-fructose on metabolism leading to increased intracel-
lular ATP.

The sweet taste receptor T1R2/T1R3 is supposed to be
involved in secretion of GLP-1 by high D-glucose

concentrations. It may also mediate secretion of GIP and
GLP-1 by artificial sweeteners; however, conflicting data
concerning this function have been reported. In humans,
GLP-1 secretion after gastrical or duodenal application of a
D-glucose bolus was impaired by sweet taste receptor inhibitor
lactisole [128]. In mice, the stimulation of GLP-1 secretion
after gavage with D-glucose was blunted when the sweet taste
receptor component T1R3 or the G protein subunit α-
transducin had been removed [178]. In perfused rat small in-
testine, the secretion of GIP and/or GLP-1 was(were) in-
creased by luminal application of artificial sweeteners [215,
251]. In contrast, no stimulation of GLP-1 secretion by artifi-
cial sweeteners was observed in Zucker diabetic fatty rats and
in healthy humans [121, 249, 370, 425]. Also, in mice, no
increase of plasma GIP was observed 15 min after gavage
with the artificial sweetener saccharin [282].

Roles of glucose transporters for secretion of
neurotensin

Neurotensin is produced by endocrine cells in intestine with
low expression in the duodenum, caecum, and colon; interme-
diate expression in the jejunum; and high expression in the
ileum [55, 214, 320]. EECs expressing neurotensin have been
designated as N cells [320]; however, since coexpression of
GLP-1, GIP, or CCK with neurotensin has been observed
[101, 143, 386], N cells can be considered subpopulations of
L, K, or I cells. Neurotensin induces small intestinal muscle
contractions, promotes arterial hypotension, and increases
plasma D-glucose by affecting hepatic carbohydrate metabo-
lism [56, 119]. Stimulation of small intestinal secretion of
neurotensin by luminal D-glucose was demonstrated in rat
and human [79, 213, 214]. In rat, evidence was provided that
Sglt1 and Glut2 are involved in glucose sensing and that D-
glucose metabolism, KATP channels, and Cav channels may
participate. It was observed that perfusion of rat small intestine
with 5 mM and 250 mM D-glucose resulted in 4.4- and 12-
fold stimulation of neurotensin secretion [79]. The stimulation
at both glucose concentrations was prevented by luminal ap-
plication of phlorizin whereas it was not changed when
phloretin was applied from the basal cell side. These observa-
tions suggested a pivotal role of SGLT1/Sglt1 for neurotensin
secretion at low and high luminal D-glucose concentrations.
Similar to D-glucose-induced stimulation of GLP-1 secretion
by L cells, D-glucose-induced stimulation of neurotensin se-
cretion is supposed to be due to Sglt1-mediated D-glucose
transport plus Sglt1 promoted incorporation of Glut2 into
the luminal membrane that becomes relevant at high glucose
concentrations. An increase of plasma neurotensin after ga-
vage with D-glucose was also observed in humans [213].
Using perfused rat small intestine, the mechanism how high
luminal D-glucose concentrations stimulate the secretion of
neurotensin was investigated [214]. By luminal application
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of 1.1 M D-glucose neurotensin secretion was stimulated
whereas vascular application of D-glucose was not effective.
D-Glucose-mediated stimulation of neurotensin secretion was
totally abolished in the presence of luminal phlorizin and was
decreased by about 90% in the presence of luminal phloretin.
Stimulation of neurotensin secretion by luminal D-glucose
was also abolished when ATP synthesis had been blocked
with 2-4-dinitrophenol, when KATP channels had been opened
by diazoxide, or when Cav channels had been blocked with
veratridine. Luminal application of artificial sweeteners did
not induce neurotensin secretion. The data indicate that D-glu-
cose-mediated stimulation of neurotensin secretion by EEC
cells is similar to GLP-1 secretion by L cells.

Diseases caused by or associated
with malfunctions of glucose transporters
in the small intestine

Glucose-galactose malabsorption

Glucose-galactose malabsorption (GGM) is a rare congenital
autosomal recessive disease with severe neonatal diarrhea and
water loss due to the inability of intestinal D-glucose and D-
galactose absorption. Without therapy, the outcome is fatal.
All symptoms and pathophysiological consequences of GGM
can be avoided by D-glucose and D-galactose-free diets that
may contain D-fructose, allowing a normal life without GGM-
related health problems. GGM has been first described in
1962 [225, 242]. About one decade later, the underlying de-
fect in GGM was attributed to defective Na+-D-glucose co-
transport in the small intestinal BBM and recessive inheri-
tance was detected [103, 262, 376]. In 1991, Wright and co-
workers provided evidence that genetic loss-of-function single
nucleotide variations (SNVs) in both DNA strands of the
SLC5A1 cause GGM whereas heterozygous carriers have no
clinical symptoms [400]. Meanwhile, the SLC5A1 genes of
more than hundred GGM patients have been sequenced
[187, 258, 423, 424]. With few exceptions, SNVs have been
observed in SLC5A1. They cause missense, nonsense, frame
shift and splice site mutations, and mutations in the promotor.
Most missense mutations result in defects of SGLT1 traffick-
ing to the plasmamembrane whereas some cause loss of trans-
port function [187, 258, 424]. The nonsense, frame shift, and
splice site mutations lead to truncated protein whereas the
mutations in the promoter induce decreased transcription.

The few cases in which GGM patients did not contain
SNVs in SLC5A1 could be due to genetic defects in proteins
that are selectively involved in targeting of SGLT1 to the
plasma membrane. Malabsorption of D-glucose and D-galac-
tose may also be associated with more general defects in trans-
porter expression that are associated with malabsorption of
additional monosaccharides. For example, mutations in the

gene encoding neurogen-3 that lead to depletion of
enteroendocrine cells cause monosaccharide malabsorption
[414]. The severe diarrhea observed in humans with
neogenin-3 mutants could be prevented by diets that do not
contain D-glucose, D-galactose, and D-fructose. The sensitivity
of diarrhea to D-fructose indicates that the defect is not limited
to SGLT1. A decrease of SGLT1 abundance in the BBM can
be also induced by defects of proteins that are involved in
sorting or trafficking. Such defect could be relatively specific
for SGLT1 because sorting in the Golgi, and trafficking of
plasma membrane transporters in enterocytes shows some
specificity for individual transporters. For example, protein
RS1 (RSC1A1) is critically involved in the D-glucose-depen-
dent short-term regulation of SGLT1 in the small intestinal
BBM and D-glucose absorption was increased in RS1 knock-
out mice [286].

The concept that loss-of-function SNVs in SLC5A1 are the
main cause for GGMwas verified by removal of Sglt1 in mice
[132]. In Sglt1 knockout mice, small intestinal glucose ab-
sorption was reduced by more than 95%. After birth and in
the preweaning period, SGLT1 knockout mice appeared to be
healthy at variance to newborn humans; however, they devel-
oped severe diarrhea and died within 2 weeks when they were
kept on standard diet after weaning. As observed in humans
with GGM, diarrhea disappeared and the Sglt1 knockout mice
developed well when they were fed with a D-glucose- and D-
galactose-free diet. The difference concerning neonatal diar-
rhea in humans with GGM compared to Sglt1 knockout mice
is supposed to be due the expression of Sglt3b in mice. This
rodent-specific Sglt subtype is located in the small intestinal
BBM and is able to mediate phlorizin-inhibitable D-glucose
uptake [10, 132].

In several newborn humans with GGM, nephrocalcinosis
and nephrolithiasis were the diagnosis [1, 2, 102, 288, 365,
388]. Future studies are necessary to clarify whether
nephrocalcinosis associated with GGM is due to metabolic
acidosis during the diarrhea and/or to comorbidity factors that
promote hypercalcemia [102, 288] and/or tubular acidification
[102].

Fanconi-Bickel syndrome

Fanconi-Bickel syndrome (FBS) is a rare congenital disease
with the key symptoms hepatomegaly, nephropathy, post-
prandial hyperglycemia, fasting hypoglycemia, and growth
retardation [106, 337]. FBS is occasionally linked with intol-
erance to D-glucose and D-galactose caused by impaired small
intestinal carbohydrate absorption that may lead to diarrhea
after ingestion of carbohydrate-rich food [337]. Sequencing
the SLC2A2 gene encoding GLUT2 in 49 patients, SNVs
causing inactive or truncated transporters were detected which
were homozygous in 74% of the patients [336, 338, 339]. This
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indicates that a defective function of GLUT2 is the predomi-
nant cause for FBS.

The impaired small intestinal absorption of D-glucose and
D-galactose with unchanged absorption of D-fructose observed
in some patients with FBS suffering from diarrhea is consis-
tent with the presumed function of GLUT2 for basolateral
release of monosaccharides from enterocytes and/or for
GLUT2-mediated monosaccharide uptake across the BBM
at very high glucose concentrations. However, in most pa-
tients, the function of GLUT2 in the small intestine is proba-
bly partially compensated by upregulation of other glucose
transporters in IECs like in mice in which Glut2 was selec-
tively removed in the small intestine [345].

Fructose intolerance and fructose malabsorption

General considerations

Fructose malabsorption is one type of fructose intolerance.
The umbrella term “fructose intolerance” comprises situations
in which D-fructose becomes available for bacterial fermenta-
tion leading to diarrhea, flatulence, pain, and intestinal cramps
[13, 27, 130, 313] and in which high D-fructose concentrations
are observed in the portal vein that exhibit pathogenetic effects
in the liver. D-Fructose malabsorption can be due to insuffi-
cient D-fructose uptake into enterocytes relative to the amount
of D-fructose in the intestinal lumen. In addition, it can be
caused by insufficient intracellular fructolysis resulting in high
intracellular D-fructose concentrations that also decrease D-
fructose uptake (see Fig. 7). In this case, the concentration of
D-fructose in the portal vein is increased and large amounts of
D-fructose may enter hepatocytes. This may lead to hepatic
steatosis, nonalcoholic steatohepatitis, nonalcoholic fatty liver
disease (NAFLD), and/or metabolic syndrome [241]. The in-
cidence of fructose intolerance is correlated with the amount
of sucrose and free D-fructose supplied with the food. D-
Fructose in the food has been increased dramatically since
the nutrients and beverages were enriched with sucrose. In
2004, male human Americans ingested on average more than
70 g of D-fructose per day in the age of 15–25 years and more
than 30 g per day in the age of 1–3 years [93]. In humans, the
capacity for small intestinal absorption of D-fructose is much
smaller than the capacity for D-glucose absorption; it is very
small after birth and increases later on in response to D-fruc-
tose in the diet [93]. In a population of healthy adults, an
intestinal load of 25 g D-fructose was only absorbed complete-
ly by about one-half of the individuals [360]. However, in
combination with D-glucose, the capacity for D-fructose ab-
sorption is increased due to additional fructose uptake in re-
sponse to luminal water reabsorption associated with Na+-D-
glucose cotransport [159, 399]. SNVs with impact on GLUT5
or on enzymes that are critical for fructolysis promote fructose
intolerance.

Isolated fructose malabsorption

Individual pediatric cases of abdominal pain, colicky cramps,
and diarrhea after ingestion of low amounts of D-fructose that
resolve upon fructose-free diet have been assigned as isolated
fructose malabsorption (IFM) [27, 411, 418]. The absence of
hepatic symptoms and the occurrence of intestinal symptoms
after ingestion of low amounts of D-fructose in toddlers sup-
ported the hypothesis that the observed symptoms were due to
an isolated defect in absorption. Studies with mice in which
Glut5 was removed indicated that GLUT5/Glut5 is pivotal for
D-fructose absorption and that malfunction of GLUT5/Glut5
can induce intestinal symptoms observed in IFM [28]. In the
presence of high dietary D-fructose, small intestinal fructose
absorption was ~ 75% lower in adult Glut5 knockout mice
compared to adult wild-type mice whereas the fructose con-
centration in the serum was ~ 90% lower. Seven days after
receiving the high-fructose diet, the Glut5 knockout mice de-
veloped a greatly enlarged and dilated colon in contrast to the
wild-type mice.

Attempts were made to determine whether mutations in
GLUT5 are the main cause for fructose malabsorption ob-
served in IFM. In one study, employing 8 patients with IFM
no SNVs were detected in the coding region of SLC2A5 [418].
In another study performed on 11 patients with diagnosed
functional gastrointestinal disorder (FGID) showing fructose
malabsorption and 15 healthy individuals, similar amounts of
GLUT5 mRNA were observed in small intestinal biopsies
[420]. The data suggest that functional defects in GLUT5 or
decreased transcription of GLUT5 is not the predominant
cause for fructose malabsorption in IFM and/or FGID. To
exclude that posttranscriptional defects in GLUT5 expression
such as impaired translation and/or trafficking cause IFM,
measurements of GLUT5 protein in the BBM of small intes-
tinal biopsies of patients with IFM must be performed. Of
note, the intestinal expression of GLUT5 is very low in human
newborns and increases slowly after birth in response to D-
fructose in the food. Hence, a delayed upregulation of GLUT5
after birth could be one reason for IFM in toddlers [93].

Fructose intolerance due to genetic defects in aldolase B

Hereditary fructose intolerance (HFI) due to dysfunction of
aldolase B (ALDOB) is a long known and well investigated
disease [9, 61, 74, 75, 153]. ALDOB is expressed in the small
intestine, liver, and kidney and catalyzes the cleavage of D-
fructose-1-phosphate formed from D-fructose into D-glyceral-
dehyde (GA) and dihydroxyacetone phosphate (DHAP) that
enters gluconeogenesis (GNG) (Fig. 8). ALDOB is regulated
in a tissue-specific manner by dietary carbohydrates including
D-fructose and by hormones [276]. Failure of ALDOB in
enterocytes results in fructose malabsorption due to a dis-
turbed metabolism of D-fructose leading to severe abdominal
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symptoms after ingestion of high amounts of D-fructose.
Disturbed hepatic GNG due to ALDOB failure may cause
hypoglycemia in patients with HFI. If newborns and toddlers
with HFI are not put on a fructose-free diet, they develop
severe hepatic and renal injury, remain retarded in growth,
and may die.

Fructose intolerance including fructose malabsorption due
to malfunction of ChREBP

When ChREBP knockout mice or mice with isolated removal
of ChREBP in the small intestine were kept on high-fructose
diet, they showed a decreased small intestinal expression of
Glut5 compared to wild-type mice and exhibited intestinal
symptoms of fructose malabsorption such as dilatation of the
intestine, diarrhea, and loss of weight [197, 230, 283]. The
data suggest that ChREBP is critically involved in the D-fruc-
tose-dependent upregulation of GLUT5/Glut5. ChREBP is a
transcription factor that is essential for adaption of metabolic
programs in response to availability of carbohydrates, in par-
ticular to availability of D-fructose. ChREBP is upregulated by
high-fructose diet [196]. It is critically involved in fructose-
dependent stimulation of enzymes like ketohexose kinase
(KHK), aldolase B (ALDOB), TRIOK, fructose-1,6-
biphosphatase, glucose-6-phoshatase (G6PC), and lactate de-
hydrogenase (LDH) that are pivotal for fructolysis, gluconeo-
genesis, and/or lipogenesis (Fig. 8) [76, 170, 196, 197]. In the
liver ChREBP, is supposed to be involved in emergence of
dyslipidemia, metabolic syndrome, and NAFLD during high
fructose consumption [3, 229, 241]. In genome-wide associa-
tion studies, SNVs in ChREBP have been linked to hypertri-
glyceridemia, increased liver enzymes in the blood, and
NAFLD [3]. Considering the role of ChREBP in D-fructose-
dependent upregulation of GLUT5/Glut5 and of enzymes in-
volved in fructolysis and GNG, it is expected that SNVs in
ChREBP are associated with fructose malabsorption after
fructose-rich meals.

Effects of diabetes on glucose transporters
in the small intestine

General considerations

Considering the above-described effects of dietary D-glucose
and of plasma insulin on expression and/or distribution of
glucose transporters in the small intestine, it is expected that
the expression and/or distribution of glucose transporters in
the small intestine is changed during diabetes. This issue has
been investigated in several animal models of diabetes and
in humans.

Effects of diabetes observed in animal models

Streptozotocin- or alloxan-induced type 1 diabetes mellitus
in rodents

In the 1970s, it was reported that 4–140 days after treatment
with alloxan or STZ that induce type 1 diabetes mellitus
(T1DM) by destroying pancreatic β cells, the absorption of
D-glucose or 3-ODG was increased [163, 246, 343]. Twenty
to 140 days after alloxan or STZ treatment, small intestinal
mass and villous surface area were increased [246, 343].

More than one decade later, the effects of STZ-induced
T1DM on small intestinal glucose transporters were investi-
gated in rats. In one study in whichmRNA abundance of Sglt1
was determined 2–60 days after application of STZ, Sglt1
mRNA was increased after 30 days [264]. In another study,
functional Sglt1 protein in rat small intestine was determined
14–60 days after application of STZ by measuring
[3H]phlorizin binding [109]. In the jejunum, no effect on
phlorizin binding was observed after 14 days; however,
phlorizin binding was increased about 10-fold after 60 days.
Additional studies on the effects of STZ on Sglt1-related im-
munoreactivity and on transport in rat small intestine were
performed employing intact tissue and isolated BBMs [47,
83, 97, 218]. Whereas no upregulation of Sglt1 was detected
7 days after STZ application, upregulation of Sglt1-related
immunoreactivity and Sglt1-mediated D-glucose transport
was observed 2–6 weeks after STZ treatment.

Measuring mRNA of Glut2 and Glut5 in rat small intestine
2–60 days after STZ treatment, Glut2 mRNA abundance was
increased after 2 days and reached a maximal level after
10 days whereas Glut5 mRNA was decreased after 10 days
[264]. In contrast it was observed by another group that Glut5
mRNA in rat small intestinal mucosa was upregulated 7 days
after STZ treatment [58]. Upregulation of Glut2 mRNA and
Glut5 mRNA in rat small intestine was also observed 6 weeks
after STZ application [47].

Corpe and coworkers investigated the effects of STZ on
plasma membrane abundance and function of Glut2 and
Glut5 in rat small intestine [70]. They measured transporter-
related immunoreactivity in isolated BBMs and BLMs and
determined D-fructose absorption employing small intestinal
perfusion in vivo and in vitro. Five and 10 days after applica-
tion of STZ, Glut2 was upregulated in the BLM and showed
up in the BBM. In addition, Glut5 in the BBM was upregu-
lated. The changes were associated with increased and de-
creased Glut5-mediated D-fructose absorption in vitro and
in vivo, respectively. Whereas the increased absorption ob-
served in vitro is consistent with the changed transporter con-
centrations in the BBMs and BLMs, the decreased D-fructose
absorption observed in vivo may be due to changes of the
intracellular carbohydrate metabolism. For example, it has
been described that small intestinal expression of G-6-P was
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increased in STZ-induced diabetes [309]. Of note, STZ-
induced upregulation of Sglt1, Glut2, Glut5, and G-6-P in
the small intestine could be reversed by insulin [47, 218, 252].

Rodent models of type 2 diabetes

Ob/obmice that do not express leptin, leptin receptor-deficient
db/dbmice, and Zucker diabetic fatty rats with a nonfunction-
al db receptor and a mutation affecting transcription in pan-
creatic β cells are frequently employed rodent models of type
2 diabetes mellitus (T2DM). In these diabetic models obesity,
hyperglycemia, hyperlipidemia, hyperinsulinemia, and insulin
resistance were observed [416].

Five to 10-week-old ob/ob mice are hyperphagic, obese,
and hyperinsulinemic and exhibit hypertrophy and length in-
crease of small intestine which persist in 20-week-old mice
[90, 146, 272]. Absorption of 10 mM and 28 mM D-glucose
per unit small intestinal length in 10 and 20-week-old ob/ob
mice was higher compared to lean wild-type mice, whereas D-
glucose absorption related to small intestinal weight was not
different [272]. The data suggest that the involved transporters
Sglt1 and Glut2 in the enterocytes are not upregulated.
Consistently, a similar Sglt1-related immunoreactivity was
observed in the BBM of 3–6-month-old ob/obmice compared
to heterozygous controls [90].

Db/db mice have a defective leptin receptor and increased
plasma concentrations of leptin. Similar to ob/ob mice, db/db
mice are hyperphagic, obese, hyperglycemic, and
hyperinsulinemic [240, 416]. In 3–6-month-old db/db mice,
small intestinal length and mucosal mass were increased due
to cellular proliferation [90]. In small intestinal enterocytes of
db/dbmice at similar age, Sglt1 mRNA and total Sglt1 protein
were increased [90, 240].

In 3–4-month-old obese Zucker diabetic fatty rats with
large increased plasma glucose levels compared to lean
wild-type mice, no differences in small intestinal mRNA and
protein levels of Sglt1, Glut2, and Glut5 were detected [71].

Effects of type 2 diabetes in humans

Expression and distribution of SGLT1, GLUT2, and GLUT5
in duodenal mucosal biopsies performed in the morning after
overnight fasting were compared between patients with
T2DM and healthy individuals at the same age [98]. The
T2DM patients had a mean age of 58 years and most of them
were on antidiabetic diets and underwent treatment with sul-
fonylurea drugs or metformin, whereas the control group re-
ceived standard diet. In the duodenal mucosa of the T2DM
patients, about 3-fold upregulation of SGLT1, GLUT2, and
GLUT5 was observed on the mRNA level. In the BBM, only
SGLT1- and GLUT5-related immunoreactivity was detected
which was approximately 4-fold higher in the T2DM patients
compared to the control group. The data suggest an

upregulation of SGLT1, GLUT2, and GLUT5 and no BBM
location of GLUT2 in treated T2DM patients between meals.
The upregulation may be due to increased transcription.

In duodenal mucosal biopsies of newly diagnosed, so far
untreated T2DM patients with a mean age of 71, a significant
increase of L and K cells expressing SGLT1 was observed
[393].

Role of SGLT1 in enteric inflammation

General considerations

Signaling in enterocytes during inflammation

The gastrointestinal tract contains a network of surveillance
systems for host defense that include enterocytes, EECs, and
immune cells with receptors recognizing pathogens [161,
291]. Signaling in IECs is mediated by nutrient components,
commensal microflora, and pathogens that may induce intes-
tinal inflammation. The pathogens include bacterial lipopoly-
saccharide (LPS), components of fungi, and protozoic para-
sites. Pathogenic signature structures are recognized by recep-
tors including Toll-like receptors (TLRs) in IECs, EECs, and
immune cells [8, 54, 291]. TLRs in IECs activate kinases
including interleukin-1 receptor–associated kinases, MAP ki-
nases, and PKC [235]. MAP kinases promote migration of
NFκB into the nucleus where NFκB stimulates the expression
of inflammatory cytokines [235, 275, 427]. Excreted cyto-
kines activate and/or recruit immune cells like Th2 lympho-
cytes. Activated Th2 lymphocytes secrete interleukins that
modulate immune response and downregulate the expression
of TLRs in a feedback loop [273]. This may cause a perme-
ability increase of the small intestinal epithelial cell layer. In
addition, a decreased proliferation and increased apoptosis of
IECs is observed during inflammation.

SGLT1-mediated signaling in enterocytes

Reflecting upon the role of SGLT1/Sglt1 in enteric inflamma-
tion, SGLT1/Sglt1-mediated signaling in the small intestine
must be understood because cross-talk with inflammatory sig-
naling is expected. Above, it has been described how mem-
brane polarization by SGLT1/Sglt1 is supposed to induce traf-
ficking of GLUT2/Glut2 to the BBM of IECs (Fig. 6). This
includes activation of a voltage-dependent Ca2+ channel, ac-
tivation of PKCβII, and phosphorylation of myosin II. It has
been reported that SGLT1/Sglt1-mediated membrane depolar-
ization also promotes recruitment of the Na+-H+-exchanger
(NHE) 3 into the BBM; however, different intracellular sig-
naling has been described. In this case, signaling involves
phosphorylation ofMAP kinase kinase 2 by p38MAP kinase,
downstream phosphorylation of RAC-beta serine/threonine-
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protein (Akt2) kinase, and phosphorylation of cytoskeletal
linker protein ezrin by Akt2 [167, 292, 356]. Phosphorylated
ezrin binds to both actin and the C-terminus of NHE3 which is
supposed to promote the incorporation of NHE3 into the
BBM [439].

Effects of SGLT1 on enteric inflammation by bacterial
lipopolysaccharide

Experiments with intestinal human cell lines

When monolayers of SGLT1-transfected Caco-2 cells were
incubated with LPS in the presence of 5 mM D-glucose,
DNA fragmentation, and caspase-3 cleavage indicating apo-
ptosis and paracellular permeability were increased [432].
These effects were attenuated and the anti-apoptotic proteins
B cell lymphoma (Bcl)-2 and Bcl-X(L) were increased when
the treatment with LPS was performed in the presence of
25 mM D-glucose. The D-glucose-dependent cytoprotection
was blunted in the presence phlorizin. Hence, it was conclud-
ed that an increased SGLT1-mediated glucose transport at
high glucose concentrations represents a protective mecha-
nism for LPS-induced apoptosis. Noteworthy, it was also ob-
served that LPS promoted recruitment of SGLT1 to the plas-
ma membrane at 25 mM D-glucose [433].

A protective SGLT1-dependent effect of glucose on LPS
cytotoxicity was also observed in human colon carcinoma
HT29 cells that express SGLT1 endogenously [292]. When
HT29 cells that had been cultivated in the presence of 5 mM
D-glucose were treated with LPS, a smaller release of IL-8/
keratinocyte-derived chemokine and a blunted increase of nu-
clear migration of NFκB were observed compared to HT29
cells that had been cultivated with 1 mM D-glucose. The glu-
cose effect on NFκB activation promoting apoptosis was de-
pendent on phosphorylation of Akt2. The protective effects of
D-glucose on apoptosis were abolished by phlorizin and re-
duced when the expression of SGLT1 was decreased by si-
RNA technology. Noteworthy, the protective effect of D-glu-
cose was independent from metabolism because it was also
observed when the cultivation and LPS treatment was per-
formed in the presence of 5 mM 3-OMG [292]. The data
suggest that SGLT1-mediated glucose uptake affects LPS-
induced intracellular signaling promoting apoptosis.

Experiments with mice

Protective effects of Sglt1-mediated D-glucose uptake into
IECs on intestinal inflammation induced by oral application
of LPS and on endotoxic shock by i.p. injection of LPS were
demonstrated in mice [292]. After 5-day treatment with LPS
by daily gavage, extensive damage of ICEs was observed that
was due to apoptosis. The damage of the ICEs was prevented
when a bolus of D-glucose or 3-OMG was applied together

with LPS but not when the animals had been orally treated
with phlorizin prior to gavage with LPS and D-glucose. To
investigate the impact of Sglt1-mediated glucose uptake into
ICEs on endotoxic shock, an animal model was employed in
which a high dose of LPS was i.p. injected together with D-
galactosamine [127]. When mice received 0.25 mg/kg LPS
together with 1 g/kg D-galactosamine, a dramatic serum in-
crease of tissue necrosis factor (TNF)-α and chemokine (C-X-
C motif) ligand 1 (KC) was observed within 4 h and all ani-
mals died within 36 h [292]. However, when the animals were
pretreated by gavaging with D-glucose or 3-OMG 1 h prior to
the LPS/D-galactosamine injection, the increase of TNF-α and
KC was largely reduced and the animals survived. The pro-
tective effects of D-glucose and 3-OMG were abolished when
the animals had been pretreated with phlorizin. Noteworthy,
no protective glucose effect on the LPS/D-galactosamine-in-
duced endocytotic shock was observed after i.p. injection of D-
glucose. The protection by glucose gavage was correlated
with a 18-fold serum increase of the anti-inflammatory cyto-
kine IL-10 4 h after the LPS/D-galactosamine treatment. The
data indicate that the LPS/D-galactosamine-induced endotoxic
shock initiated by small intestinal damage can be prevented by
Sglt1-mediated D-glucose uptake independently of
metabolism.

A dansyl C-glucoside (see called compound 5 in [220])
later on called BLF501 [53] was synthesized that is predicted
to interact with Sglt1. BLF501 abolished the LPS-induced
production of interleukin 8 (IL-8) in the human cell line
HT29 similar to high D-glucose concentrations but was not
effective when the expression of Sglt1 had been decreased
by siRNA [220, 292]. These observations suggest that binding
of BLF501 to SGLT1/Sglt1 triggers SGLT1/Sglt1-mediated
intracellular signaling similar to SGLT1/Sglt1-mediated D-
glucose cotransport. Noteworthy, the endocytotic shock after
i.p. application of LPS and D-galactosamine was bunted when
the animals had been gavaged with BLF501. Whereas all an-
imals died within 24 h without pretreatment, all animals sur-
vived after BLF501 gavage [220].

Effects of SGLT1 during infection with giardia
duodenalis

Giardia duodenalis is a waterborne protozoan pathogen of
humans and domestic animals that causes diarrhea worldwide
[340]. Exposition with giardia duodenalis trophozoites in-
duces structural and permeability changes in the small intes-
tine due to increased apoptosis and caspase activity [293, 348,
392, 398]. Confluent cell layers of Caco-2 cells that had been
transfected with rabbit Sglt1 were employed to investigate
whether Sglt1-mediated D-glucose uptake has an impact on
apoptosis after incubation with giardia duodenalis trophozo-
ites or sonicates of the trophozoites [434]. After cultivation of
the Caco2 cells with 5 mM D-glucose, a higher degree of
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caspase-3-dependent apoptosis was induced by giardia
duodenalis–derived components compared to cultivation with
25mMD-glucose. The protective effect of high D-glucose was
dependent on Sglt1-mediated Na+-D-glucose cotransport dur-
ing incubation with the giardia duodenalis sonicates since it
was blunted when the incubation was performed in the pres-
ence of phlorizin. Of note, Sglt1-mediated AMG uptake into
Caco2 cells and Sglt1 abundance in the plasma membrane
were upregulated by giardia duodenalis sonicates. The data
suggest that SGLT1/Sglt1-mediated membrane depolarization
during D-glucose transport triggers signaling events that inter-
act with the signaling cascade involved in giardia duodenalis–
mediated apoptosis.

Implication of SGLT1 on gastrointestinal mucositis
during chemotherapy

Oral and gastrointestinal mucositis are serious side effects of
many forms of radiotherapy and chemotherapy. Complex
pathophysiologic processes are involved that include damag-
ing of epithelial and immune cells and affect their complex
interactions [364]. Changes in proliferation, apoptosis, and/or
necrosis of IECs and changes in their cytoskeleton architec-
ture were associated with drug-induced mucositis in the small
intestine [53, 364]. Data obtained by two experimental setups
suggest that SGLT1/Sglt1-mediated signaling influences ef-
fects of cytostatic drugs in the small intestine. Using confluent
SGLT1 expressing LLC-PK1 cells grown in the presence of
5.6 mM D-glucose as model, it was observed that the electrical
resistance of the cell layer was decreased and the percentage
of necrotic cells was increased after 1-h incubation with cis-
platin [172]. These effects were largely attenuated when the
incubation with cisplatin was performed in the presence of
phlorizin. Rumio and coworkers employed a mouse model
in which intestinal mucositis was induced by i.p. injection of
doxorubicin (DXR) or of DXR plus 5-fluorouracil (5-FU) and
studied effects of oral application of the dansyl C-glucoside
BLF501 on small intestinal morphology, on proliferation of
IECs, and/or on a marker for apoptosis [53]. BL1501 is sup-
posed to interact with SGLT1/Sglt1 and was shown to have a
similar protective effect on LPS-induced endotoxic shock in
mice as Sglt1-mediated glucose transport (see above).
Seventy-two hours after a single i.p. injection of DXR, the
number of proliferating IECs was reduced by 65% whereas
the number of proliferating IECs was not altered when the
animals were gavaged at the same time with BLF501 [53].
A three-times weekly i.p. application of DXR plus 5-FU re-
sulted in dramatic morphological changes in the small intes-
tine such as villus atrophy, reduction of villus length and loss
of the BBM, and increase of caspase-3 expression. All these
effects were not observed when the animals were gavaged
with BLF501 during the DXR/5-FU injections. The experi-
ments suggest that BLF501 activates SGLT1/Sglt1-mediated

intracellular signaling which leads to protection of the IECs
from DXR/5-FU injury.

Small intestinal glucose transporters
and therapeutic measures

Oral rehydration therapy

Diarrheal diseases represent a global health threat in different
societies. In developing countries, infection by bacteria, such
as enterotoxigenic and enteropathogenic E. coli, Salmonella,
Shigella, and Vibrio cholerae, and infection by various para-
sites cause millions of deaths. In industrial societies, infection
by resistant bacteria and ingestion of food that is contaminated
with bacterial toxins cause major problems. In 1968, it was
discovered that oral ingestion of D-glucose-rich solutions
could effectively replace intravenous infusion of large
amounts of fluids to prevent life-threatening dehydration dur-
ing cholera infection [157, 306]. After introducing and estab-
lishing the oral rehydration therapy (ORT) in developing
countries for treatment of severe diarrhea caused by infections
with V. cholera, rotavirus, E. coli, and Yersinia, countless
lives were saved [312, 409]. The original oral rehydration
solution contained 75 mM NaCl, 75 mM D-glucose, 20 mM
KCl, and 10 mM sodium.

For diarrhea caused by various infections, effectiveness of
ORT is mainly due to water absorption associated with
SGLT1-mediated cotransport of sodium and D-glucose.
Whereas SGLT1-mediated water uptake across the BBM
has been studied in some detail, it is not understood howwater
reaches the intercellular space. In a first step, SGLT1-
mediated Na+-D-glucose cotransport across the BBM pro-
motes water uptake into the enterocytes. Expressing human
SGLT1 in oocytes Loo and coworkers observed that SGLT1-
mediated uptake of one molecule D-glucose was associated
with uptake of 260 molecules of water [245]. They hypothe-
sized that human SGLT1 translocates water together with Na+

and D-glucose. However, Lapointe and coworkers observed
that SGLT1-mediated D-glucose uptake into oocytes express-
ing human SGLT1 precedes water uptake and showed that
AMG uptake by SGLT1 generated a local osmotic gradient
that is sufficient to drive passive water influx across the BBM
[96, 126, 226]. Measuring the water permeability of confluent
monolayers ofMDCK cells transfected with human SGLT1, it
was observed that passive water permeability was orders of
magnitude larger than water permeability associated with
SGLT1-mediated glucose uptake [105]. Under the restriction
that MDCK cell monolayers may not represent IEC layers
sufficiently well, this observation suggests that transcellular
water movement is small and cannot explain the effect of
ORT. Most probably, SGLT1-mediated increase of sodium
and D-glucose in IECs stimulates efflux of sodium and D-
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glucose across the lateral membranes via the Na, K-ATPase,
and GLUT2, respectively. The high osmolarity in the intracel-
lular spaces is supposed to promote water flux across the tight
junctions [228, 367].

The oral rehydration solution proposed by the WHO has
been modified by recommending a reduced osmolarity and a
smaller concentration of D-glucose [360]. In addition, it has
been proposed to include starch and Zn2+ [33, 164, 359].
Discussing the role of SGLT1 for oral rehydration during
diarrhea caused by infections, it should be considered that
sodium uptake into enterocytes is also mediated by the Na+-
H+-exchanger NHE3 and that infections by enteropathogenic
E. coli and rotavirus are associated with a decreased expres-
sion of SGLT1 in enterocytes [80, 82, 144].

Parenteral nutrition

Parenteral nutrition is a life-saving medical measure that is
employed in premature babies with incompletely developed
intestinal functions and in adults during medical treatments of
prolonged coma, sepsis, pancreatitis, intestinal malabsorption,
short bowel syndrome, and severe burns. Considering the var-
ious regulations of small intestinal functions in response to
luminal nutrients, effects of parenteral nutrition on small in-
testinal glucose absorption are expected. Consistently, it was
observed in rats, piglets, and/or humans that intestinal mass,
intestinal surface area, and villi length were decreased during
parenteral nutrition [41, 48, 73, 138, 181, 234]. Evidence was
provided that also small intestinal absorption of amino acids
and D-glucose were decreased [73, 174, 207]. The effects on
transport are mainly due to the changes in intestinal morphol-
ogy and intestinal mass. For example, after parenteral nutri-
tion, absorption of 3-OMG per centimeter of the small intes-
tine was smaller compared to enteral nutrition whereas 3-
OMG absorption per gram of the small intestine was larger
[207]. After parenteral nutrition, the blood concentration of
enterohormones such as GLP-2, GIP, and PYY were lower
compared to enteral nutrition [48]. Consistent with established
trophic effects of GLP-2 on the small intestine [94], evidence
has been presented that application of GLP-2 or a GLP-2
agonist during parenteral nutrition reduces atrophy in the
small intestine [73, 180, 346].

Treatment of type 2 diabetes with metformin

Oral application of metformin influences D-glucose metabo-
lism in the small intestine and changes D-glucose absorption
and basolateral D-glucose uptake into intestinal tissue. After
oral application of metformin to rats, an increased small intes-
tinal glucose utilization was observed [22, 304]. In mice, ab-
sorption of 2-deoxy-2-[18F]-D-glucose (2-[18F]DG) was de-
creased after a single oral application of metformin [165].
Consistently, positon emission tomography (PET) in mice

gavaged with 2-[18F]DG revealed that the absorption of
2-[18F]DG was decreased after oral application of metformin
[165] (L. Zubiaga and F. Francois, unpublished data). After
short- and/or long-term oral application of metformin to rats
and mice, uptake of i.v. applicated 2-deoxy-D-[3H]-glucose or
2-[18F]DG into small intestinal tissue was increased [22, 165,
201]. In metformin-treated T2DM patients undergoing PET
with i.v. injected 2-[18F]DG, a higher intensity of PET signal
in the small intestine was observed compared to T2DM pa-
tients that were not under metformin treatment [201, 287].

Some data from rodents concerning effects of metformin
on abundance of Sglt1 and Glut2 in the small intestinal BBM
have been reported. In the absence of luminal D-glucose, met-
formin decreased the BBM abundance of Sglt1 in rat small
intestine whereas it increased the BBM abundance of Glut2
[335]. After luminal application of 10 mM D-glucose in the
absence of metformin, the abundance of both Sglt1 and Glut2
in the BBM was increased. Metformin decreased the elevated
BBM abundance of Sglt1 in the presence of D-glucose, where-
as it further increased the elevated BBM abundance of Glut2
in the presence of D-glucose. Consistently, Sglt1-mediated
short-circuit current induced by 10 mM luminal D-glucose
was decreased after a 3-min preincubation with metformin
[335]. The data indicate a differential interference of metfor-
min with glucose-dependent intracellular trafficking of Sglt1
and Glut2 to the BBM that may lead to a decrease or increase
of D-glucose uptake at different glucose concentrations.

Whereas the metformin-induced upregulation of
basolateral uptake of 2-DOG and 2-deoxy-2-F-D-glucose (2-
FDG) into IECs may be due to an increase of Glut2 abundance
in BLM, it is not understood why metformin decreases the
absorption of 2-DOG and 2-FDG. This effect is probably in-
dependent of Sglt1 and Glut5 because these transporters do
not accept 2-DOG and 2-FDG as substrates. It suggests down-
regulation of an additional transporter in the BBM that is
critical for absorption of DOG and 2-FDG.

Recently, it was observed in mice that oral application of
metformin blunted the increase of plasma D-glucose during
OGTTs and that this effect was abolished in Sglt1 knockout
mice but persisted in Glut2 knockout mice [165] (L. Zubiaga
and F. Francois, unpublished data). These data may be ex-
plained by the requirement of Sglt1-mediated depolarization
of the BBM for upregulation of Glut2 and/or a unidentified
glucose transporter in the BBM and/or BLM.

Bariatric surgery

Surgery procedures

Bariatric surgery procedures have been approved as most ef-
fective medical measures to reduce body weight of morbidly
obese individuals improving follow-up diseases such as heart
attack, stroke, and cancer [42, 310, 342]. Bariatric surgery
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procedures turned out to improve T2DM independently of
body weight reduction [263, 298, 329, 342]. Different surgery
procedures are employed; however, vertical sleeve gastrecto-
my (VSG) and Roux-en-Y gastric bypass (RYGB) are pre-
dominantly applied (Fig. 9) [342, 366]. In VSG, most of the
stomach is removed leaving a vertical tube. Hence, ingested
food is not acidified and partially degraded in the stomach and
rapidly delivered to duodenum. In addition, gastric regulation
of bile secretion, pancreatic secretion, and appetite are
abolished. In RYGB, the stomach is dissected in the very
upper part. The lower part of the stomach is closed whereas
the upper part is connected to the lower end of the jejunum
that is dissected in its top third. The upper part of the dissected
jejunum that contains the junction of the pancreatic/bile duct,
is connected end to side to the distal end of the jejunum.
Hence, proximal and distal alimentary limbs and a bile limb
of the jejunum can be distinguished (see p.a.l., d.a.l., b.l. in
Fig. 9c). Investigating the underlying mechanisms of bariatric
surgery in animal models, two additional surgery procedures,
duodeno-jejunal bypass (DJB) (Fig. 9d) and ileal interposition
(IIP), have been studied. DJB can be considered modification
of RYGB in which the removal of the stomach is omitted. It is
probably less effective concerning body weight reduction and
antidiabetic effect compared to RYGB [438]. In IIP, a seg-
ment of the distal ileum is interposed into the proximal jeju-
num exposing jejunal L cells to high nutrient concentrations
[20, 184, 297].

Proposed functional mechanisms

Various functional mechanisms are supposed to contrib-
ute to weight reduction and/or weight-independent anti-
diabetic effects of bariatric surgical procedures [160,
221, 349]. The complete panel of proposed effective
mechanisms comprising five main groups are expected

in RYGB. First, appetite regulation and/or energy expen-
diture may be changed due to omission of gastric neuro-
nal and ghrelin-mediated signals to the brain in response
to stomach removal (VSG) or to separation of the stom-
ach from alimentary passage (RYGB). Second, small in-
testinal absorption of nutrients including monosaccha-
rides that may influence energy balance, carbohydrate
metabolism, and/or composition of the microbiome may
be decreased or slowed down. This may be due to short-
ening of the alimentary path, to morphological changes
in the small intestine, to decreased expression and func-
tional activity of small intestinal nutrient transporters
and/or digestive enzymes, and to the absence of bile
acids and pancreatic enzymes in parts of the alimentary
path. Third, the stimulation of enterohormone secretion
by L cells (GLP-1, GLP-2, and PYY) and K cells (GIP)
may be changed [206, 289, 298, 310, 415]. Whereas K
cells are mainly located in the jejunum, L cells are main-
ly located in the ileum and colon [317, 320]. Because
SGLT1/Sglt1 expressed in L and K cells is critically
involved in D-glucose-dependent st imulat ion of
enterohormone secretion by these cells, the concentration
of D-glucose in the jejunum and ileum has a critical
impact on enterohormone secretion. In particular, evi-
dence has been provided that the secretion of GLP-1
during OGTTs is increased when the D-glucose concen-
tration in the ileum is increased by reducing absorption
of D-glucose in the jejunum during RYGB or DJB [183]
or by an increased D-glucose concentration in the ileum
by IIP [184]. Fourth, the concentrations of bile acids in
part of the alimentary tract is decreased changing lipid
absorption and metabolism [118, 299, 333]. Fifth, the
composition of the gut microbiome is changed with im-
pact on metabolic functions in the small intestine and the
entire organism [349].

Fig. 9 Schematic representation
of the most common bariatric
surgery procedures. a Normal
situation. b VSG, vertical sleeve
gastrectomy. c RYGB, Roux-en-
Y gastric bypass. d DJB,
duodeno-jejunal bypass. Stomach
yellow, duodenum blue, jejunum
green. b.d, bile duct; p.d., pancre-
atic duct; p.a.l., proximal alimen-
tary limb; d.a.l., distal alimentary
limb; b.l., bile limb
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Effects on intestinal structure and glucose transporters

Alimentary-mediated stimulators trigger enterohormone-
mediated and/or nervous signals that promote proliferation
and differentiation of small intestinal mucosa [352]. Hence,
small intestinal segments that are excluded from contact with
nutrients such as the bile limbs in RYGB and DJB or from
contact with enzymatically digested nutrients such as the
proximal alimentary limbs in RYGB and DLB undergo mor-
phological changes [209, 426]. These changes may be atro-
phic or hyperplastic including a decrease or increase of the
mucosal surface, respectively. In addition, the expression and
plasma membrane location of glucose transporters may be
changed.

After RYGB and/or DJB in healthy and diabetic rodents,
mucosal surface area and villi length in the bypassed foregut
were decreased which was combined with a reduction of
Sglt1-mediated AMG uptake per intestinal length [183, 209,
290, 426]. In the proximal alimentary limbs after RYGB and
GJB receiving bile-less undigested food, mucosal hypertro-
phy with increased mucosal surface area, villi length, and
increased number of L cells was observed [44, 59, 145, 274,
334, 368, 429]. In rodents, also the glycolytic metabolism was
increased [334]. Noteworthy, these changes were associated
with downregulation of Sglt1 in the BBM and with upregula-
tion of Glut1 in the BLM. The abundance Sglt1 mRNA and of
Sglt1-mediated AMG uptake per intestinal length were de-
creased [183, 429]. After RYGB in rats, uptake of i.v. applied
2-[18F]DG into the proximal alimentary limb was increased
and the expression of Glut1 was increased whereas the expres-
sion of Glut2 was not changed [59, 334].

One month after VSG in mice, the body weight of the
animals was reduced and the increase of blood glucose after
OGTT was blunted [426]. In the jejunum, Sglt1 mRNA and
abundance of Sglt1 protein in the BBMwere decreased [426].

The duodenum and jejunum have a larger mucosal surface
with longer villi compared to the ileum.When in IIP in normal
and diabetic rats, the distal ileum was transposed into the
proximal jejunum, hypertrophy of the transposed segment
was observed [184, 202, 204]. Thereby, ileal mass including
protein and DNA, mucosal surface, and villi length were in-
creased. Sglt1 protein in the BBM and phlorizin-inhibited
AMG uptake per unit length were increased so that the capac-
ity of Sglt1-mediated glucose uptake was similar to the sur-
rounding jejunum [184].

The data suggest that differential impacts of bariatric sur-
gery procedures on expression of SGLT1/Sglt1 and/or
GLUT1/Glut1 contribute to antidiabetic and/or antiobese ef-
fects. However, since bariatric surgery acts via various mech-
anisms that appear to be effective in different combinations,
effects of bariatric surgery procedures on small intestinal glu-
cose transporters may be supportive rather than critical for the
achieved therapeutic effects.

Glucose transporters in the small intestine
as drug targets

Food compounds

Special foods and food extracts

Antidiabetic properties have been associated with foods con-
taining flavonoids and other phenolic compounds such as
strawberries and blueberries, yerba maté, and germinated
waxy black rice [68, 141, 186, 285, 328, 419]. Evidence has
been presented that such foods or extracts thereof inhibit and/
or downregulate small intestinal glucose transporters. Thus,
anthocyanin-rich berry extracts acutely inhibited SGLT1-
and GLUT2-mediated glucose transport [11, 107, 256]. In
addition, berry extracts downregulated SGLT1 mRNA,
GLUT2 mRNA, and GLUT2 protein within 12–16 h [11].
When normal rats or rats with alloxan-induced T1DM were
gavaged during 4 weeks with extract of Yerba maté (Ilex
paraguariensis), the expression of Sglt1 mRNA in the small
intestine related to mRNA of β-actin was decreased [285].
Furthermore, the expression of Sglt1 and Glut2 in rats with
STZ-induced T1DM was decreased on mRNA and protein
levels when the food was supplemented for 8 weeks with
germinated waxy black rice [186]. Although specific foods
or food extracts may have beneficial effects, usage of the
effective food components is preferred for practical and secu-
rity reasons.

Isolated food compounds

Interactions of individual flavonoids and the glucose analogue
1-deoxynojirimycin (DNJ) present in mulberry leaves with
SGLT1/Sglt1, GLUT2/Glut2, and/or GLUT5/Glut2 were test-
ed. The measurements were performed using Xenopus laevis
oocytes in which the respective transporters were expressed
and in preparations of rat intestinal mucosa.

The flavonol quercetin is present in various foods such as
red wine, onions, and green tee [328]. In foods, quercetin
mostly occurs in glycosylated forms; however, it is deglyco-
sylated in the small intestine [219]. In the small intestine,
quercetin concentrations of up to 100 μM were determined;
however, since absorption of quercetin is poor, the plasma
concentration does not exceed 2 μM [219]. Measuring
substrate-induced inward currents in voltage-clamped oocytes
expressing human SGLT1, no SGLT1-mediated transport of
unglycosylated or glycosylated quercetin was detected [208].
When quercetin was glycosylated at C3 or C4, SGLT1-
mediated uptake of AMG was inhibited with apparent Ki

values of 640 μM and 40 μM, respectively, whereas incom-
plete low affinity inhibition of human SGLT1 was observed
with nonglycosylated quercetin [208]. Hence, inhibition of
SGLT1 in the small intestine by quercetin does not appear to
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be of biomedical relevance. However, uptake of 2-DOG and
D-fructose by human GLUT2 expressed in oocytes was
inhibited by quercetin with IC50 values of 13 μM and
16 μM, respectively [219]. A similar inhibition was observed
with the quercetin analog myricetin whereas less affine or no
inhibition was observed with glycosylated forms of quercetin.
Uptake of D-glucose or D-fructose in oocytes expressing hu-
man GLUT5 were inhibited neither by nonglycosylated quer-
cetin nor by glycosylated quercetin and myricetin. Testing the
acute effect of quercetin on an OGTT in diabetic Zucker fa/fa
rats, it was observed that quercetin blunted the increase of
plasma D-glucose during the OGTT [363]. The data suggest
an antidiabetic effect of quercetin after ingestion of high
amounts of D-glucose or D-fructose when GLUT2/Glut2 is
targeted to the BBM.

In Ussing chamber experiments with mouse jejunum,
glucose-dependent transmucosal currents mediated by Sglt1
were decreased within few minutes after mucosal application
of the anthocyanin flavonoid delphinidin [154]. Delphinidin
also decreased 3-OMG absorption in mouse small intestine
and in Caco2 cell that was correlated with oscillations of in-
tracellular Ca2+ concentrations. In addition, data were reported
suggesting that the delphinidin-mediated decrease of 3-OMG
absorption in Caco-2 cells involves activation of fatty acid
receptor GPR40. It was not resolved whether delphinidin
inhibited SGLT1/Sglt1 or downregulated the abundance of
SGLT1/Sglt1 in the BBM and whether effects on GLUT2/
Glut2 were involved.

1-Deoxynojirimycin (DNJ) is a glucose analogue occurring
in mulberry leaves that inhibits α-glucosidases and modulates
hepatic metabolism [216, 237]. Effects of DNJ on OGTTs and
on the amounts of Sglt1 in the BBM and of Glut2 in the BLM
of IECs were investigated in healthy mice and in mice with
STZ-induced T1DM [239]. DNJ was orally applicated for
3 days, twice a day, and 15 min before the OGTTs were
started. In DNJ-treated mice, the increase of blood glucose
during the OGTTs was blunted and the abundance of Sglt1
in the BBM and of Glut2 in the BLM after the OGTTs was
decreased. It was not resolved whether the effects of DNJ on
membrane abundance of Sglt1 and Glut2 were secondary to
inhibition of Sglt1 or whether DNJ enters the enterocytes and
exhibits intracellular effects on transporter regulation.

Synthetic compounds

SGLT1 inhibitors

In addition to selective SGLT2 inhibitors, dual inhibitors of
SGLT1 and SGLT2 and selective SGLT1 inhibitors have been
developed for oral treatment of T2DM. Whereas SGLT2/
Sglt2 inhibitors reduce the reabsorption of ultrafiltrated D-glu-
cose in the kidney, inhibitors of SGLT1/Sglt1 decrease small
intestinal D-glucose absorption. Sotagliflozin (LX4221) [227,

277, 436, 437] and licogliflozin [150] are effective dual inhib-
itors whereas mitagliflozin [175] and compounds GSK-
1614235 [88], LX2761 [131], and SGL5213 [176, 217] inhib-
it SGLT1/Sglt1 in the small intestine selectively. Mitagliflozin
and GSK-1614235 are absorbed; however, they inhibit
SGLT1/Sglt1 with a much higher efficacy compared to
SGLT2/Sglt2. LX2761 and SLC5213 inhibit SGLT1/Sglt1
and SGLT2/Sglt2 with similar efficacies but enter the blood
only slowly so that their systemic concentrations are not ef-
fective [131, 217]. Selective inhibition of SGLT1/Sglt1 in the
small intestine may induce three main effects. First, by
inhibiting SGLT1/Sglt1 in IECs D-glucose absorption may
be reduced. Second, a decreased absorption in the duodenum
and proximal jejunum may lead to an increase of the D-glu-
cose concentration in the distal jejunum and in the ileum
where most L cells are located and may thereby increase D-
glucose-dependent secretion of GLP-1 in L cells and promote
pancreatic insulin secretion. Third, since glucose-dependent
GLP-1 secretion in L cells is mediated by SGLT1/Sglt1, inhi-
bition of SGLT1/Sglt1 in L cells may blunt GLP-1 secretion.
Antidiabetic effects of selective SGLT1/Sglt1 inhibitors have
been demonstrated in rodents. In normal rats, in rats with STZ-
induced T1DM, and in normal mice, it was observed that
GSK-1614235, LX2761, and/or SGL5213 decreased post-
prandial elevation of blood glucose [88, 131, 176].
However, no consistent effects of the SGLT1/Sglt1 inhibitors
on postprandial increase of GLP-1 in the blood were observed.

Compounds that downregulate SGLT1

A downregulation of SGLT1 abundance in the small intestine
is considered an attractive alternative to inhibition of SGLT1
because longer lasting effects may be achieved. In addition, a
selective downregulation of SGLT1 in IECs versus L cells
and/or downregulation under defined physiologic or patho-
physiologic conditions may be possible. Oral application of
specific SGK1 inhibitors may be used to downregulate the
increased expression SGLT1 in diabetic patients whereas
modified peptides derived from the regulatory domain of
RS1 may be employed to prevent the rapid upregulation of
SGLT1 in the small intestinal BBM after ingestion of glucose-
rich food.

SGK1 is ubiquitously expressed and under genomic con-
trol of hormones including growth factors, corticosteroids,
and insulin [224]. It participates in the regulation of various
transporters, ion channels, and enzymes and is involved in
pathophysiological changes during obesity, diabetes, hyper-
tension, and tumor growth [223]. Under normal physiological
conditions, the expression of SGK1 is low; however, it is
increased under certain pathophysiological conditions such
as hyperglycemia and ischemia. In obese and diabetic individ-
uals, an increased SGK1 expression was observed in several
tissues including small intestine [238]. In the small intestine of
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diabetic db/db mice, higher mRNA and protein abundance of
SGK1 and Sglt1 was observed compared to nondiabetic con-
trol mice [240]. After oral application of the selective SGK1
inhibitor EMD638683 for 8 weeks to db/db mice, Sglt1
mRNA and Sglt1 protein in the small intestine were decreased
and fasting blood glucose was reduced. Experiments per-
formed with cultivated rat intestinal IEC-6 cells revealed that
dexamethasone treatment increased the expression of SGK1
and Sglt1 and that the expression and function of Sglt1 could
be downregulated by incubation with EMD638683. The data
suggest that oral application of selective SGK1 inhibitors that
do not enter the systemic circulation may be employed for
antidiabetic therapy (see effect of SGK1 on transcription of
SGLT1 in Fig. 2).

Modified peptides derived from the regulatory domain of
RS1 (RS1-Reg) may be used to prevent the glucose-dependent,
short-term upregulation of SGLT1 in the small intestinal BBM
[200]. The proposed mechanism is depicted in Fig. 4. In IECs,
the release of SGLT1 containing vesicles from the Golgi is
promoted by the enzymatic activity of ODC. At low intracel-
lular D-glucose concentrations, the vesicle release is slowed
down because RS1-Reg binds to ODC and blocks the enzy-
matic activity. After uptake of glucose-rich food when the D-
glucose concentration in IECs increases, D-glucose binds to
ODC. Thereby, a conformational change is induced that de-
creases the efficacy of RS1-Reg binding and prevents the inhi-
bition of ODC. This promotes the release of SGLT1-containing
vesicles from the Golgi and leads to the increase of SGLT1 in
the BBM. Of note, it was observed that injection of a RS1-Reg
variant in which serine in a QSP motif was replaced by gluta-
mate (RS1-Reg(QEP)) into oocytes expressing human SGLT1
promoted highly efficient downregulation of SGLT1-mediated
AMG uptake in the presence of high intracellular glucose con-
centrations [341, 408] (see Fig. 4(C)). After oral application of
RS1-Reg(QEP) to mice and subsequent oral gavage with a
high amount of D-glucose, a decrease of glucose absorption
and of Sglt1 abundance in the small intestinal BBM was ob-
served [408]. In these experiments, RS1-Reg(QEP) had been
linked to nanohydrogels to promote uptake into IECs. Of note,
it was also observed that QEP promoted downregulation of
SGLT1-mediated uptake in oocytes expressing human
SGLT1 at high intracellular glucose concentrations in contrast
to QSP [341]. After oral application of QEP for 3–6 days to
diabetic db/db mice, antidiabetic effects were observed (, C.
Otto, A. Friedrich, I. Vrhovac Madunić, C. Baumeier, R. W.
Schwenk, A. Karaica, C.-T. Germer, A. Schürmann, I,.
Sabolić, H. Koepsell, unpublished data). Thus, fasting plasma
glucose was decreased, insulin sensitivity was increased, the
increase plasma glucose in OGTT was blunted, and the secre-
tion of GLP-1 in the OGTT was increased. So far it has not
been elucidated whether QEP also downregulates SGLT1/
Sglt1 in L cells. Future studies are necessary to improve drug
formulation in order to accelerate uptake into IECs.

Conclusions

Extensive research has been performed concerning involve-
ment of transporters and their regulation in monosaccharide
absorption and impact of monosaccharide transporters on dis-
eases and drug treatment. The data indicate a great complexity
of these biomedically important issues and show that they
demand further comprehensive in-depth investigation. For ex-
ample, besides GLUT2, GLUT5, and SGLT1, several addi-
tional glucose transporters are expressed in the small intestine,
the roles of which have not been investigated in appropriate
detail. Regarding previous studies on GLUT2, GLUT5, and
SGLT1, often short- and long-term post-translational regula-
tions have not been distinguished unambiguously. Also, the
functional mechanisms of most described regulatory process-
es of glucose transporters in ICEs have not been resolved in
detail. In addition, most observations were made in rodents
and have not been verified in humans. In view of overeating
with carbohydrate-rich food and associated obesity with
follow-up diseases in industrial societies, it is a challenge to
develop drugs that downregulate small intestinal glucose
transporters selectively in IECs. More detailed understanding
on how all human glucose transporters expressed in small
intestine function and are regulated in health and disease
should be the basis for future dietary commendations.
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