
RESEARCH ARTICLE

New Gene Variants Associated with the Risk of Chronic HBV Infection

Mengjie Fan1 • Jing Wang2,3 • Sa Wang1 • Tengyan Li3 • Hong Pan3 • Hankui Liu4,5 • Huifang Xu4,5 •

Daria V. Zhernakova6 • Stephen J. O’Brien6,7 • Zhenru Feng8 • Le Chang8 • Erhei Dai9 • Jianhua Lu9 •

Hongli Xi1 • Yanyan Yu1 • Jianguo Zhang4,5 • Binbin Wang3 • Zheng Zeng1

Received: 5 March 2019 / Accepted: 16 January 2020 / Published online: 15 April 2020
� Wuhan Institute of Virology, CAS 2020

Abstract
Some patients with chronic hepatitis B virus (HBV) infection failed to clear HBV, even persistently continue to produce

antibodies to HBV. Here we performed a two stage genome wide association study in a cohort of Chinese patients designed

to discover single nucleotide variants that associate with HBV infection and clearance of HBV. The first stage involved

genome wide exome sequencing of 101 cases (HBsAg plus anti-HBs positive) compared with 102 control patients (anti-

HBs positive, HBsAg negative). Over 80% of individual sequences displayed 20 9 sequence coverage. Adapters,

uncertain bases[ 10% or low-quality base calls ([ 50%) were filtered and compared to the human reference genome

hg19. In the second stage, 579 chronic HBV infected cases and 439 HBV clearance controls were sequenced with selected

genes from the first stage. Although there were no significant associated gene variants in the first stage, two significant gene

associations were discovered when the two stages were assessed in a combined analysis. One association showed

rs506121-‘‘T’’ allele [within the dedicator of cytokinesis 8 (DOCK8) gene] was higher in chronic HBV infection group

than that in clearance group (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91]). The second association involved rs2071676—A

allele within the Carbonic anhydrase (CA9) gene that was significantly elevated in chronic HBV infection group compared

to the clearance group (P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58]). Upon replication these gene associations would

suggest the influence of DOCK8 and CA9 as potential risk genetic factors in the persistence of HBV infection.
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Abbreviations
ALT Alanine transaminase

anti-HAV Antibody to hepatitis A virus

anti-HBc Antibody to hepatitis B core antigen

anti-HBe Antibody to hepatitis B e antigen

anti-HBs Antibody to hepatitis B surface antigen
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anti-HCV Antibody to hepatitis C virus

anti-HDV Antibody to hepatitis D virus

anti-HEV Antibody to hepatitis E virus

CA9 Carbonic anhydrase 9

CHB Chronic hepatitis B

DNA Deoxyribonucleic acid

DOCK8 Dedicator of cytokinesis 8

DP Double positive

ELISA Enzyme-linked immunosorbent assay

GWAS Genome wide association study

HBeAg Hepatitis B e antigen

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HBx Hepatitis B x protein

HCC Hepatocellular carcinoma

HDV Hepatitis D virus

HEV Hepatitis E virus

IgM Immunoglobulin M

LLOD Lower limit of detection

PCR Polymerase chain reaction

SD Standard deviation

SP Single positive

TOF Time of flight mass spectrometry

WES Whole exome sequencing

Introduction

HBV infection is a serious worldwide public health issue.

Despite the application of antiviral drugs such as

nucleos(t)ide analogues, interferons (IFNs) and hepatitis B

vaccine, there are still about * 257 million people

worldwide who are chronic carriers of HBV (WHO 2017)

and have a mortality risk from HBV-related liver diseases,

such as liver cirrhosis, hepatic decompensation and hepa-

tocellular carcinoma (Ding et al. 2016). In the natural

course of HBV infection, less than 5% of cases in adult-

hood (WHO 2015) and 90% of neonates and 20%–60% of

children under the age of 5 years fail to clear HBV and

eventually develop into chronic HBV infection (Hoofnagle

et al. 2007). The clinical manifestations of HBV infection

vary among different infected subjects, ranging from acute

self-limiting infection, inactive carrier state, fulminant

hepatic failure to chronic hepatitis with potential diverse

severe progression and complications (Wang et al. 2010).

However, the factors that contribute to the persistence are

unknown.

It was commonly believed that HBsAg and anti-HBs

(protective antibody) seldom appear simultaneously in

serum of the same patient. However, chronic HBV repli-

cation is able to occur despite the presence of anti-HBs in

the serum of certain infected individuals. Coexistence of

HBsAg and anti-HBs was first reported by Arnold et al.

(1976), and later many other studies reported this phe-

nomenon as well (Colson et al. 2007; Fu et al. 2017; Xiang

et al. 2017). Chen et al. (2011) reported significant higher

aa substitution diversity within HBV viral S gene, espe-

cially the MHR and the ‘‘a’’ determinant in patients who

display coexistence of HBsAg and anti-HBs, most fre-

quently in the s126, s129 and s130 sites. Chen et al. (2011)

also found that the incidence of basal core promoter double

mutations (A1762T/G1764A) in the coexistence group was

higher than in controls. Hadiji-Abbes et al. (2015) reported

that the C69R variant contributes to a conformational

change that occur not only at mutation site but also in the

immunodominant ‘‘a’’ region, causing a decrease on the

binding affinity to anti-HBs. In addition to the viral factors,

host factors may also influence the presence of this con-

comitant situation. We previous reported that variants

within the OAS3 gene was associated the presence of

HBsAg and anti-HBs in patients with chronic HBV

infection (Wang et al. 2018).

The pathogenesis and clinical manifestations of HBV

infection are due to the interaction between virus replication

and host immune responses to HBV-encoded antigens

(Chisari et al. 2010). For viral factors, many studies had

investigated virus genetic factors that may have influence

on the progression of HBV infection. Researchers

sequenced basal core promotor of HBV genome and found

that patients with T1762/A1764 mutation were associated

with progression of liver diseases, pathogenesis of HBV

infection, and were more likely to develop HCC than con-

trols (Kao et al. 2003). Several studies further confirmed

that patients with T1762/A1764 mutations were associated

with an increased risk of severe liver diseases including

HCC (Kuang et al. 2004; Liu et al. 2006; Zheng et al. 2011).

For host factors, Saxena et al. (2014) found that several

genotypes in interleukin 6 (IL-6) (- 572/- 597) gene

influence HBV disease progression. For example, the GA

haplotype in - 597G[A of IL-6 decreased the risk of

hepatitis, cirrhosis, and subsequent HCC development

among HBV carriers. Other cytokine genes such as inter-

leukin-10 (IL-10), interleukin-28 (IL-28), transforming

growth factor-b1 (TGF-b1), tumor necrosis factor-a (TNF-a)
and migration-inhibitory factor (MIF) may also affect the

susceptibility to HBV infection (Qi et al. 2009; Zhang et al.

2011a, Zhang et al. 2011b, Zhang et al. 2013; Zheng et al.

2012; Korachi et al. 2013; Zeng 2014). Several studies

revealed that HLA-DPA1-A and HLA-DPB1 alleles were

associated with the viral clearance of HBV and HCC devel-

opment (An et al. 2011; Hu et al. 2012). Earlier, Diepolder

et al. (1998) found that patients with chronic hepatitis B

(CHB) had lower HLA-DR13 allele than in healthy controls,

suggesting that the HLA class II allele DR13 was associated

with self-limiting of HBV infection.
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HBV infection development is a multifactorial process

with implicated influences of both host and viral genetic

determinants. Any factors that may influence the host’s

immunity towards hepatitis B virus are likely to affect the

outcomes of HBV infection. However, previous studies

mainly focused on the common host potential genetic fac-

tors, which may miss rare functional genetic variants. Our

previous study (Wang et al. 2018) was focus on genetic

factors that influence anti-HBs expression. To reveal addi-

tional associated variants, we conducted a two-stageGWAS-

bioinformatic analyses aiming to find other potentially

functional variants that influence HBV persistent infection.

Materials and Methods

Study Design and Population

We carried out a retrospective survey of HBV related

diseases in Chinese Han population from May, 2002 to

June, 2017 and conducted a study with two stages of

bioinformatic analyses aiming to find the potential genes

that may play a role in different status of HBV related

diseases. In the first stage (Wang et al. 2018), 101 cases

positive for both HBsAg and anti-HBs [double positive

(DP)] and 102 control subjects who show positive for

anti-HBs but negative for HBsAg [single positive (SP)]

were included. All these subjects are age and gender

matched and genotyped by whole exome sequencing

(WES). For the second stage, we expanded our samples

[579 cases who are chronic HBV infection and 439

controls who are HBV clearance (HBsAg negative but

anti-HBs and anti-HBc positive)] and conducted a pheno-

typic analysis using time of flight mass spectrometry (TOF)

to further validate the result of the first stage. All the

samples included in this study were mainly obtained from

Peking University First Hospital and the Fifth Hospital of

Shijiazhuang. The inclusion and exclusion criteria

applicable to all samples are listed in Table 1.

Case definitions of different status of HBV infection are

in consistent with the criteria issued by the Association of

Infectious Diseases of China in 2015 (Hou and Lai 2015).

In briefly, the cases of these two stages are chronic HBV

infection, the controls are HBV clearance. The study was

approved by the Ethics Committee of Peking University

First Hospital and the Fifth Hospital of Shijiazhuang.

Before entering this research group, all the subjects had

signed an informed consent.

Laboratory Examination

Virological and serological tests were processed at local

sites. Serum HBsAg, anti-HBs, HBeAg, and anti-HCV

were detected using the ARCHITECT I2000 test (Abbot,

USA). HBsAg higher than 0.05 IU/mL and anti-HBs

higher than 10 mIU/mL were defined as positive, respec-

tively. HBV DNA was quantified using Roche Cobas

Ampliprep/Cobas Taqman PCR with lower limit of

detection (LLOD) of 20 IU/mL (Roche, USA) or com-

mercial real-time polymerase chain reaction kit with LLOD

of 100 IU/mL (Daan Company, China). Anti-HAV IgM,

Table 1 Inclusion and exclusion criteria.

Inclusion criteria

Cases (DP,chronic HBV infection)

1. HBsAg, anti-HBc positive for at least 6 months and no history of hepatitis B vaccination

2. anti-HAV, anti-HEV, HDAg negative and/or anti-HDV negative

3. Anti-HCV negative, HCV RNA negative

4. For DP cases in the first stage, anti-HBs positive for at least 6 months; for chronic HBV infection cases in the second stage, anti-HBs can

be positive or negative

Controls (SP, HBV clearance)

1. Anti-HBs and anti-HBc positive or anti-HBs positive and no history of hepatitis B vaccination; HBsAg negative

2. HBV-DNA negative, anti-HAV, anti-HEV, HDAg negative and/or anti-HDV negative

3. Anti-HCV negative, HCV RNA negative

Exclusion criteria*

1. Evidence of past or current infection by HCV or HDV

2. With other hepatitis virus infection

3. Other systemic disease not related to HBV infection

4. Age less than 18 for all cases and controls

5. Not of Han ethnicity

DP Double positive; SP single positive.

*Excluded from enrollment if one or more of the exclusion criteria were met, applicable for all the two stage samples.
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HDV antigen, anti-HDV and anti-HEV were determined by

commercially ELISA kits in China.

Library Preparation and Whole Exome
Sequencing

Genomic DNA of host was extracted from peripheral blood

clot using protocols of QIAamp DNA Blood Mini Kit

(QIAGEN) or salting-out method conducted by Tianyi

Huiyuan Company (http://www.dna1953.com.cn/index.

html). After that, 2–3 micrograms of DNA per individual

from the first stage of 101 cases and 102 controls were

delivered to BGI (http://www.genomics.cn/index) and were

then sequenced and analyzed using WES on Illumina Hiseq

X-Ten. Detailed procedure can be seen in our published

article (Wang et al. 2018). The quality of exon sequencing

was strictly controlled to guarantee that[ 80% of the

targets were covered by at least 20 9. Reads containing

adapters, uncertain bases (N)[ 10% or low-quality bases

(Phred\ 5)[ 50% were filtered out and the remaining

clean sequence reads were then compared to the human

reference genome hg19 (http://genome.ucsc.edu/, build

37.1) using BWA (http://bio-bwa.sourceforge.net/index.

shtml, 0.7.15). In addition, the duplicate fragments were

labeled using Picard (http://picard.sourceforge.net/).

SNP and Small Indel Detection

After base quality recalibration and local realignment

around the potential Indel sites, the Genome Analysis

Toolkit (GATK, http://www.broadinstitute.org/gatk/index.

php, v3.6) was applied to call SNPs and Indels. Then VEP

(http://grch37.ensembl.org/info/docs/tools/vep/index.html,

release-77) and ExAC databases were used to conduct

annotation, which provide information such as mutation

allele frequency, gene variant consequences and altered

function of protein.

GWAS Dataset Construction

After alignment, mutation detection and annotation of the

clean data, we conducted further filtering to identify high-

confidence variants in targeted sequence. Variants meeting

all the following requirements were considered to be high-

confident: (1) quality (QUAL) C 100; (2) depth of cover-

age C 6 and support variant reads C 3; (3) pass the allele

balance test (prop test P[ 0.0005); (4) the interval of two

variants[ 5 bp. High-confidence variants of all samples

were merged to one Variant Call Format (VCF) file using

bcftools. The call rate threshold of final VCF file was set to

80% and variants that failed to achieve the threshold were

excluded from this GWAS dataset. After that, a genetic

association analysis was carried out with fisher’s exact test

between cases and controls in the first stage.

Genetic Factors Confirmation by Time of Flight
Mass Spectrometry (TOF)

TOF (Griffin et al. 1999) is based on single base extension

molecular reaction, different allele has different molecular

weight and different flying time in the electric field, which

makes it possible to classify. TOF is the most important

technical platform for stage II study by GWAS, it can

effectively avoid the false-positivity caused by traditional

fluorescence signal technique, which can ensure more

accurate and correct results. To further determine the

potential gene variants found in the first stage of WES, we

performed TOF among larger samples which composed of

579 cases with chronic HBV infection and 439 controls

who are HBV clearance with anti-HBs and anti-HBc pos-

itive but HBsAg negative. Genomic DNA of host was

extracted as mentioned above. We applied iPLEX GOLD

(Sequenom MassARRAY) to design primers for PCR and

the PCR products were then digested by SAP enzyme to

remove free dNTPs from the system. After that, we had a

single base extension reaction. Then we transferred the

purified products to the 384-well Spectro-CHIP bio-array

to conduct analysis using MALDI-TOF mass spectrometer.

The raw data and genotype map were obtained by using

TYPER4.0 software. After checking the completeness and

correctness, the results were stored in appropriate storage

media and submitted to the biological information room for

analysis.

SNP Selection in Replication Study

In the first stage of WES analysis, we chose the first 150

potentially functional variations (missense mutation, fra-

meshift mutation, stop-gained mutation and stop-lost

mutation) ranked by P value. To further confirm the

discovery-phase genetic factors, we searched the related

genes of these 150 variations in databases (such as

PubMed, EMbase, Cochrane) and chose those that may

have a relationship with HBV related liver diseases.

Combining consideration of primer design in the process of

TOF, we selected 30 variants from the above 150 loci as

candidate genes and analyzed whether there was genetic

discrepancy between cases and controls.

Statistical Analysis

Regarding to the demographic and clinical characteristics

of the subjects included in this study, Chi square test and

t-test was applied using SPSS17.0 statistical software.
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Single variant association analysis was conducted by

PLINK 1.07 software using Fisher’s exact test.

Results

Characteristics of Participants in This Study

Characteristics of participants in the first stage were

delineated in our previously published article (Wang et al.

2018).

Characteristics of the 1018 subjects in the second stage

who received a TOF analysis were described in Table 2.

Individuals in the control group were significantly older

than those in the case group (P\ 0.05), whereas gender

was well balanced between the two groups (P[ 0.05).

Compared to the control group, ALT, HBV DNA levels

and HBeAg positive rate in the case group were significant

higher (P\ 0.05).

Genetic Analysis between Groups in the First
Stage of WES

We performed a genome-wide association study of 58,336

polymorphism variants that have available authoritative

transcript using Fisher’s exact test in all samples of 101

cases and 102 controls and conducted a Bonferroni cor-

rection (significance level was set as P\ 0.05/58,336)

because of the existing multiple tests. However, no loci

achieved this significance threshold. Figure 1 delineated

the P value of all these single variants. The first 150

potentially functional variations ranked by P value are

displayed in Supplementary Table S1. We also showed the

characteristics of published CHB risk-associated SNPs

(Chang et al. 2014) in Supplementary Table S2. However,

those loci are not in the exome capture region, so the

performance are unavailable in our first stage of WES.

Genetic Analysis between Groups in the Second
Stage of TOF

In the first stage GWAS, we failed to detect any potentially

functional association. In view of this, we expanded our

sample sizes and performed this second stage (candidate

gene analysis) using TOF in 30 leading associated variants to

reveal an association with chronic HBV infection (Table 3).

There were several sites that achieved significant difference,

including rs11040923, rs2071676, rs2288868, rs4774113

and rs506121. SNPs rs2288868 and rs4774113 were exclu-

ded due to Hardy–Weinberg Equilibrium departure

(P\ 0.05) and\ 95% call rate in the cases group respec-

tively. SNP rs11040923 was also excluded due to discordant

allele frequencies in stage 1 vs stage 2 populations.

Table 4 delineates allele discrepancies of rs506121,

rs2071676, rs11040923 between cases and controls in the

two stages. Patients who were HBsAg positive in the case

group had elevated DOCK8—T allele (rs506121;

P\ 0.05) and CA9—A allele (rs2071676; P\ 0.05) than

that in clearance group in both stages. A meta-analysis to

evaluate the performance of these three SNPs (Table 4),

which suggested a similar result for SNPs rs506121 and

rs2071676 (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91];

P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58], respectively).

Discussion

The outcomes of HBV infection can vary depending on

differing viral and host genetic determinants factors. Pre-

vious studies of host genes mainly focused on common

genes such as cytokines and HLA genes, however, rare

gene may have an influence as well. Based on our previous

study that mutation of OAS3 gene may affect the presence

of anti-HBs in patients with chronic HBV infection (Wang

et al. 2018), we enlarged sample size and focus on

Table 2 Characteristics of

subjects in the second stage of

time of flight mass

spectrometry.

Group Cases (n = 579) Controls (n = 439) P value

Age, y

Mean (x ± SD) 49.57 ± 14.74 (579) 61.93 ± 13.40 (439) 0.000

Range 18–84 18–96

Male, % (n) 55% (317/579) 59% (261/439) 0.142

HBsAg positive, % (n) 100% (579) 0 (439) 0.000

anti-HBs positive, % (n) 6.8% (39/571) 100% (439) 0.000

HBeAg positive, % (n) 18% (103/565) 0 (0/439) 0.000

ALT, IU/mL, mean ± SD (n) 32.74 ± 60.06 (456) 21.88 ± 23.86 (333) 0.000

HBV-DNA, log IU/mL, mean ± SD (n) 1.63 ± 2.51 (277) 0.00 ± 0.00 (14) 0.000

P values less than 0.05 are indicated in bold

ALT Alanine transaminase; anti-HBs antibody to the hepatitis B surface antigen; DP double positive;

HBeAg hepatitis B e antigen; HBsAg hepatitis B surface antigen; SD standard deviation
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persistent HBV infection compared to HBV clearance to

reveal new potential variants that may have an effect on the

clearance or persistence of HBV infection.

In the first stage, we did not find any potentially func-

tional gene variants that may have a relationship with HBV

infection at the Bonferroni genome-wide significance level

(Fig. 1). Reasons accounting for this may be as follows:

first, exome sequencing only focuses on genetic variation

in the exome region, and is thus very likely to neglect those

lying in the noncoding region (Wang et al. 2018); second,

statistical power of classical single-variant based associa-

tion tests for low-frequency and rare variants is low when

the sample sizes are small (Lee et al. 2014; Wang et al.

2018). In the following stage, we expanded our sample

sizes and further conducted a TOF analysis to confirm the

potential gene variants found in the discovery-phase. Two-

stage design is the standard strategy of genome-wide

association study for discovering and validating the can-

didate genetic makers. Stage 2 is a replication study which

focuses on the statistical significance discovered in stage 1.

Previous study demonstrated that joint analysis of repli-

cation-based study result in increased power to detect

genetic association (Skol et al. 2006). And for evaluating

the significance of association between genetic factors and

affected-unaffected phenotypes, Chi square test, Fisher’s

exact test (Purcell et al. 2007) and mixed regression model

(Zhou and Stephens 2012) are the most popular methods

designed for population matched and un-matched study

respectively. In our study, we used Chi square test to

perform the joint analysis on 30 variants in two popula-

tions. Combining the results of these two stages, we

observed that cases in CHB group have significantly higher

frequency of DOCK8 -T allele and higher frequency of

CA9—A allele than controls in clearance group (Table 4).

Autosomal recessive mutations in the DOCK8 gene,

located on chromosome 9p24.3, can result in DOCK8

immunodeficiency (Betts et al. 2015), a syndrome predis-

posing carriers, to various viral or fungal infections (Zhang

et al. 2009). DOCK8 is a member of the DOCK180

superfamily of atypical guanine-nucleotide exchange fac-

tors (GEF) (Cote and Vuori 2002) and can activate cell

division cycle 42 (Cdc42) (Mizesko et al. 2013). Previ-

ously, Nishikimi et al. concluded that Cdc42 is a member

of Rho GTPase, which functions as molecular switches by

cycling between an inactive GDP-bound state and an active

GTP-bound state (Nishikimi et al. 2013) and is important

for reorganization of filamentous actin (F-actin)

cytoskeleton in natural killer (NK) cells and dendritic cells

(DCs) (Sinai et al. 2010; Harada et al. 2012). The loss of

DOCK8 in mice may lead to DCs’ less competitive to

migrate from peripheral tissues to lymph nodes and act its

role as an antigen-presenting cell, which being able to

initiate an adaptive immune response (Krishnaswamy et al.

2015). Some studies demonstrated that there exhibits a

similar phenomenon of a migration defect of macrophages

and CD8 ? T cells in the absence of DOCK8 (Kearney
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Fig. 1 Manhattan plot Genome-wide single variant association study
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Table 4 Allele discrepancy of

rs506121, rs2071676,

rs11040923 between cases and

controls.

Polymorphisms Stage Case (n%) Control (n%) OR (95% CI) P value

rs506121 (DOCK8) 1 55.90 68.10 0.59 (0.40–0.89) (C/T)* 0.014

2 60.30 65.10 0.81 (0.68–0.97) (C/T) 0.027

1 ? 2 (meta) 0.77 (0.65–0.91) (C/T) 0.002

rs2071676 (CA9) 1 58.90 43.60 1.85 (1.25–2.75) (A/G) 0.002

2 52.60 46.70 1.27 (1.06–1.51) (A/G) 0.009

1 ? 2 (meta) 1.35 (1.15–1.58) (A/G) 0.0003

rs11040923 (DNHD1) 1 63.40 77.00 0.52 (0.34–0.80) (A/G) 0.003

2 67.00 62.40 1.22 (1.02–1.47) (A/G) 0.035

1 ? 2 (meta) 1.07 (0.91–1.27) (A/G) 0.40

P values less than 0.05 in meta-analysis are indicated in bold

DOCK8 Dedicator of cytokinesis 8; CA9 carbonic anhydrase 9; DNHD1 dynein heavy chain domain 1; OR
odds ratio; CI confidence interval.

*If theORwas calculated asC/T, then the frequency listed in the table is the frequencyofCamongall the subjects

Table 3 Alleles discrepancy of

the selected 30 variants between

cases and controls in the second

stage of time of flight mass

spectrometry.

Position Case (n%) Control (n%) OR (95% CI) P value

rs1048906 62.37 64.45 0.91 (0.76–1.10) (C/T)* 0.35

rs10821128 46.37 49.20 0.89 (0.75–1.06) (C/T) 0.21

rs11040923 67.00 62.4 1.22 (1.02–1.47) (A/G) 0.035

rs16932912 34.30 35.10 0.97 (0.80–1.16) (A/G) 0.74

rs17206365 70.80 71.60 0.96 (0.79–1.18) (A/T) 0.72

rs1870134 28.60 26.10 1.14 (0.93–1.39) (C/G) 0.21

rs2071676 52.60 46.70 1.27 (1.06–1.51) (A/G) 0.009

rs2073674 55.10 55.70 0.98 (0.82–1.16) (A/C) 0.79

rs2075688 100 100 – (C) –

rs2272662 52.80 55.90 0.88 (0.74–1.05) (C/T) 0.19

rs2277603 77.90 81.30 0.81 (0.65–1.01) (A/G) 0.06

rs2288868 80.60 72.50 1.58 (1.28–1.94) (C/T) 2.28E 2 5

rs2297879 45.20 49.20 0.85 (0.71–1.01) (C/T) 0.07

rs2302061 29.70 29.00 1.03 (0.85–1.25) (C/T) 0.77

rs3732487 46.00 49.00 0.89 (0.75–1.06) (G/T) 0.19

rs3733662 28.70 31.40 0.88 (0.73–1.06) (A/C) 0.19

rs3745535 34.60 36.10 0.94 (0.78–1.13) (A/C) 0.51

rs3779234 76.70 76.90 0.99 (0.80–1.22) (C/T) 0.92

rs3804769 16.30 17.10 0.94 (0.75–1.19) (C/T) 0.63

rs3815045 23.90 22.50 1.08 (0.88–1.33) (A/G) 0.49

rs3818123 46.30 48.20 0.93 (0.78–1.11) (C/T) 0.42

rs4629585 46.40 47.70 0.95 (0.79–1.13) (A/C) 0.56

rs4774113 17.60 21.40 0.79 (0.63–0.99) (G/T) 0.04

rs4938941 27.90 25.70 1.11 (0.91–1.36) (A/G) 0.29

rs506121 60.30 65.10 0.81 (0.68–0.97) (C/T) 0.027

rs553717 69.40 68.20 1.06 (0.88–1.28) (C/T) 0.56

rs723077 54.20 53.50 1.03 (0.86–1.23) (A/C) 0.75

rs760749 78.20 76.10 1.13 (0.92–1.39) (A/C) 0.26

rs8100856 44.90 45.10 0.99 (0.83–1.18) (C/T) 0.96

rs934945 71.80 75.10 0.85 (0.70–1.04) (C/T) 0.106

P values less than 0.05 are indicated in bold

OR Odds ratio; CI confidence interval.

*If theORwas calculated asC/T, then the frequency listed in the table is the frequencyofCamongall the subjects
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et al. 2017; Shiraishi et al. 2017), being unable to perform

their function as clearing pathogen. It was previously

described by some researchers that patients with DOCK8

deficiency exhibit an impaired T-cell, B-cell, NKT cell and

RORct ? innate lymphoid cells (ILCs) function, which

may affect the persistence of these cells (Boztug et al.

2012; Kearney et al. 2017). Jabara et al. concluded in their

study that DOCK8 acts as an adaptor, which can

associate toll like receptor 9 (TLR9) with Pyk2-Src-Syk-Stat3

signaling cascade via Myeloid differentiation primary-response

protein 88 (MyD88) and that the lack of DOCK8 may result

in TLR9 mis-localization, crippling the ability of TLR9 to

activate Stat3 and disabling subsequent TLR9-driven B cell

activation, proliferation and immunoglobulin production,

which will impair the humoral response mediated by B cells

(Jabara et al. 2012). Pei et al. (2014) reported that MyD88

plays a part in the signaling cascade of the innate immune

response mediated by TLRs. Further, overexpression of

MyD88 in liver cells or mouse model can inhibit HBV

replication via downregulation of viral transcription or

acceleration of the decay of viral pre-genomic RNA (Xiong

et al. 2004; Li et al. 2010). Many studies had previously

described that TLRs signaling pathways play an essential

role in the control of HBV replication (Isogawa et al. 2005;

Pei et al. 2014) by modulating the expression of microRNAs

///(Zhang et al. 2011a, Zhang et al. 2011b; Li and Shi 2013)

or inducing antiviral cytokines (Isogawa et al. 2005). In a

case–control study, researchers found TLR mutations in

rs3804099 and rs4696480 were significantly associated with

milder hepatitis activity among patients with chronic HBV

infection, concluding that the activation of TLR pathways

may further intensify the inflammation of hepatocytes (Lin

et al. 2018). Ligands of TLR2, TLR3, TLR4, TLR7, and

TLR9 in hepatoma cells have been reported to inhibit HBV

replication (Xia et al. 2008). Taking the discoveries of

previous studies and the results of our current study, we

speculate that DOCK8 -T allele may increase persistence of

HBV infection thereby impairing the immune system, TLRs

function and the correlated signaling pathways.

Carbonic anhydrase (CA) is a family of zinc metal-

loenzymes and can efficiently catalyze the reversible pro-

cesses of hydration-dehydration of CO2 and HCO3
-, which

can help maintain the neutral pH in hypoxic condition.

Hypoxia is commonly observed in tumor microenvironment

and can lead to various genetic and adoptive responses that

accommodates tumor growth (Yoo et al. 2010). Hua et al.

(2017) suggested that CA9 variants pose a prognostic

marker of hepatocellular carcinoma (HCC), and that CA9

allele regulate tumor growth and metastasis of HCC cells

through controlling cell proliferation and mobility and the

epithelial-mesenchymal transition (EMT) process in HCC

cells. Hyuga et al. (2017) suggested that CA9 variants are

associated with poor prognosis through regulation of the

EMT process in HCC. Kang et al. (2015) reported in two

cohorts that those with high CA9-positive had poorer

prognosis after surgery for HCC than those with low CA9-

positive, which suggested that CA9 expression may be a

prognostic factor for survival. Holotnakova et al. (2010)

demonstrated that HBx increased the CA9 promoter activity

and that HBx involves a portion of HBV DNA integrated

into hepatocyte chromosomes, which explains the role of

HBx in HBV infection with HCC. Holotnakova et al. (2010)

also hypothesized that CA9 could enhance the hepatocyte

tolerance to ischemia, which can increase the viability of

HBV infected hepatocytes and assist further development

such as oncogenesis. Lastly, Wang et al. (2013) found

variants of CA9 gene may change the host susceptibility to

certain tumors leading to different outcomes.

In this study, we found the CA9—A allele to be elevated

in chronic HBV infection (Table 4). CA9 is located on

chromosome 9p12-13 and contains 11 exons, which can

encode for the 459-amino-acid protein (Wang et al. 2013).

Mutation at locus rs2071676 of CA9 gene results in the

alteration of amino acid (NM_001216:c.G96A; p.Val33-

Met), which may affect the function of this gene-encoded

protein and mRNA conformation and thereafter have an

impact on disease (Shen et al. 2018). We proposed that

rs2071676 variants of CA9 gene might also be a risk factor

for the chronicity of HBV infection, in a way mediated by

possible alteration of protein function.

We conducted a two-stage analysis and demonstrated

that SNP alleles of DOCK8 and CA9 gene may increase the

risk of chronicity of HBV infection, which may serve as a

marker for the management of HBV infection. Further

functional studies are needed to measure the expression of

these two gene-coded proteins in HBV-related diseases to

help management of HBV infection.
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